2021年高一数学暑假假期作业5(含解析)
和角公式及答案

高一数学假期作业(和角公式)一、选择题1.若1tan()47πα+=,则tan α=( ) (A )34 (B )43 (C )34- (D )43- 2.若1sin()33πα+=,则5cos()6πα+的值为( )A 、13-B 、13C 、 3.已知4sin 5x =,(,)2x ππ∈,则tan()4x π-=( ) A.17 B .7 C .17- D .7- 4.式子cos cos sin sin 126126ππππ-的值为( )A .12B C D .1 5.在ABC ∆中,3sin 5A =,5cos 13B =,则cosC =( ) A .1665或5665 B .16566565-或- C .1665-D .1665 6.设当x=θ时,函数f(x)=sinx -2cosx 取得最大值,则cos θ= ( ) A.- B. C.- D.7.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.若sin Acos C +sin Ccos A =12 ,且a >b ,则∠B 等于 ( ) A.56π B.23π C.3π D.6π 8.在10103cos ,21tan ,==∆B A ABC 中,则tan C 的值是( )A .1-B .1C .29.如图,在ABC ∆中,AD BC ⊥,D 为垂足,AD 在ABC ∆的外部,且BD:CD:AD=2:3:6,则tan BAC ∠=( )A. 1B.17 C. 15 D. 5710.已知()11cos cos ,sin sin cos 23αβαβαβ+=+=-=, ( ) A.5972- B .1372- C .5972± D .1372±二、填空题11.Sin14ºcos16º+sin76ºcos74º的值是_________.12.若34παβ+=,则(1tan )(1tan )αβ--= __________ . 13.已知1cos 7α=,13cos()14αβ-=,且π02βα<<<,则cos β= .14.函数y +sin4x 的最小正周期为________.15.已知cos 6πα⎛⎫-⎪⎝⎭+sin α,则sin 76πα⎛⎫+ ⎪⎝⎭的值为________.三、解答题16.计算:sin50°(1°).17.已知,αβ为锐角,sin α=,cos β=αβ-的值.18.已知12cos()13αβ-=-,12cos()13αβ+=,且()(,)2παβπ∈-,3()(,2)2παβπ+∈,求角β的值.19.已知0<β<4π<α<34π,cos(4π-α)=35,sin(34π+β)=513,求sin(α+β)的值.20.已知函数f(x)=sin 74x π⎛⎫+ ⎪⎝⎭+cos 34x π⎛⎫- ⎪⎝⎭,x ∈R. (1)求f(x)的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤2π,求证:[f(β)]2-2=0.参考答案1.(C )【解析】 试题分析:由1tan()47πα+=所以tan 113,tan 1tan 74ααα+=∴=--.故选(C ). 考点:1.角的和差公式.2.解方程的思想.2.A .【解析】 试题分析:51cos()cos()sin()62333ππππααα+=++=-+=-故选A . 考点:三角函数知值求值(诱导公式).3.B【解析】试题分析:∵4sin 5x =,,(,)2x ππ∈,∴3c o s 5x =-,∴4t a n 3x =-,∴t a n t a n 4t a n ()741t a n t a n 4x x x πππ--==+. 考点:平方关系、商数关系、两角差的正切.4.B【解析】试题分析:由两角和与差的余弦公式得cos cos sin sin 126126ππππ-224c o s 612cos ==⎪⎭⎫ ⎝⎛+=πππ 考点:三角恒等变换5.D【解析】 试题分析:依据题意1312sin =B ,A B sin sin >,A B >∴,A ∴为锐角,53sin =A , 54cos =∴A ()[]()651613125313554sin sin cos cos cos cos cos =⨯+⨯-=+-=+-=+-=B A B A B A B A C π,故选D.考点:三角函数的求值6.C【解析】∵f(x)=sinx-2cosx=(sinx-cosx)令cos =,sin =-,则f(x)=(sinxcos -sin cosx)=,当=,即=时,取最大值,此时=,∴===.7.D【解析】 试题分析:1sin cos sin cos sin()sin()sin 2A C C A A C B B π+=+=-==,因为a b >,所以B 为锐角,即6B π=。
2021年高一数学暑假假期作业11 含解析

2021年高一数学暑假假期作业11 含解析一、选择题1.下列函数在[1,4]上最大值为3的是( )A .y =1x +2B .y =3x -2C .y =x 2D .y =1-x2.函数y =2x 2+1,x ∈N *的最值情况是( )A .无最大值,最小值是1B .无最大值,最小值是3C .无最大值,也无最小值D .不能确定最大、最小值3.函数f (x )=⎩⎨⎧ x 2,x ∈[-1,0]1x ,x ∈0,1]的最值情况为( )A .最小值0,最大值1B .最小值1,最大值5C .最小值0,最大值5D .最小值0,无最大值4.函数y =x +x -2的值域是( )A .[0,+∞)B .[2,+∞)C .[4,+∞)D .[2,+∞)5.当0≤x ≤2时,a <-x 2+2x 恒成立,则实数a 的取值范围是( )A .(-∞,1]B .(-∞,0]C .(-∞,0)D .(0,+∞)6.某公司在甲、乙两地同时销售一种品牌车,销售x 辆该品牌车的利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x .若该公司在两地共销售15辆,则能获得的最大利润为( )A.90万元B.60万元C.120万元D.120.25万元二、填空题7.函数f(x)=32x-1在区间[1,5]上的最大值为__________,最小值为__________.8.函数f(x)=-x2+b在[-3,-1]上的最大值是4,则它的最小值是________.9.已知函数f(x)=x2-6x+8,x∈[1,a],并且f(x)的最小值为f(a),则实数a的取值范围是________.三、解答题10.已知函数f(x)=x2+2ax+2,x∈[-5,5].(1)当a=-1时,求函数f(x)的最大值和最小值;(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.11.