生活中的数学美-对称美
生活中的数学之美

如果 英文字母 ABCDEFGHIJKLMNOPQR STUVWXYZ 依序代表 下列相对数字 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26.
如果 努力工作 H-A-R-D-W-O-R- K 8+1+18+4+23+15+18+11 = 98%;
数学之
上海北路 王海
什么是数学美?
亚里士多德说:……主要形式就是秩序、匀称和确定性……
达· 芬奇认为:美感完全建立在各部分之间神圣的比例关系上
维纳认为:数学实质上是艺术的一种
京剧脸谱
生活中的对称美
建筑中的对称美
像右图,把一个图形沿着某一条直线折叠,如果它能够与另一个 图形重合,那么就说这两个图形关于这条直线对称,这条直线叫 做对称轴,折叠后重合的点是对应点叫做对称点。轴对称和轴对 称图形的特性是相同的,对应点到对称轴的距离都是相等的。
这几副国旗图案中的五角星是黄金分割的
中国
美国
委内瑞拉
越南
黄金分割之自然美
——你可以想象吗,这朵金灿灿的向日葵 和花上的蝴蝶也是有黄金分割比例的成分
在讲向日葵的数学之美,先请大家讲一个数学概念。 斐波那契数列,也叫兔子数列,它是这样的: 1、1、2、3、5、8、13、21、34、55、89、144……
• 9 x 9 + 7 = 88 98 x 9 + 6 = 888 987 x 9 + 5 = 8888 9876 x 9 + 4 = 88888 98765 x 9 + 3 = 888888 987654 x 9 + 2 = 8888888 9876543 x 9 + 1 = 88888888 98765432 x 9 + 0 = 888888888
品味数学中的对称美

品味数学中的对称美【内容摘要】数学中有美,美中有数学。
数的美,形的美,对称的美……。
其中对称美是自然界中普遍存有的,奇妙有趣的现象,它能给人以整齐、和谐的感觉。
通过学生观察理解,发现、感受到数学的美,品味数学中的对称美,激发创造美的热情,培养学生的数学美感,提升学生的数学才能。
苏霍姆林斯基说过:“教育,假如没有美,没有艺术,那是不可思议的。
”数学教学的目的之一是使学生获得对数学的审美水平,增进学生对数学美的主观感受水平。
空间形式、数量关系、数字的奥秘……这些都为数学提供了丰富的内容,使它处处充满美的感受,美的表现,美的创造。
数学中的对称美是具体的、意义深刻的。
在数学教学中,只要细心观察,美,就在你身边!下面,我以二年级数学上册《轴对称图形》为例实行研究,其主要表现为以下四个方面:一、联系生活,感受“对称美”美,是人们日常生活中不可缺少的重要因素。
生活中很多图形具有对称美,让学生去欣赏美、感受美,能够使我们的教学充满情趣,能够陶冶学生的性情,激发学生的学习兴趣,提升学生的学习效率,让他们在美的教育中茁壮成长。
熏陶,调动学生的积极性,让学生初步理解对称现象,引出对称概念。
接着充分利用学生已有的生活经验,让学生相互交流生活中对称的物体,加深对对称现象的理解,体会数学与生活的联系,让学生逐步学会用数学的眼光去观察世界。
课始,我把学生带进秋天的童话情境当中:秋天的枫林深处,满地落叶,蜻蜓和蝴蝶在嬉戏,林中有一座房子。
我问:“这些图案美吗?请说一说理由。
”当学生说出“这些图形左右两边都是一样”时,我让学生拿出蝴蝶、蜻蜓、树叶、房子的图形,让学生动手折一折,验证对称,进一步感知这些图形左右两边都是一样的。
学生在折蝴蝶等纸片的过程中,发现了对称图形的折痕,我让学生各取名称。
并对学生起的名字给予肯定,向学生说明在数学中我们规定这条线为“对称轴”。
指几名学生找出蝴蝶等纸片的对称轴,我选择了一种图形(蜻蜓),用课件演示了对称轴的画法。
数学的对称之美及其应用

