天津春季高考数学模拟试题精选文档

合集下载

春季高考数学模拟考试试题(有答案)

春季高考数学模拟考试试题(有答案)

春季高考数学模拟考试试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分120分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第Ⅰ卷(选择题,共60分)一、选择题(本大题共20个小题,每小题3分,共60分。

在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出) 1.已知A ={x |x +1>0},B ={-2,-1,0,1},则(R A )∩B =()A .{-2,-1}B .{-2}C .{-1,0,1}D .{0,1} 2. 命题“对任意x ∈R ,都有x 2≥0”的否定为( ).A .对任意x ∈R ,都有x 2<0 B .存在x 0∈R ,使得x 02<0 C .存在x 0∈R ,使得x 02≥0 D .不存在x ∈R ,使得x 2<0 3. 已知b a x <-的解集是}{93<<-x x ,则实数a,b 的值是( )A .a= -3, b=6B .a= -3, b= -6C .a=6,b=3D .a=3,b=6 4. 已知34422+=x x f log )(,则f(1)=( ) A .-1 B .0 C .1 D .2 5. 下列函数是偶函数的是( )A .y =xsinxB .y=x 2+4x+4 C .y=sinx+cosx D .)(log )(x x x f ++=1236.已知方程x 2-3x +1=0的两个根为x 1,x 2,则=⋅2122x x ( )A. 3B. 6C. 8D. 2 7. 已知等差数列{a n }中,若a 4=15,则它的前7项和为( )A .120B .115C .110D .105 8.已知,),,(),,(C 23135=--=则点D 的坐标是( )A .(11,-3)B .(9,-3)C .(9,3)D .(4,0)9.要得到函数y=sin2x 的图像,需要将函数y=sin(的图像作怎样的平移才能得到( ) A.向左平移 B.向右平移 C.向左平移D.向右平移10.如图所示,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C , 测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 mD.2522m11. 已知直线经过两条直线l 1:x+y=2,l 2:2x-y=1的交点,且直线l 的一个方向向量=(-3,2), 则直线l 的方程是( )A.-3x +2y +1=0B. 3x -2y +1=0C. 2x +3y -5=0D. 2x -3y +1=012. 已知圆的方程x 2+y 2+2ax+9=0圆心坐标为(5,0),则它的半径为( ) A .3B. 5 C . 5D .413. 下列命题中是真命题的个数是( ) (1)垂直于同一条直线的两条直线互相平行 (2)与同一个平面夹角相等的两条直线互相平行 (3)平行于同一个平面的两条直线互相平行 (4)两条直线能确定一个平面 (5)垂直于同一个平面的两个平面平行 A . 0B. 1 C . 2D . 314. 函数()2sin()f x x ωϕ=+(0,22ππωϕ>-<<)的部分图象如图所示,则ω,ϕ的值分别是( )A .2,3π-B .2,6π-C.4,6π-D.4,3π15. 设x,y 满足⎪⎩⎪⎨⎧≤--≥-≥+22142y x y x y x ,则Z=x+y ( )A. 有最小值2,最大值3B. 有最大值3,无最小值C. 有最小值2,无最大值D. 既无最大值也无最小值16. 过双曲线2213y x -=的右焦点且与x 轴垂直的直线交该双曲线的两条渐近线于A 、B 两点, 则|AB |=( ) A .433B . 23C . 6D . 43 17. 从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是( )A .51 B . 41C . 31D . 2118. 在一次马拉松比赛中,35名运动员的成绩(单位:分钟)如图所示;若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则 其中成绩在区间[139,151]上的运动员人数为( )A. 3B. 4C. 5D.619. 设(1,2)a =,(1,1)b =,c a kb =+.若b c ⊥,则实数k 的值等于( )A .53B .53-C .32-D .3220.的展开式中各项系数之和为64,则展开式的常数项为( )A .-540B .-162C .162D .540二、填空题(本大题5小题,每题4分,共20分.请将答案填在答题卡相应题号的横线上)21.若集合A ={1,2,3},B ={1,3,4},则A∩B 的子集个数为_______. 22. 设20πθ<<,向量)cos ,1(),cos ,2(sin θθθ-==,若0=⋅,则=θsin ______.23. 若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积等于_________.24. 已知抛物线y 2=8x 的准线过双曲线2222=1x y a b-(a >0,b >0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为__________.25. 若直角坐标平面内两点P ,Q 满足条件:①P 、Q 都在函数f(x)的图象上;②P 、Q 关于原点对称,则称点对(P 、Q)是函数f(x)的一个“友好点对”(点对(P 、Q)与点对(Q ,P)看作同一个“友好点对”).已知函数f(x)=⎩⎪⎨⎪⎧2x 2+4x +1,x <0,2e x,x ≥0,则f(x)的“友好点对”的个数是________.