已知函数f(x)=x2-2ax+5(a>1),若f(x)的定义域和值域均是[1,a],求实数a的值.12.已知函数f(x)=2xx+1,x∈[-3,-2],求函数的最大值和最小值.[拓展延伸]13.在经济学中,函数f(x)的边际函数为Mf(x),定义为Mf(x)=f(x+1)-f(x),其公司每月最多生产100台报警系统装置.生产x 台的收入函数为R(x)=3 000x-20x2(单位:元),其成本函数为C(x)=500x+4 000(单位:元),利润等于收入与成本之差.(1)求出利润函数p(x)及其边际利润函数Mp(x).(2)求出的利润函数p(x)及其边际利润函数Mp(x)是否具有相同的最大值.(3)写出你认为本题中边际利润函数Mp(x)最大值的实际意义.新高一暑假作业(十一)一、选择题1.下列函数在[1,4]上最大值为3的是()A.y=1x+2 B.y=3x-2C.y=x2D.y=1-x解析:B、C在[1,4]上均为增函数,A、D在[1,4]上均为减函数,代入端点值,即可求得最值,故选A.答案:A2.函数y=2x2+1,x∈N*的最值情况是()A.无最大值,最小值是1B.无最大值,最小值是3C.无最大值,也无最小值D.不能确定最大、最小值解析:∵x∈N*,且函数在(0,+∞)上单调递增,故函数在x=1时有最小值3,无最大值.答案:B3.函数f (x )=⎩⎨⎧ x 2,x ∈[-1,0]1x ,x ∈(0,1]的最值情况为( )A .最小值0,最大值1B .最小值1,最大值5C .最小值0,最大值5D .最小值0,无最大值解析:x ∈[-1,0], f (x )的最大值为1,最小值为0;x ∈(0,1]时, f (x )∈[1,+∞)无最大值,有最小值1,所以f (x )有最小值0,无最大值.答案:D4.函数y =x +x -2的值域是( )A .[0,+∞)B .[2,+∞)C .[4,+∞)D .[2,+∞) 解析:函数的定义域为[2,+∞),又函数为单调增函数,∴值域是[2,+∞).答案:B5.当0≤x ≤2时,a <-x 2+2x 恒成立,则实数a 的取值范围是( )A .(-∞,1]B .(-∞,0]C .(-∞,0)D .(0,+∞)解析:令f (x )=-x 2+2x ,则f (x )=-x 2+2x =-(x -1)2+1.又∵x ∈[0,2],∴f (x )min =f (0)=f (2)=0.∴a <0.答案:C6.某公司在甲、乙两地同时销售一种品牌车,销售x 辆该品牌车的利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x .若该公司在两地共销售15辆,则能获得的最大利润为( )A .90万元B .60万元C .120万元D .120.25万元解析:设公司在甲地销售x 辆,则在乙地销售(15-x )辆,公司获利为L =-x 2+21x +2(15-x )=-x 2+19x +30=-⎝ ⎛⎭⎪⎫x -1922+30+1924, ∴当x =9或10时,L 最大为120万元.答案:C二、填空题7.函数f (x )=32x -1在区间[1,5]上的最大值为__________,最小值为__________.解析:设1≤x 1<x 2≤5,则f (x 1)-f (x 2)=32x 1-1-32x 2-1=6(x 2-x 1)(2x 1-1)(2x 2-1), 由于1≤x 1<x 2≤5,所以x 2-x 1>0,且(2x 1-1)(2x 2-1)>0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),所以函数f (x )=32x -1在区间[1,5]上是减函数.因此,函数f (x )=32x -1在区间[1,5]的两个端点上分别取得最大值与最小值,即最大值为f (1)=3,最小值为f (5)=13. 答案:3 138.函数f (x )=-x 2+b 在[-3,-1]上的最大值是4,则它的最小值是________.解析:函数f(x)=-x2+b在[-3,-1]上是增函数,x=-1时取最大值,所以b=5,x=-3时,取最小值f(-3)=-9+5=-4.答案:-49.已知函数f(x)=x2-6x+8,x∈[1,a],并且f(x)的最小值为f(a),则实数a的取值范围是________.解析:如右图可知f(x)在[1,a]内是单调递减的,又∵f(x)的单调递减区间为(-∞,3],∴1<a≤3.答案:(1,3]三、解答题10.已知函数f(x)=x2+2ax+2,x∈[-5,5].(1)当a=-1时,求函数f(x)的最大值和最小值;(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.解:(1)当a=-1时,f(x)=x2-2x+2=(x-1)2+1,x∈[-5,5],当x=1时,有f(x)min=1,当x=-5时,有f(x)max=37.(2)∵函数f(x)=(x+a)2+2-a2图象的对称轴为x=-a,f(x)在区间[-5,5]上是单调函数,∴-a ≤-5或-a ≥5,即a ≥5或a ≤-5.11.已知函数f (x )=x 2-2ax +5(a >1),若f (x )的定义域和值域均是[1,a ],求实数a 的值.解:∵f (x )开口向上,对称轴x =a >1,∴f (x )在[1,a ]上是减函数,∴f (x )的最大值为f (1)=6-2a, f (x )的最小值为f (a )=5-a 2,∴6-2a =a,5-a 2=1,∴a =2.12.已知函数f (x )=2x x +1,x ∈[-3,-2],求函数的最大值和最小值.解:设x 1,x 2是区间[-3,-2]上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=2x 1x 1+1-2x 2x 2+1=2x 1(x 2+1)-2x 2(x 1+1)(x 1+1)(x 2+1)=2(x 1-x 2)(x 1+1)(x 2+1). 由于-3≤x 1<x 2≤-2,则x 1-x 2<0,x 1+1<0,x 2+1<0.所以f (x 1)-f (x 2)<0,f (x 1)<f (x 2).所以函数y =2x x +1在x ∈[-3,-2]是增函数.又因为f (-2)=4,f (-3)=3,所以函数的最大值是4,最小值是3.[拓展延伸]13.在经济学中,函数f (x )的边际函数为Mf (x ),定义为Mf (x )=f (x +1)-f (x ),其公司每月最多生产100台报警系统装置.生产x 台的收入函数为R (x )=3 000x -20x 2(单位:元),其成本函数为C (x )=500x +4 000(单位:元),利润等于收入与成本之差.