数学的对称之美及其应用
这是一个不平凡的新年,过年总意味着成长,而这一次我们成长的收获是关怀、责任与担当。
疫情虽然改变了教育的方式,但是并未改变教育的温度。
病毒无情阻挡了我们前行的脚步,但挡不住我们学习的热情!为了让宅在家里的宝贝们“不无聊”“有所学”,特制定了本期活动。
学习内容:轴对称图形
一、概念解释
轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形。
这条直线叫做对称轴。
二、感受“对称美”
美好的事物和美的愉悦享受,是人们日常生活中不可缺少的重要因素。
下面就让我们一起来欣赏这种美吧。
数学中的对称美

数学中的对称美数学的对称美分为两种:一种是数〔式〕的对称性美,要紧表达在数〔式〕的结构上,例如,加法的交换律a+b=b+a,乘法的交换律ab=ba,a与b的位置具有对称关系,然而能够变化的,变化的结果与原来的位置反而形成一种整齐的美感、均衡感,简洁明快,一目了然,从而显示了它的神奇感、奇妙感。
另一种是图形的对称性,整体美、简洁美,图形的对称是指组成图形的部分与部分之间、整体与整体之间的一种统一和谐关系。
例如轴对称图形和中心对称图形等,这些图形匀称美观,因此在日常生活中用途特别广泛,许多建筑师和美术工作者常常采纳一些对称图形,设计出漂亮的装饰图案。
倒影对称的建筑物,对称的图案,是随处可见的。
绘画中利用对称,文学作品中也有对称手法。
在数学中那么表现在几何图形中有点对称、线对称、面对称。
在几何图形中对称的图形给人以美的享受,而不对称的现象中同样存在着美,这确实是黄金分割的美或者更深层次的对称美。
如:一条线段关于它的中点对称,这条线段假设左端点的坐标为0,右端点的坐标为1,那么中点在0.5处。
又如:大概黄金分割点〔在0.618处〕不是对称点,但假设将左端记为A,右端记为B,黄金分割点记为C,那么AC2=AB·BC而且C关于中点的对称点D也是AB的黄金分割点,因为,再进一层看,D又是AC的黄金分割点;C是DB的黄金分割点。
类似地一直讨论下去,这可视为一种连环对称。
现在,设计师和艺术家们差不多利用这一规律创造出了许多令人心碎的建筑和无价的艺术珍宝。
在中学数学中,有关数与形的对称现象极为常见,这种对称有的是形象的,有的是抽象的观念和方法上的对称。
等边三角形是关于它的每条高线的轴对称图形,平行四边形是关于它的两条对角线交点的中心对称图形。
圆锥、圆柱、圆台是关于它的轴截面的对称图形。
代数中常利用来构造一元二次方程,几何中常利用对称思想添加辅助线,数学的对称美已成为人们研究解决问题的重要思想方法,它的作用越来越显得重要。
生活中的数学美

生活中的数学美数学是一门抽象而深奥的学科,它被广泛应用于自然科学、工程学、经济学等领域。
然而,数学之美并不仅限于这些学术领域,在我们日常的生活中,也随处可见数学的影子。
从简单的几何图形到音乐的旋律,从植物的花纹到建筑的结构,数学之美无处不在,悄然影响着我们的生活。
几何之美几何是数学的一个重要分支,研究图形、空间以及它们之间的关系。
在我们的日常生活中,常常能够看到几何图形给我们带来的美感。
比如,一个完美对称的花朵,一条流畅的弧线,一座优雅的建筑。
这些都彰显着几何之美在生活中的存在。
同样,在平凡的生活中,我们也能发现几何的奥秘。
比如,当我们在厨房烹饪时,调配不同食材的比例,其实就是数学的运用。
又比如,在整理家具摆放的时候,合理利用空间、计算距离,也是数学思维在发挥作用。
植物之美植物玄妙之美也常与数学相联。
例如,一朵花瓣的数量往往符合数学上的规律,如黄金分割比例等。
植物的花纹、叶脉、生长方式等都充满了数学的秩序之美,似乎是大自然对数学的完美诠释。
除此之外,植物的种植、育苗等过程中也充满了数学的精妙。
比如,在园艺学中,种植不同植物之间的距离、地块的面积计算等都离不开数学的帮助。
建筑之美建筑是人类创造的艺术,而其中也融入了数学的美感。
建筑的结构、比例、对称等都是数学的应用。
在古代,建筑师用黄金分割、斐波那契数列等数学规律来设计建筑,以追求完美的比例。
而在现代建筑中,数学更是不可或缺的。
建筑师利用数学知识来计算结构的强度、设计立面的曲线、规划空间的布局等。
这些数学的应用使建筑更加美观、实用且稳固。
结语生活中的数学美无处不在,它让我们对世界更加敏感、更加理解万物的秩序和规律。
正是数学的存在,使得我们能够发现生活中的美,也使得我们更加深刻地理解这个世界。
让我们在日常的琐事中,多留意数学之美的存在,感受它带给我们的惊喜和震撼。
愿数学之美,永远伴随我们的生活。
生活中的轴对称