三、解答题(本大题5小题,共40分.请在答题卡相应的题号处写出解答过程)26.(7分)在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比.27. (7分)山东省寿光市绿色富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销 日本和韩国等地.上市时,外商李经理按市场价格10元/千克在本市收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x 天后,将这批香菇一次性出售,设这批香菇的销售总金额为y 元,试写出y 与x之间的函数关系式;(2)李经理如果想获得利润22500元,需将这批香菇存放多少天后出售? (提示:利润=销售总金额-收购成本-各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?28. (8分) 已知向量a =1cos ,2x ⎛⎫-⎪⎝⎭,b =x ,cos 2x ),x ∈R ,设函数f (x )=a ·b . (1)求f (x )的最小正周期;(2)求函数f(x)的单调递减区间; (3)求f (x )在π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值.29.(9分)如图,三棱柱111ABC A B C -中,侧棱1AA ⊥ 底面ABC ,且各棱长均相等. ,,D E F 分别为棱11,,AB BC AC 的中点. (1)证明:EF ∥ 平面1A CD(2)证明:平面1A CD ⊥ 平面11A ABB ; (3)求直线EF 与直线11A B 所成角的正弦值.30.(9分)已知椭圆22221(0)x y a b a b +=>>经过点3),离心率为12,左右焦点分别为12(,0),(,0)F c F c -.(1)求椭圆的方程; (2)若直线1:2l y x m =-+与椭圆交于,A B 两点,与以12F F 为直径的圆交于,C D 两点,且满足||53||4AB CD =,求直线l 的方程. xyF 2F 1DCBA O数学试题答案及评分标准(选择题,共60分)题号 1 2 3 4 5 6 7 8 9 10 答案 A B D C A C D B D A 题号 11 12 13 14 15 16 17 18 19 20 答案CDAACDABCA第Ⅱ卷(非选择题,共60分)二、填空题(本大题5个小题,每题4分,共20分)21.4 22.23.π3 24.2213y x -=25 {提示} 设P (x ,y )、Q (-x ,-y )(x >0)为函数f (x )的“友好点对”, 则y =2e x ,-y =2(-x )2+4(-x )+1=2x 2-4x +1,∴2e x +2x 2-4x +1=0,在同一坐标系中作函数y 1=2e x 、y 2=-2x 2+4x -1的图象,y 1、y 2的图象有两个交点, 所以f (x )有2个“友好点对”,故填2.三、解答题(本大题5个小题,共40分)26.(7分) 【解析】由212a a -=, 得a 1q-a 1=2;由4a 2=13a +3a ,得4a 1q=3a 1+a 1q 2,得q 2-4q+3=0,得q=1(不合题意,舍去),q=3-------5分当q=3时,a 1=1---------2分 27.(7分)【解析】(1)由题意得,y 与x 之间的函数关系式为:2(100.5)(20006)394020000(1110)y x x x x x =+-=-++≤≤;--------2分(2)由题意得,225003402000102000094032=+⨯-++-)()(x x x ;化简得,220075000x x -+=;解得,1505021==x x ,(不合题意,舍去);因此,李经理如果想获得利润22500元,需将这批香菇存放50天后出售. --------2分 (3)设利润为W ,则由(2)得,2(394020000)(102000340)W x x x =-++-⨯+2236003(100)30000x x x =-+=--+;因此当100x =时,30000=max W ; 又因为),(1100100∈,所以李经理将这批香菇存放100天后出售可获得最大利润为30000元.--------3分28.(8分)-----------3分(2)函数)sin(62π-=x y 单调递减区间:Z k k x k ∈+≤-≤+,πππππ2236222, 得:5,36536k x k k Zk k k Zππππππππ+≤≤+∈⎡⎤∴++∈⎢⎥⎣⎦所以单调递减区间是, ,--------------2分(3)∵0≤x≤π2,∴ππ5π2666x-≤-≤.由正弦函数的性质,当ππ262x-=,即π3x=时,f(x)取得最大值1.当ππ266x-=-,即x=0时,f(0)=12-,当π52π66x-=,即π2x=时,π122f⎛⎫=⎪⎝⎭,∴f(x)的最小值为1 2 -.因此,f(x)在π0,2⎡⎤⎢⎥⎣⎦上最大值是1,最小值是12-.---------3分29.(9分)(1)证明:连接ED, D、E分别是AB、BC的中点,∴DE∥AC,DE=AC,三棱柱ABC﹣A1B1C1中,∴AC∥A1C1,AC=A1C1,又F为棱A1C1的中点.∴A1F=DE,A1F∥DE,∴四边形A1DEF是平行四边形,∴EF∥DA1,又 DA1⊂平面A1CD,EF⊄平面A1CD,∴EF∥平面A1CD -------3分(2)证明:∵D是AB的中点,∴CD⊥AB,又 AA1⊥平面ABC,CD⊂平面ABC,∴AA1⊥CD,又 AA1∩AB=A,∴CD⊥面A1ABB1,又CD⊂面A1CD,∴平面A1CD⊥平面A1ABB1;-------3分(3)解: EF ∥DA 1,AB ∥A 1 B 1,∴DA A 1∠为直线EF 与直线11A B 所成的角。