(1)求出利润函数p (x )及其边际利润函数Mp (x ).(2)求出的利润函数p (x )及其边际利润函数Mp (x )是否具有相同的最大值.(3)写出你认为本题中边际利润函数Mp (x )最大值的实际意义. 解:(1)p (x )=R (x )-C (x )=-20x 2+2 500x -4 000,x ∈[1,100],x ∈N ,Mp (x )=p (x +1)-p (x )=[-20(x +1)2+2 500(x +1)-4 000]-(-20x 2+2 500x -4 000),=2 480-40x ,x ∈[1,100],x ∈N .(2)p (x )=-20⎝⎛⎭⎪⎫x -12522+74 125,x ∈[1,100],x ∈N ,故当x =62或63时,p (x )max =74 120(元).因为Mp (x )=2 480-40x 为减函数,当x =1时有最大值2 440,故不具有相同的最大值.(3)边际利润函数取最大值时,说明生产第二台机器与生产第一台的利润差最大.-32580 7F44 罄%25605 6405 搅37129 9109 鄉%29623 73B7 玷,^29008 7150 煐VI25882 651A 攚a。
高一数学暑假作业本答案(Word版)

高一数学暑假作业本答案(2021最新版)作者:______编写日期:2021年__月__日【一】1.理解和掌握函数的奇偶性,单调性,周期性等;2.灵活应用以上性质分析,解决问题。
一、选择题(在每小题给出的四个选项中只有一项是符合题目要求的)1.下列函数中,满足“对任意,时,都有”的是()A.B.C.D.2.如果函数在区间上是减函数,在区间上是增函数,那么a的取值范围是()A.B.C.D.3.奇函数f(x)的定义域为R.若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.-2B.-1C.0D.14.下列函数中,在其定义域内既是奇函数又是减函数的是()A.B.C.D.5.如果奇函数在时,,那么使成立的的取值范围是()A.B.C.D.6.设偶函数在上为减函数,则的解集为()A.B.C.D.7.定义在R上的偶函数满足,设的大小关系是()A.c 8.定义在R上的奇函数满足,且在区间上是增函数,则()A.B.C.D.二、填空题9.函数在上为减函数,则的取值范围是10.已知与都是定义在R上的奇函数,=+2,且,则=.11.设f(x)是定义在R上的周期为2的函数,当x∈[-1,1)时,,则=________.12.下列四个结论:①偶函数的图象一定与直角坐标系的纵轴相交;②奇函数的图象一定通过直角坐标系的原点;③既是奇函数,又是偶函数的函数一定是=0();④偶函数f(x)在上单调递减,则f(x)在上单调递增.其中正确的命题的序号是三、解答题(应写出文字说明、证明过程或演算步骤)13.设函数=是奇函数,其中,,(1)求的值;(2)判断并证明在上的单调性.14.已知函数对任意的x,y总有,且当x时,,(1)求证在R上是奇函数;(2)求证在R上是减函数;(3)求在[-3,3]上的最值.15.函数是定义在R上的奇函数,当时,.(1)求时,的解析式;(2)是否存在这样的正数a,b,当时,的值域为?若存在,求出所有的a,b的值;若不存在,请说明理由。
专题02 乘法公式-走进新高一之2021年暑假初升高数学完美衔接课(原卷版)

专题02:乘法公式主要讲解几个常见公式的证明,并补充一些常用的公式公式一、平方差公式公式二、完全平方公式在实际应用中,需要将公式进行变形,常见的变形如下:1.2.3.4.5.公式三、立方和公式公式四、立方差公式公式五、三数和平方公式公式六、两数和立方公式公式七、两数差立方公式例1、计算例2、计算例3、已知a、b是方程的两个根,求:(1);(2);(3);(4)【解答】(1)77;(2);(3)112;(4)24【解析】∵a、b是方程的两个根,∴a+b=7,ab=11.(1);(2);(3);巩固练习一.选择题1.下列式子计算正确的是()A.m3•m2=m6B.(﹣m)﹣2=C.m2+m2=2m2D.(m+n)2=m2+n22.如图(1),边长为m的正方形剪去边长为n的正方形得到①、②两部分,再把①、②两部分拼接成图(2)所示的长方形,根据阴影部分面积不变,你能验证以下哪个结论()A.(m﹣n)2=m2﹣2mn+n2B.(m+n)2=m2+2mn+n2C.(m﹣n)2=m2+n2D.m2﹣n2=(m+n)(m﹣n)3.将图甲中阴影部分的小长方形变换到图乙位置,能根据图形的面积关系得到的关系式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣b2C.b(a﹣b)=ab﹣b2D.ab﹣b2=b(a﹣b)4.如图1的8张长为a,宽为b(a<b)的小长方形纸片,按如图2的方式不重叠地放在长方形ABCD内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.b=5a B.b=4a C.b=3a D.b=a5.已知实数x、y、z满足x2+y2+z2=4,则(2x﹣y)2+(2y﹣z)2+(2z﹣x)2的最大值是()A.12B.20C.28D.36二.填空题6.已知(a+b)2=7,a2+b2=5,则ab的值为.7.我们规定一种运算:,例如=3×6﹣4×5=﹣2,.按照这种运算规定,当x=时,=0.8.如图,点C是线段AB上的一点,分别以AC、BC为边在AB的同侧作正方形ACDE和正方形CBFG,连接EG、BG、BE,当BC=1时,△BEG的面积记为S1,当BC=2时,△BEG的面积记为S2,……,以此类推,当BC=n时,△BEG的面积记为S n,则S2020﹣S2019的值为.9.如果,那么a+2b﹣3c=.10.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如下图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1,系数和为8;…根据以上规律,解答下列问题:(1)(a+b)4展开式共有项,系数分别为;(2)(a+b)n展开式共有项,系数和为.三.解答题11.已知x+y=﹣6,xy=5,求下列代数式的值:(1)x+y(1﹣x);(2)x2+y2.12.已知A=2x+3,B=x﹣2.化简A2﹣AB﹣2B2,并求当x=时该代数式的值.13.先化简,再求值:[(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2]÷y,其中x=﹣1,y=﹣2.14.已知,求的值.15.(1)若,,求的值;(2)若,求的值.16.已知三角形的三条边分别是a、b、c,且满足等式,试确定三角形的形状.17.