生活中的轴对称
生活中的轴对称,是一种美妙的对称方式,它存在于我们生活的方方面面。
从
自然界的美景到人类的艺术作品,轴对称都是一种普遍而又美丽的存在。
在自然界中,我们可以看到许多轴对称的美景。
例如,一朵盛开的花朵,它的
花瓣就是以花蕊为中心呈现出轴对称的美丽。
又如,一条清澈的河流,它在水面上倒映出的景色也是轴对称的,让人感受到大自然的神秘和美丽。
而在人类的艺术作品中,轴对称更是被广泛运用。
从古代的建筑到现代的设计,轴对称都是一种常见的美学原则。
古代的宫殿和寺庙,都以轴对称的方式布局,使人们在其中感受到一种庄严而又优美的氛围。
而现代的建筑设计中,轴对称也被广泛运用,许多建筑都以轴对称的方式设计,使人们在其中感受到一种和谐而又舒适的空间。
除此之外,轴对称还存在于我们的日常生活中。
比如,我们的面容就是以鼻子
为中心呈现出轴对称的美丽。
又如,我们的身体也是以脊柱为中心呈现出轴对称的结构,使我们的身体更加稳固而有力量。
生活中的轴对称,无处不在,它让我们感受到了大自然的美丽和人类的智慧。
让我们珍惜这种美妙的对称方式,让它成为我们生活中的一部分,让我们的生活因此更加美丽和完美。
数学之美数学是美丽的,哪里有数哪里就有美

数学之美数学是美丽的,哪里有数哪里就有美数学是美丽的,哪里有数哪里就有美。
数学的定义是:研究数量关系和空间形式的一门科学。
但有句名言说:数学比科学大得多,因为它是科学的语言。
数学不仅用来写科学,而且可用来写人生。
所以说数学是一切学科的基础,是核心学科,就像人们知识金字塔的底部垫基石,所以数学被誉为科学的皇后。
数学分基础和应用两部分组成的,前者追求真和美,后者是把这种真和美应用到现实生活。
一切美的事物都有两条衡量标准:一是绝妙的美都显示出奇异的均衡关系(培根);二是美是各部分之间以及各部分与整体之间都有一种协调一致的和谐(海森保)。
而数学的外在美和内在美无一不把上述的两种美感体现的淋漓尽致,而且它还另赋有真理美和一种冷峭、严峻的美。
一、数学外在美:形象美、对称美、和谐美1形象美黑格尔说:“美只能在形象中出现。
”谈到形象美,一些人便只联想到影视、雕塑或绘画等,而数学离形象美是遥不可及的。
其实数学的数形结合,也可以组成世间万物的绚丽画面。
从幼儿时代伊伊学语的“1像小棒、2像小鸭、3像耳朵……”的直观形象,再到小学二、三年级所学的平均数的应用的宏观形象之美——商场货架货物平均间距摆放以及道路植树的平均间距……由平均数的应用给人们带来的美感不胜玫举。
再到初中所学的“⊥”(垂直符号),看到这样的符号,就让我们联想起矗立在城市中的高楼大厦或一座屹然峻俏、拔地而起的山峰,给人以挺拔巍峨之美。
“—”(水平线条),我们想起静谧的湖面,给人以平静心情的安然之美;看到“~”(曲线线条),我们又有小溪流水、随波逐流的流动乐章之美。
到了高中的“∈”(属于符号),更是形象的表现了一种归属关系的美感。
还有现在最新研究的数学分形几何图形,简直就是数学上帝造物主的完美之作。
美得让人晕撅的数学分形几何图形▼2对称美对称是美学的基本法则之一,数学中许多轴对称、中心对称图形,都赋予了平衡、协调的对称美。
就连一些数学概念本身都呈现了对称的意境——“整—分、奇—偶、和—差、曲—直、方—圆、分解—组合、平行—交叉、正比例—反比例”。
生活中的数学美