天津市春季高考数学模拟试卷

天津市春季高考数学模拟试卷

精心整理天津市高等院校春季招生考试《数学》模拟题一、选择题1.集合}4,3,2,1{=A,AB⊆,且)A∈,则满足上述条件的集合B共1B(有的四位数A.12个B.36个C.48个D.72个7.若三角形一个内角α满足1α,则这个三角形一定是+αsin=cosA.钝角三角形B.锐角三角形C.直角三角形D.不确定8.函数kω的图像在一个周期内最高点的坐标为s in(ϕ=)xAy++)1,12(π,最低点的坐标为)5,127(-π,则k A ,,,ϕω的值分别是 A. 3,21,3π,2- B. 3,2,6π,2-C. 3,2,3π,2-D. 3,1,3π,2-9. 已知直线的倾斜角为22arcsin,且过圆9)5()3(22=-++y x 的圆心,得PF PQ +的值最小的点P 的坐标为________________________. 16.在na a)1(324-的展开式中,倒数第三项系数绝对值为45,则展开式中含3a 的项是_______________.三、解答题17.已知61≤≤x ,函数4log 2)(log )(21221-+=x x x f ,当x 为何值时函数有的最大值和最小值,并求出最大值和最小值。

18.已知20πα<<,πβπ<<2,且135)sin(=+βα,54)cos(=-βα,求αcos 、α2cos 。

19.已知等差数列}{n a 的第三项为1,前六项之和为0,又知前k。

职教高考--春季高考数学模拟试卷三(后附答案解析)

职教高考--春季高考数学模拟试卷三(后附答案解析)

3 ,短半轴长为 2 ,则该椭圆的长半轴长 2
为______.
24.“共和国勋章”获得者、“杂交水稻之父”袁隆平为世界粮食安全作出了杰出贡献.全
球共有 40 多个国家引种杂交水稻,中国境外种植面积达 800 万公顷.某村引进了甲、
乙两种超级杂交水稻品种,在条件(肥力、日照、通风……)不同的 6 块试验田中同时
()
A. DD1
B. AC
C. AD1
D. B1C
第 II 卷(非选择题)
二、填空题
21.若 tan = 2 ,则 cos + sin = ______. 3cos − sin
22.已知正四棱锥的底面边长为 4,侧棱长为 3,则此四棱锥的全面积为_______.
23.若椭圆
x2 a2
+
y2 b2
= 1(a b 0) 的离心率为
这就是著名的哈雷彗星,它的回归周期大约是 76 年.请你预测它在本世纪回归的年份( )
A.2042
B.2062
C.2082
D.2092
19.已知二项式
x