前面学习中,一些乘法公式可以通过几何图形来验证,请结合下列两组图形回答问题:图①说明:左侧图形中阴影部分由右侧阴影部分分割后拼接而成;图②说明:边长为(a+b)的正方形的面积分割成如图所示的四部分.(1)请结合图①和图②分别写出学过的两个乘法公式:图①:;图②:.(2)请利用上面的乘法公式计算:①1002﹣99×101;②(60)2.18.要说明(a+b+c)2=a2+b2+c2+2ab+2ac+2bc成立,三位同学分别提供了一种思路,请根据他们的思路写出推理过程.(1)小刚说:可以根据乘方的意义来说明等式成立;(2)小王说:可以将其转化为两数和的平方来说明等式成立;(3)小丽说:可以构造图形,通过计算面积来说明等式成立.19.【阅读材料】我们知道,图形也是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙地解决一些图形问题.在一次数学活动课上,张老师准备了若干张如图1所示的甲、乙、丙三种纸片,其中甲种纸片是边长为x 的正方形,乙种纸片是边长为y的正方形,丙种纸片是长为y,宽为x的长方形,并用甲种纸片一张,乙种纸片一张,丙种纸片两张拼成了如图2所示的一个大正方形.【理解应用】(1)观察图2,用两种不同方式表示阴影部分的面积可得到一个等式,请你直接写出这个等式;【拓展升华】(2)利用(1)中的等式解决下列问题.①已知a2+b2=10,a+b=6,求ab的值;②已知(2021﹣c)(c﹣2019)=2020,求(2021﹣c)2+(c﹣2019)2的值.20.如图1,是一个长为2a,宽为2b的长方形,沿图中虚线剪开分成四块相同的小长方形,然后拼成一个正方形(如图2).(1)用两种不同的方法表示图2中阴影部分的面积:方法1:S阴影=.方法2:S阴影=.(2)写出(a+b)2,(a﹣b)2,ab这三个代数式之间的等量关系为.(3)①若(2m+n)2=14,(2m﹣n)=6,则mn的值为.②已知x+y=10,xy=16,求x﹣y的值.21.请认真观察图形,解答下列问题:(1)根据图中条件,试用两种不同方法表示两个阴影图形的面积的和.方法1:;方法2:;(2)从中你能发现什么结论?请用等式表示出来:;(3)利用(2)中结论解决下面的问题:若ab=2,a+b=4,求a2+b2的值.22.如图是一个长为4a、宽为b的长方形,沿中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图2中的阴影部分面积为:(用a、b的代数式表示);(2)观察图2,请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是;(3)利用(2)中的结论,若x+y=5,xy=,求(x﹣y)2的值;(4)实际上通过计算图形的面积可以探求相应的等式,如图3,请你写出这个等式;(5)如图,点C是线段AB上的一点,分别以AC、BC为边在AB的同侧作正方形ACDE和正方形CBFG,连接EG、BG、BE,当BC=1时,△BEG的面积记为S1,当BC=2时,△BEG的面积记为S2,…,以此类推,当BC=n时,△BEG的面积记为S n,则S2020﹣S2019的值为.。
高一数学暑假作业及答案

高一数学暑假作业及答案2021年高一数学暑假作业及答案【】温习的重点一是要掌握一切的知识点,二就是要少量的做题,查字典数学网的编辑就为各位考生带来了2021年高一数学暑假作业及答案一、选择题1.T1=,T2=,T3=,那么以下关系式正确的选项是()A.T1,即T2bdB.dcaC. dbaD.bda【解析】由幂函数的图象及性质可知a0,b1,0ca.应选D. 【答案】 D3.设{-1,1,,3},那么使函数y=x的定义域为R且为奇函数的一切的值为()A.1,3B.-1,1C.-1,3D.-1,1,3【解析】 y=x-1=的定义域不是R;y=x=的定义域不是R;y=x 与y=x3的定义域都是R,且它们都是奇函数.应选A.【答案】 A4.幂函数y=f(x)的图象经过点,那么f(4)的值为()A.16B.2C. D.【解析】设f (x)=x,那么2==2-,所以=-,f(x)=x-,f(4)=4-=.应选C.【答案】 C二、填空题5.n{-2,-1,0,1,2,3},假定nn,那么n=________. 【解析】∵--,且nn,y=xn在(-,0)上为减函数.又n{-2,-1,0,1,2,3},n=-1或n=2.【答案】 -1或26.设f(x)=(m-1)xm2-2,假设f(x)是正比例函数,那么m=________,假设f(x)是正比例函数,那么m=________,假设f(x)是幂函数,那么m=________.【解析】 f(x)=(m-1)xm2-2,假定f(x)是正比例函数,那么m=假定f(x)是正比例函数,那么即m=-1;假定f(x)是幂函数,那么m-1=1,m=2.【答案】-1 2三、解答题7.f(x)=,(1)判别f(x)在(0,+)上的单调性并证明;(2)当x[1,+)时,求f(x)的最大值.【解析】函数f(x)在(0,+)上是减函数.证明如下:任取x1、x2(0,+),且x10,x2-x10,x12x220.f(x1)-f(x2)0,即f(x1)f(x2).函数f(x)在(0,+)上是减函数.(2)由(1)知,f(x)的单调减区间为(0,+),函数f(x)在[1,+)上是减函数,函数f(x)在[1,+)上的最大值为f(1)=2.8.幂函数y=xp-3(pN*)的图象关于y轴对称,且在(0,+)上是减函数,求满足(a-1)(3+2a)的a的取值范围. 【解析】∵函数y=xp-3在(0,+)上是减函数,p-30,即p3,又∵pN*,p=1,或p=2.∵函数y=xp-3的图象关于y轴对称,p-3是偶数,取p=1,即y=x-2,(a-1)(3+2a)∵函数y=x在(-,+)上是增函数,由(a-1)(3+2a),得a-13+2a,即a-4.所求a的取值范围是(-4,+).以上就是查字典数学网高中频道为您整理的2021年高一数学暑假作业及答案,欢迎大家进入高考频道了解2021年最新的信息,协助同窗们学业有成!。
2021-2022学年新高一数学暑期衔接讲义-第3讲 不等式的进阶——一元二次不等式(解析版)