谢谢大家!
祝老师工作顺利! 祝同学们学习进步!
同样,杯子的圆形也是应用了圆形面积最大的 原理
黄金分割比
• 黄金分割比是把一条线段分割 为两部分,使其中一部分与全 长之比等于另一部分与这部分 之比。近似值是0.618。由于 按此比例设计的造型十分美丽, 因此称为黄金分割。也称为中 外比。
• 这个数值的作用不仅仅体现在 诸如绘画、雕塑、音乐、建筑 等艺术领域,而且在管理、工 程设计等方面也有着不可忽视 的作用。 甚至连人体自身的 形体美,即最优美的身段,也 遵循着黄金分割比.
•埃及金字塔、钢轨、三角形 框架、起重机、三角形吊臂、 屋顶、三角形钢架、钢架桥中 都是应用了三角形原理。
生活中常见的三角形:
• 为什么自行车轮是圆形的? • 1.同样面积的图形圆的周长
最长,转一圈走得最远. • 2.圆的边是曲线,摩擦力小,
比较光滑,走得快. • 3. 车轴离开地面的距离始
终一样长。这样车子才会平 稳。
雕塑断臂女神维纳 斯的体型完全与黄 金比相符,即以人的 肚脐为分界点,上身 与下身之比,或者说 下身与全身之比约 是0.618 这样的 身体给人的感觉是 最美的。
节目主持人报 幕绝对不会站 在舞台的中央, 总是站在舞台 的1/3接近于 0.618的位置。 这里才是最佳 的位置。
这几副国旗图案中的五角星是黄金分割的
3.轴对称之美
• 什么是轴对称图形呢?如果把一 个图形沿着一条直线翻折过来, 直线两旁的部分能够完全重合, 这样的图形叫做轴对称图形。在 我们的生活中,有很多美丽的轴 对称图形。
建筑中的对称美
剪纸图片
京剧脸谱
生活中的轴对称
不使用加减乘除等计算方式,如何才 能把666增为一倍半呢?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生活中的数学美——对称美
活动主题:观察生活中的数学美,深入生活,去发现、去感受生活中的数学美。
活动目的:
1、了解一些在课堂上、书本上学习不到的,但又与我们的生活息息相关的数学知识。
开拓我们的视野,从而达到增长见闻的目的。
2、锻炼学生自主学习、团结同学、与外界交往的能力。
活动过程:
1、分组:根据合作、自由的原则,我们7个同学志趣相投,共同组成一个小组,并投票选出小组长。
2、选定考察对象:由于我们对生活中的数学的了解并不全面,所以我们最后经过多次激烈的讨论和考察后,我们选定了生活中的数学美——对称美。
3、实地考察:利用课余时间,观察生活中与对称有关的事物,并把相关的资料摘抄下来。
4、资料收集:针对考察对象,我们上图书馆去查找有关的书籍、文献。
但由于资料有限,我们又在互联网上收集有关剪纸的资料。
然后进行整理和编辑。
5、撰写报告:根据之前上图书馆、上网和实地考察所收集到的资料写成了考察报告。
报告内容可分为:考察对象的对称性,及它的对称美,及人们利用对称性的相关历史。
让学生从现实生活出发,运用多种感官品味生活,发现数学几何知识,从网络等多方位搜集并利用
PPT来展示自己的搜集成果,展示自己的发现。
这一从具体到抽象,从感性到理性,从实践到理论并检验理论的探讨方式,循序渐进地指导学生认识自然界和日常生活中具有轴对称性质的事物,受到美的熏陶,使学生主动地全方位参与学习,深层认识所学的平面对称图形的本质特征,了解对称在当今各领域中的广泛应用及发展,并创造性地设计出自己满意的轴对称图案、美化生活。
6、展示活动成果:在活动课后,通过多媒体课件的方式把泉州的剪纸艺术生动地展示出来。
使人们对泉州剪纸有了全面的认识,激发了他们对剪纸的兴趣。