1 x
n
展开式的二项式系数和为
64,则展开式中常数项为(

A. −120
B. −20
C.15
D.20
20.如图,P 是正方体 ABCD − A1B1C1D1 边 A1C1 上的动点,下列哪条边与边 BP 始终异面 试卷第 3 页,共 5 页
D.存在一个奇数不是质数
17.图中阴影部分所表示的区域满足的不等式是( )
A. 2x + y − 2 0
B. 2x + y − 2 0
C. 2x + y − 2 0

春季高考数学模拟考试试卷

春季高考数学模拟考试试卷

春季高考模拟考试数学试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分120分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第Ⅰ卷(选择题,共60分)一、选择题(本大题共20个小题,每小题3分,共60分。

在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出)1.已知集合A ={1,2},B ={2,3,4},则A ∪B =( ).A .{2}B .{2,3,4}C .{1,2,3,4}D .{1,2}2.在一次射击训练中,甲、乙两位运动员各射击一次.设命题p 是“甲击中目标”,q 是“乙击中 目标”,则命题“2位运动员都没有击中目标”可表示为( ) A .()p ⌝∨()q ⌝ B .p ∨()q ⌝C .p ∨qD .()p ⌝∧()q ⌝3.设10<<<b a ,则下列不等式成立的是 ( )A.33a b >B.11ab<C.1ba >D.()lg 0b a -<4.函数y =1x -1+2-x 的定义域是( )。

A .{x |x ≤2}B .{x |x ≥2且x ≠1}C. {x |x ≤2且x ≠1}D. {x |x <2且x ≠1}5.下列函数中,既是偶函数又在区间(,0)-∞上单调递减的是( ) A .y =lg |x | B.3.()C f x x = .()2xD f x -=6. 函数2)1(2)(2+-+-=x a x x f 在)4,(-∞上是增函数,则实数a 的范围是( )A . a ≥3B .a ≥5C .a ≤3D .a ≤5-7.已知角α的终边落在y = - 2x 上,则单位圆与角α终边的交点坐标是( )A .),(55255 B. ),(55255- C. ),(55552 D. ),(55552- 8. 已知函数f (x )=2kx,g (x )= ,若f (-1)=g (9),则实数k 的值是( )A. 1B. 2C. -1D. -29.已知点A (1,3),B (4,-1),则与向量AB 同方向的单位向量为( ).A .34,55⎛⎫- ⎪⎝⎭B .43,55⎛⎫- ⎪⎝⎭ C .34,55⎛⎫- ⎪⎝⎭ D .43,55⎛⎫- ⎪⎝⎭10. 设各项为正数的等比数列{}n a 中,若a 2=3,a 4=27,则q=( )A .3B .9C .3±D .9± 11. 设l 为直线,α,β是两个不同的平面.下列命题中正确的是( ).A .若l ∥α,l ∥β,则α∥βB .若l ⊥α,l ⊥β,则α∥βC .若l ⊥α,l ∥β,则α∥βD .若α⊥β,l ∥α,则l ⊥β12. 过直线x +y +1=0与直线2x -y -4=0的交点,且一个法向量是n=(-1,3)的直线方程是( )A. x -3y -7=0B. x +3 y +5=0C. 3x -y -5=0D . 3x +y +5=013. 圆心为()1,1且过原点的圆的方程是( )A .()()22111x y -+-=B .()()22111x y +++= C .()()22112x y +++= D .()()22112x y -+-=14. △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若B =2A ,a =1,b 3A =( ).A .450B .300C .600D .90015. 若变量x ,y 满足约束条件2,1,0,x y x y +≤⎧⎪≥⎨⎪≥⎩则z =2x +y 的最大值和最小值分别为( ). A .4和3 B .4和2 C .3和2 D .2和016. 若双曲线22221x y a b-=的一条渐近线经过点(3,-4),则此双曲线的离心率为( )A.73 B. 54 C. 43D. 53 17. 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为( ).A .32B .21C .41D .3118. 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据 (单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左 到右的顺序分别编号为第一组,第二组,⋅⋅⋅⋅⋅⋅,第五组,右图是根据试验数据制成的 频率分布直方图,已知第一组与第二组共有20人,第三组的人数为( ) A.6 B.8 C.12 D.1819. 在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =,则D C A ⋅A =( ).A .2B .3C .4D .520. (1)ny +的展开式中,所有的二项式系数之和等于512,则第3项是( ).A .339C y B .229C y C .338C y D .228C y二、填空题(本大题5小题,每题4分,共20分.请将答案填在答题卡相应题号的横线上)21.计算:34331654+log log 8145-⎛⎫+= ⎪⎝⎭________. 22. 函数y=1-2cos 2x 的最小正周期是 .23. 若圆锥的高等于底面直径,则它的底面积与侧面积之比为 . 24. 设F 为抛物线y 2=4x 的焦点,过F 且倾斜角为450的直线交C 于A ,B 两点,则 AB =_______.25若函数()(0,1)xf x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数g(x)=(1-4m )x 在实数集R 上是增函数,则a =______.三、解答题(本大题5小题,共40分.请在答题卡相应的题号处写出解答过程)26.(7分)已知等差数列{}n a 满足1210a a +=,432a a -=. (1)求首项及公差; (2)求{}n a 的通项公式;27. (7分)某地电信运营商推出了一种流量套餐:20元包国内流量200M ,超出200M 后,国内流量0.25元/M ,1G 以内60元封顶。