进门测试建议5min①关于x 的二次方程x 2+2(m +3)x +2m +14=0有两根,且一个大于1,一个小于1,求m 的范围; ②关于x 的二次方程x 2+2(m +3)x +2m +14=0有两根,且在内,求m 的范围;③关于x 的二次方程x 2+2(m +3)x +2m +14=0有两根,且在[1,3]之外,求m 的范围;④关于x 的二次方程mx 2+2(m +3)x +2m +14=0有两根,且一个大于4,一个小于4,求m 的范围. 【答案】(1);(2);(3);(4). 课堂导入建议10min柯西柯西1789年8月21日生于巴黎,他的父亲路易·弗朗索瓦·柯西是法国波旁王朝的官员,在法国动荡的政治漩涡中一直担任公职.由于家庭的原因,柯西本人属于拥护波旁王朝的正统派,是一位虔诚的天主教徒.他在纯数学和应用数学的功力是相当深厚的,很多数学的定理和公式也都以他的名字来称呼,如柯西不等式、柯西积分公式...在数学写作上,他是被认为在数量上仅次于欧拉的人,他一生一共著作了789篇论文和几本书,其中有些还是经典之作,不过并不是他所有的创作质都很高,因此他还曾被人批评高产而轻率,这点倒是与数学王子相反,据说,法国科学院''会刊''创刊的时候,由于柯西的作品实在太多,以致于科学院要负担很大的印刷费用,超出科学院的预算,因此,科学院后来规定论文最长的只能够到四页,所以,柯西较长的论文只得投稿到其他地方.精讲精练214m <-2755m -<≤-214m <-19013m -<<[0,1]2=++x px【解析】由px q x+≥对于一切实数q≥①, q=-2p-26.行驶中的汽车,在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离. 在某种路面上,某种型号汽车的刹车距离s (m)与汽车的车速(km/h)满足下列关系:s =n v 100+v 2400(n 为常数,且n ∈N *),做了两次刹车试验,有关试验数据如图所示,其中⎩⎪⎨⎪⎧6<s 1<814<s 2<17.(1)求n 的值;(2)要使刹车距离不超过12.6 m ,则行驶的最大速度是多少?【答案】(1)n=6,(2)60 km/h【解析】(1)依题意得⎩⎨⎧6<40n 100+1 600400<814<70n 100+4 900400<17,解得⎩⎪⎨⎪⎧5<n <1052<n <9514,又n ∈N *,所以n =6.(2)s =3v 50+v 2400≤12.6⇒v 2+24v -5 040≤0⇒-84≤v ≤60,因为v ≥0,所以0≤v ≤60,即行驶的最大速度为60 km/h.7. 设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ). (1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小.【解析】(1)当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2};当a <0时,解集为{x |-1<x <2}. (2)由函数F (x )=f (x )-x 的两个零点为m ,n ,得f (x )-m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1),∵a >0,且0<x <m <n <1a ,∴x -m <0,1-an +ax >0.∴f (x )-m <0,即f (x )<m .温故知新建议15min课后巩固1、将本节课错题进行组卷,进行二次练习,培养错题管理习惯;2、对笔记本进行复习,培养复习习惯。
2021年沪教版高一数学暑假作业:余弦函数的图像与性质【含答案】

2021年沪教版高一数学暑假作业:余弦函数的图像与性质【含答案】一、单选题1.下列命题中正确的是( ) A .cos y x =在第二象限是减函数 B .tan y x =在定义域内是增函数 C .|cos(2)|3y x π=+的周期是2π D .sin ||y x =是周期为2π的偶函数【答案】C【分析】根据函数的图象与图象变换进行判断.【详解】解:由余弦函数图象可知cos y x =在[]()2,2k k k Z πππ+∈上单调递减,故单调递减,但是在第二象限内不具有单调性,故A 错误;由正切函数的图象可知tan y x =在每一个周期内都是增函数,故tan y x =在定义域内不是增函数,故B 错误.cos(2)3y x π=+的周期为π,则|cos(2)|3y x π=+的图象是由cos(2)3y x π=+的图象将x 轴下方的部分翻折到x 轴上方得到的,故周期减半, |cos(2)|3y x π∴=+的周期是2π,故C 正确. sin ||y x =是偶函数,其图象是将sin y x =在y 轴右侧的函数图象翻折到y 轴左侧,所以函数sin ||y x =不是周期函数,故D 错误. 故选:C .2.若()y f x =的图像与cos y x =的图象关于x 轴对称,则()y f x =的解析式为( ) A .()cos y x =- B .cos y x =- C .cos y x = D .cos y x =【答案】B【分析】根据()f x -、()f x -、()fx 与()f x 的图象特征依次判断即可得到结果.【详解】对于A ,()cos cos y x x =-=,图象与cos y x =重合,A 错误; 对于B ,()y f x =与()y f x =-图象关于x 轴对称,cos y x ∴=-与cos y x =图象关于x 轴对称,B正确;对于C ,当0x ≥时,cos cos y x x ==,可知其图象不可能与cos y x =关于x 轴对称,C 错误; 对于D ,将cos y x =位于x 轴下方的图象翻折到x 轴上方,就可以得到cos y x =的图象,可知其图象与cos y x =的图象不关于x 轴对称,D 错误.故选:B.3.函数cos y x =在区间(),3ππ上的图像的对称轴是( ) A .3x π= B .52x π=C .2x π=D .x π=【答案】C【分析】根据余弦函数的性质即可求出对称轴.【详解】由余弦函数的性质可得函数cos y x =关于,x k k Z π=∈对称, 又(),3x ππ∈,则2x π=,故函数cos y x =在区间(),3ππ上的图像的对称轴是2x π=. 故选:C.4.若函数()3sin 12f x x ππ⎛⎫=-- ⎪⎝⎭,则()f x 是( ) A .周期为1的奇函数 B .周期为2的偶函数C .周期为1的非奇非偶函数D .周期为2的非奇非偶函数.【答案】B【分析】先化简()f x 的解析式可得()3cos 1f x x π=-,由正弦函数的周期公式和奇偶性的定义法可得答案.【详解】()3sin 13cos 12f x x x πππ⎛⎫=--=-⎪⎝⎭所以()f x 的最小正周期为22T ππ==又()()()3cos 13cos 1f x x x f x ππ-=--=-=,所以()f x 为偶函数. 故选:B二、填空题5.已知余弦函数过点,6m π⎛⎫-⎪⎝⎭,则m 的值为__________. 3【分析】将,6m π⎛⎫-⎪⎝⎭代入余弦函数即可求解. 【详解】设余弦函数为cos y x =, 由函数过点,6m π⎛⎫-⎪⎝⎭可得3cos 6m π⎛⎫=-= ⎪⎝⎭. 36.方程2cos 303⎛⎫++= ⎪⎝⎭x π的解集是____________. 【答案】22x x k ππ⎧=+⎨⎩或72,6x k k Z ππ⎫=-∈⎬⎭【分析】由题意可得出3cos 3x π⎛⎫+= ⎪⎝⎭,可得出3x π+的等式,由此可求得原方程的解集. 【详解】2cos 303x π⎛⎫+= ⎪⎝⎭,3cos 3x π⎛⎫∴+= ⎪⎝⎭ ()5236x k k Z πππ∴+=±∈,解得22x k ππ=+或()726x k k Z ππ=-∈,因此,方程2cos 303⎛⎫+= ⎪⎝⎭x π的解集是22x x k ππ⎧=+⎨⎩或72,6x k k Z ππ⎫=-∈⎬⎭. 故答案为:22x x k ππ⎧=+⎨⎩或72,6x k k Z ππ⎫=-∈⎬⎭. 【点睛】本题考查余弦方程的求解,考查计算能力,属于基础题. 7.函数2sin 3cos =+y x x 的值域为_____________. 【答案】[3,3]-【分析】设cos x t =,[]1,1t ∈-,得到231324y t ⎛⎫=--+⎪⎝⎭,根据二次函数性质得到值域.【详解】22sin 3cos 1cos 3cos y x x x x =+=-+,设cos x t =,[]1,1t ∈-,则223133124y t t t ⎛⎫=-++=--+ ⎪⎝⎭,函数在[]1,1t ∈-上单调递增,故1t =时,max 1313y =-++=,1t =-时,min 1313y =--+=-,故值域为[3,3]-. 故答案为:[3,3]-.【点睛】本题考查了三角函数的值域,意在考查学生的计算能力和转化能力,换元是解题的关键. 8.函数()lg cos f x x x =-在(,)-∞+∞内的零点个数为__________. 【答案】4【分析】在同一平面直角坐标系中作出函数|lg |y x =和cos y x =的图像如图, 结合图像的对称性可以看出两函数|lg |y x =和cos y x =的图像应有4个交点, 即函数()lg cos f x x x =-在(),-∞+∞内有4个零点, 故答案为:4.点睛:本题旨在考查化归转化的数学思想、函数方程思想、数形结合思想等数学思想的综合运用,求解时依据函数的对称性,先画出y 轴右边的函数的图像相交的情形,再根据对称性确定y 轴左边的函数的图像相交的情形,最终使得问题获解. 9.当3,44x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()arcsin cos y x =的值域是______. 【答案】,42ππ⎡⎤-⎢⎥⎣⎦ 【分析】令cos t x =,3,44x ππ⎡⎤∈-⎢⎥⎣⎦,再利用反正弦函数的性质求解. 【详解】令cos t x =,3,44x ππ⎡⎤∈-⎢⎥⎣⎦,所以212t -≤≤, 因为arcsin y t =在2⎡⎤⎢⎥⎣⎦上递增, 所以arcsin 42t ππ-≤≤,所以函数()arcsin cos y x =的值域是,42ππ⎡⎤-⎢⎥⎣⎦. 故答案为:,42ππ⎡⎤-⎢⎥⎣⎦【点睛】本题主要考查反正弦函数的图象和性质,还考查了转化化归的思想和运算求解的能力,属于中档题.10.函数2()sin cos 2f x x x =+-的值域是________ 【答案】3[3,]4--【分析】化简得到2()cos cos 1f x x x =-+-,设cos x t =,得到21324y t ⎛⎫=--- ⎪⎝⎭,根据二次函数性质得到值域.【详解】22()sin cos 2cos cos 1f x x x x x =+-=-+-,设cos x t =,[]1,1t ∈-,则2213124y t t t ⎛⎫=-+-=--- ⎪⎝⎭, 当12t =时,函数有最大值为34-;当1t =-时,函数有最小值为3-.故函数值域为3[3,]4--. 故答案为:3[3,]4--.【点睛】本题考查了三角函数的值域,意在考查学生的计算能力和转化能力,换元转化为二次函数是解题的关键.11.方程2cos 210x -=的解集是___________. 【答案】{|6x x k ππ=+或,}6x k k Z ππ=-∈【分析】根据余弦函数的图象与性质解三角方程即可. 【详解】由2cos 210x -=可得:1cos 22x =, 所以223x k ππ=+或223x k ππ=-,()k ∈Z即6x k ππ=+或6x k ππ=-故答案为:{|6x x k ππ=+或,}6x k k Z ππ=-∈【点睛】本题主要考查了余弦函数的图象与性质,三角方程的解法,属于中档题. 三、解答题12.作出函数[]32cos ,,y x x ππ=-∈-的大致图象,并分别写出使0y >和0y <的x 的取值范围. 【答案】图象见解析;当,,66⎡⎫⎛⎤∈--⋃⎪ ⎢⎥⎣⎭⎝⎦x ππππ时,0y >;当,66x ππ⎛⎫∈- ⎪⎝⎭时,0y <. 【分析】利用五点作图法可得函数大致图象,令0y =,确定函数零点,数形结合得到所求x 的取值范围. 【详解】由五点作图法可知:x π-2π-2ππcos x1-0 11-y32+ 3 32- 3 32+由此可得函数大致图象如下图所示:令0y =32cos 0x =,3cos 2x ∴=,又[],x ππ∈-,6x π∴=-或6π,结合图象可知:当,,66⎡⎫⎛⎤∈--⋃⎪ ⎢⎥⎣⎭⎝⎦x ππππ时,0y >;当,66x ππ⎛⎫∈- ⎪⎝⎭时,0y <. 【点睛】本题考查五点作图法的应用、与余弦函数有关的不等式的求解;求解不等式可确定函数零点后,通过数形结合的方式来求解.13.利用“五点法”作出函数1cos y x =-,[]0,2x π∈的图像. 【分析】根据“五点法”的步骤先描点,再画出图象. 【详解】先找出五个关键点,列表如下:x2ππ32π 2π1cos y x =-0 121描点作出函数图象如下:14.求下列函数的单调递增区间: (1)3sin 24y x π⎛⎫=-⎪⎝⎭; (2)2cos 24y x π⎛⎫=+ ⎪⎝⎭; (3)sin y x =;(4)()22sin 2sin cos 3cos ,f x x x x x x R =++∈.【答案】(1)37,88k k ππππ⎡⎤++⎢⎥⎣⎦;(2)5,88k k ππππ⎡⎤-+-+⎢⎥⎣⎦;(3),2k k πππ⎡⎤+⎢⎥⎣⎦;(4)3,88k k ππππ⎡⎤-++⎢⎥⎣⎦.【分析】(1)利用诱导公式变形,由正弦型复合函数的单调性求解; (2)余弦型复合函数的单调性求解; (3)画出函数图象,结合函数图象即可判断;(4)首先利用二倍角公式及辅助角公式将函数化简,再根据正弦函数的性质计算可得.【详解】解:(1)2sin 22sin 244y x x ππ⎛⎫⎛⎫=-=-- ⎪ ⎪⎝⎭⎝⎭.