(完整版)春季高考数学模拟试卷(综合训练含答案),推荐文档

(完整版)春季高考数学模拟试卷(综合训练含答案),推荐文档
25.(7 分)已知二次函数 f (x)=ax2+bx+c , 函数图象在纵轴上的截距是 5 ,且
f(x)=f (2-x) ,f(-1)=2f(1), 求 (1)f(x)的解析式,(2)当 f (x) 12 时,求 x 的取值范围
26.(7 分)已知 y= a · b ,其中 a =(cosx, 3 (sinx+cosx)), b =(2sinx,sinx-cosx),xR (1)把 y= a · b 化成 y=Asin(wx+ ),其中(A,w, )都是常数的形式
春季高考数学模拟试卷(综合训练 3)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷 1 至 4 页,第Ⅱ 卷 5 至 8 页。满分 100 分,考试时间 90 分钟。考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题,共 60 分)
注意事项:
1.答第Ⅰ卷前,考生务必将自己的姓名.准考证号.考试科目用铅笔涂写在答题卡
22
5
83
46
28、(1)
(2)
5
5
)
(A) (-2,-1) (3,4)
(B)(-2,3) (-1,4)
(C) R 2.a>b 是 ac2>bc2 的(
)条件
(D) (- ,1) (3,)
(A)充分条件
(B) 必要条件
(C) 充要条件
(D)非充分非必要条件
3.方程 ax2+bx+c=0 ,(a<0)有两个实根-2,4,则不等式 ax2+bx+c<0 的解集为(
的中点,点 A 的坐标为( z
DD
28.(7 分)已知斜率为 1 的直线过椭圆
x2 3
y2 2
1 的右焦点 F2,交椭圆于 A 和 B 两点,

最新春季高考试卷-天津市春季高考数学模拟试卷b

最新春季高考试卷-天津市春季高考数学模拟试卷b

2016年天津市高等院校春季招生统一考试数学模拟B本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至9页,第Ⅱ卷10至12页。

共150分。

考试时间120分钟。

第Ⅰ卷(选择题 共75分)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考号、考试科目涂写在答题卡上,并将本人考试用条形码贴在答题卡的贴条形码处。

2. 每小题选出答案后,用2B 铅笔把答案卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在试卷上的无效。