由3222242k x k πππππ+-+,得3878k x k ππππ++,k Z ∈. 3sin 24y x π⎛⎫∴=- ⎪⎝⎭的单调增区间为37,88k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈, (2)因为2cos 24y x π⎛⎫=+ ⎪⎝⎭由2224k x k ππππ-++,k Z ∈,得588k x k ππππ-+≤≤-+,k Z ∈. 2cos 24y x π⎛⎫∴=+ ⎪⎝⎭的单调增区间为5,88k k ππππ⎡⎤-+-+⎢⎥⎣⎦,k Z ∈, (3)sin y x =的图象是由sin y x =位于x 轴下方的图象关于x 轴翻折上去,函数图象如下所示:由函数图象可得函数的单调递增区间为,2k k πππ⎡⎤+⎢⎥⎣⎦,k Z ∈ (4)因为()22sin 2sin cos 3cos ,f x x x x x x R =++∈所以()sin 2cos 222224f x x x x π⎛⎫=++=++ ⎪⎝⎭令222,242k x k k Z πππππ-+≤+≤+∈,解得3,88k x k k Z ππππ-+≤≤+∈,故函数的单调递增区间为3,,88k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦15.如图,设A 、B 是半径为1的圆O 上的动点,且A 、B 分别在第一、二象限,C 是圆O 与x 轴正半轴的交点,△AOB 为等边三角形,记以Ox 轴正半轴为始边、射线OA 为终边的角为θ.(1)若点A 的坐标为34(,)55,求5sin()5cos()3cot()2πθπθθ--++-值;(2)设2()||f BC θ=,求函数()f θ的解析式和值域. 【答案】(1)3;(2)()22cos()3f πθθ=-+,值域为(2,23).【分析】(1)根据A 的坐标,利用三角函数的定义,求出sin θ,cos θ,再利用诱导公式,即可得到结论; (2)由题意,cos cos()3COB πθ∠=+,利用余弦定理,可得函数()f θ的解析式,从而可求函数的值域.【详解】解:(1)A 的坐标为34,55⎛⎫ ⎪⎝⎭,以Ox 轴正半轴为始边,射线OA 为终边的角为θ∴根据三角函数的定义可知,4sin 5θ=,3cos 5θ=,4tan 3θ=∴5sin()5cos()3cot()2πθπθθ--++-5sin 5cos 3tan θθθ=-++4345533553=-⨯+⨯+⨯=;(2))AOB 为正三角形,3AOB π∴∠=.cos cos()3COB πθ∴∠=+222()||||||2||||cos 22cos 3f BC OC OB OC OB COB πθθ⎛⎫∴==+-∠=-+ ⎪⎝⎭62ππθ<<, 5236πππθ∴<+<, 3cos 03πθ⎛⎫<+< ⎪⎝⎭,所以222cos 233πθ⎛⎫<-+< ⎪⎝⎭(2()2,3f θ∴+∈.【点睛】本题考查任意角的三角函数的定义,考查余弦定理求边长的平方,考查学生的计算能力,属于中档题.。
高一数学暑假作业答案解析

2021年高一数学暑假作业答案解析不得不说暑假作业在暑假期间对学生的学习也是起一定作用的,精品小编准备了2021年高一数学暑假作业答案,希望你喜欢。
一选择题(本大题共小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知f(x)在区间(,+)上是增函数,a、bR且a+b0,则下列不等式中正确的是A.f(a)+f(b)f(a)+f(b)]B.f(a)+f(b)f(a)+f(b)C.f(a)+f(b)f(a)+f(b)]D.f (a)+f(b)f(a)+f(b)2.等差数列的一个通项公式为( )A. B. C. D.3.在△ABC中,,,A=120,则B等于( )A. 30B. 60C. 150D. 30或1504.已知向量若与平行,则实数的值是( )A.2B.0C.1D.25.若,,则与的关系是( )A. B. C. D.6.算法的有穷性是指( )A、算法的最后包含输出B、算法中的每个步骤都是可执行的C、算法的步骤必须有限D、以上说法都不正确7.以下各式能成立的是A. B.且C.且D.8.有下列说法:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为或;(3)方程的所有解的集合可表示为;(4)集合是有限集. 其中正确的说法是A. 只有(1)和(4)B. 只有(2)和(3)C. 只有(2)D. 以上四种说法都不对本大题共小题,每小题5分,9.设函数,函数的零点个数为______10.函数是R上的单调函数且对任意实数有.则不等式的解集为__________11.等差数列中,,,则 .12.若向量则。
本大题共小题,每小题分,13.平面向量,若存在不同时为的实数和,使且,试求函数关系式。
14.已知是等差数列,且(1)求数列的通项公式(2)令,求的前项的和.15.不等式的解集为,求实数的取值范围。
16.任意给定一个大于1的正整数n,设计一个算法求出n的所有因数.1.B 2.D 3.A4.D解析1:因为,所以由于与平行,得,解得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高一数学暑假假期作业5(含解析)
一、选择题
1.设全集U={x∈N*|x<6},集合A={1,3},B={3,5},则∁U(A∪B)=
( )A.{1,4} B.{1,5} C.{2,4} D.{2,5}
2.已知全集U={1,2,3,4,5},A={1,3,5},B⊆∁U A,则集合B的个数是( ) A.2 B.3 C.4 D.5
3.若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于( )
A.M∪N B.M∩N
C.(∁U M)∪(∁U N) D.(∁U M)∩(∁U N)
4.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∩(∁U B)等于( )
A.{x|-2≤x<4} B.{x|x≤3或x≥4}
C.{x|-2≤x<-1} D.{x|-1≤x≤3}
5.如图所示,阴影部分表示的集合是( )
A.A∩(B∩C)B.(∁U A)∩(B∩C)C.C∩∁U(A∪B)D.C∩∁U(A∩B)
6.已知全集U=R,集合A={x|x<a},B={x|1<x<2},且A∪(∁U B)=R,则实数a的取值范围是( )A.a≤1 B.a<1 C.a≥2 D.a>2
二、填空题
7.已知集合A={x|0≤x≤5},B={x|2≤x<5},则∁A B=________.
8.已知全集U=R,M={x|-1<x<1},∁U N={x|0<x<2},那么集合M∪N=________.
9.已知全集为R,集合M={x∈R|-2<x<2},P={x|x≥a},并且M⊆∁R P,则a的取值范围是________.
三、解答题
10.已知全集U=R,集合A={x|1≤x≤2},若B∪∁R A=R,B∩∁R A={x|0<x<1或2<x<3},求集合B.
11.已知集合A={x|x2+ax+12b=0}和B={x|x2-ax+b=0},满足B∩(∁U A)={2},A∩(∁U B)={4},U=R,求实数a,b的值.
12.已知集合A={x|2a-2<x<a},B={x|1<x<2},且A∁R B,求a的取值范围.
[拓展延伸]
13.设集合A、B都是U={1,2,3,4}的子集,已知(∁U A)∩(∁U B)={2},(∁U A)∩B={1},且A∩B=Ø,求集合A.
新高一暑假作业(五)
一、选择题
1.设全集U={x∈N*|x<6},集合A={1,3},B={3,5},则∁U(A∪B)=( )
A.{1,4} B.{1,5} C.{2,4} D.{2,5}
解析:U={1,2,3,4,5},A∪B={1,3,5},∴∁U(A∪B)={2,4}.
答案:C
2.已知全集U={1,2,3,4,5},A={1,3,5},B⊆∁U A,则集合B的个数是( )
A.2 B.3 C.4 D.5
解析:∵∁U A={2,4},又B⊆∁U A,∴B={2},{4},{2,4},Ø,共4个.
答案:C
3.若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于( )
A.M∪N B.M∩N
C.(∁U M)∪(∁U N) D.(∁U M)∩(∁U N)
解析:解法一:∵M∪N={1,2,3,4},
∴(∁U M)∩(∁U N)=∁U(M∪N)={5,6},故选D.
解法二:∵∁U M={1,4,5,6},
∁U N={2,3,5,6},
∴(∁U M)∩(∁U N)={5,6},故选D.
答案:D
4.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∩(∁U B)等于( )
A.{x|-2≤x<4} B.{x|x≤3或x≥4}
C.{x|-2≤x<-1} D.{x|-1≤x≤3}
解析:∁U B={x|-1≤x≤4}
画出数轴求得A∩(∁U B)={x|-1≤x≤3},选D.
答案:D
5.如图所示,阴影部分表示的集合是( )
A.A∩(B∩C)
B.(∁U A)∩(B∩C)
C.C∩∁U(A∪B)
D.C∩∁U(A∩B)
解析:由于阴影部分在C中,均不在A、B中,则阴影部分表示的集合是C的子集,也是∁U(A∪B)的子集,
即是C∩∁U(A∪B).
答案:C
6.已知全集U=R,集合A={x|x<a},B={x|1<x<2},且A∪(∁U B)=R,则实数a的取值范围是( )
A.a≤1 B.a<1 C.a≥2 D.a>2
解析:∁R B={x|x≤1或x≥2},如图所示,
由于A∪(∁R B)=R,∴a≥2.
答案:C
二、填空题
7.已知集合A={x|0≤x≤5},B={x|2≤x<5},则∁A B=________.
解析:∁A B表示集合B在集合A中的补集,即A中除去B中元素之后组合的集合.画出数轴表示集合A、B即得,但要注意端点值.
答案:{x|0≤x<2或x=5}
8.已知全集U =R ,M ={x |-1<x <1},∁U N ={x |0<x <2},那么集合M ∪N =________. 解析:由∁U N ={x |0<x <2},∴N ={x |x ≤0或x ≥2} 结合数轴得,M ∪N ={x |x <1或x ≥2}. 答案:{x |x <1或x ≥2}
9.已知全集为R ,集合M ={x ∈R |-2<x <2},P ={x |x ≥a },并且M ⊆∁R P ,则a 的取值范围是________.
解析:M ={x |-2<x <2},∁R P ={x |x <a }. ∵M ⊆∁R P ,∴由数轴知a ≥2.
答案:a ≥2 三、解答题
10.已知全集U =R ,集合A ={x |1≤x ≤2},若B ∪∁R A =R ,B ∩∁R A ={x |0<x <1或2<x <3},求集合B .
解:∵A ={x |1≤x ≤2}, ∴∁R A ={x |x <1或x >2}.
又B ∪∁R A =R ,A ∪∁R A =R ,可得A ⊆B . 而B ∩∁R A ={x |0<x <1或2<x <3}, ∴{x |0<x <1或2<x <3}⊆B . 借助于数轴
可得B =A ∪{x |0<x <1或2<x <3}={x |0<x <3}.
11.已知集合A ={x |x 2
+ax +12b =0}和B ={x |x 2
-ax +b =0},满足B ∩(∁U A )={2},
A ∩(∁U
B )={4},U =R ,求实数a ,b 的值.
解:∵B ∩(∁U A )={2},∴2∈B ,但2∉A . ∵A ∩(∁U B )={4},∴4∈A ,但4∉B ,
∴⎩
⎪⎨⎪⎧
42
+4a +12b =0,22
-2a +b =0
解得⎩⎪⎨⎪⎧
a =87,
b =-12
7
,验证得符合题意.
∴a ,b 的值分别为87,-127
.
12.已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ∁R B ,求a 的取值范围. 解:∁R B ={x |x ≤1或x ≥2}≠Ø, ∵A
∁R B ,∴A =Ø或A ≠Ø.
若A =Ø,此时有2a -2≥a ,∴a ≥2.
若A ≠Ø,则有⎩⎪⎨
⎪
⎧
2a -2<a ,a ≤1
或⎩⎪⎨⎪
⎧
2a -2<a ,2a -2≥2,
∴a ≤1.
综上所述,a ≤1或a ≥2. [拓展延伸]
13.设集合A 、B 都是U ={1,2,3,4}的子集,已知(∁U A )∩(∁U B )={2},(∁U A )∩B ={1},且A ∩B =Ø,求集合A .
解:如图所示,
∵(∁U A )∩(∁U B )={2},(∁U A )∩B ={1},则有∁U A ={1,2},∴A ={3,4}.
28572 6F9C 澜134823 8807 蠇 26786 68A2 梢I25362 6312 挒>25000 61A8 憨b31251 7A13 稓L23214 5AAE 媮。