3. 考试结束,监考员将本试卷和答题卡一并收回。

—、单项选择题:本大题共8小题,每小题6分,共48分。

在每小题给出的四个选项中,只有一项是最符合题目要求的。

1.设全集为R ,集合A={x -1<x<1}, B={x x ≥0},则C R A ∪B= A.{x -1≤x<1} B.{x x ≥0} C.{x x>-1} D.{x x ≤-1}2.已知log 3x=-2,则x=A.9B. -9C.91D.-913.与函数f(χ)= x 1有相同定义域的是A.f(χ)= x -B.f(χ)=2lgxC.f(χ)=2xD.f(χ)=lgx 2第一页4.已知函数y=-x 2+bx,如果b>0,则它的图像只能是是 A. B.C. D.5.如果sin θ=54,且θ是第二象限角,那么tan θ=A.34-B. 43-C.43D.346.在△ABC 中,已知∠A=30°,∠B=105°,a=6,则c= A. 2B.232C. 62D.1227.以圆C :(x-2)2+y 2=5的圆心为焦点且顶点在坐标原点的抛物线方程是A. y 2=2xB. x 2=2y C. y 2=8x D. x 2=8y8.为强化安全意识,某商场计划在未来的连续10天中随机抽取3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是A. 151B. 152C. 403D. 401第二页2015年天津市高等院校春季招生统一考试数学模拟B第二卷(非选择题)注意事项;1.答第II 卷前,考生须将密封线内的项目填写清楚。

天津春季高考数学练习题第七章 三角函数

天津春季高考数学练习题第七章 三角函数

第七章 三角函数【一】角的概念的推广与弧度制一、单选题1.在下列各组角中,终边不同的一组是( )A.60°与-300°B.1000°与-280°C.950°与230°D.1050°与-390°2.下列说法正确的有几个( )(1)锐角是第一象限的角(2)第一象限角是锐角(3)小于90°的角是锐角(4)0°~90°的角是锐角A.1个B.2个C.3个D.4个3.已知α是锐角,那么2α是( )A.第一象限角B.第二象限角C.第一象限角或第二象限角D.小于180°的正角4.已知α是钝角,那么2α是( ) A.第一象限的角 B.第二象限的角C.第一或第二象限角D.不大于直角的正角5.已知α是第三象限角,那么2α是( ) A.第一象限角 B.第一或第二象限角C.第一或第三象限角D.第二或第四象限角6.-135°用弧度制表示为( ) A.43π B.- 43π C.-45π D.47π 7.如果α和β终边相同,那么下式中正确的是( )A.βα=B.)(2z k k ∈=+πβαC.πβα2=-D.)(2z k k ∈=-πβα8.时钟转过一小时,时针转过了( ) A.rad 6π B.- rad 6π C.rad 12π D.- rad 12π二、填空题:1.终边落在y 轴上的角的集合是 ;终边落在x 轴上的角的集合是 .2.终边落在第三象限的角的集合是 .3.直径是8的圆中,圆心角210°所对的弧长是 .4.在0°~360°之间与角-570°终边相同的角是 .三、解答题:1.判定下列各角是第几象限角:(1)45π (2)-526π (3)-35π (4)311π (5)635π (6)-427π2.在0°~360°之间,找出与下列各角终边相同的角:(1)-135° (2)420° (3)2741° (4)397°【二】任意角的三角函数(诱导公式、基本关系式、三角函数值符号)一、单选题:1.下列关系式中正确的是( )A.sin(-195°)<0B.cos(-675°)<0C.tan585°>0D.tan1010°>02.若α是第二象限角,)5,(x P 为其终边上一点,且x 42cos =α,则αsin =( ) A.410 B.46 C.42 D.-410 3.sin600°的值是( ) A.21 B.- 21 C.23 D.- 23 4.若tan α=3,则sin αcos α=( ) A.-310 B.310 C.-103 D.103 5.sin 21)(=+πθ,则cos(2θπ-)=( ) A.23 B.- 23 C.±23 D.±21 6.已知θθ,54sin =是第二象限角,则θcos 等于( ) A.53 B.- 53 C.±53 D.±54 7.若53sin =α且),2(ππα∈,则=-)tan(απ( ) A.34 B.- 34 C.43 D.- 43 8.设317πα=,则( ) A.0cos ,0sin >>αα B.0cos ,0sin <<ααC.0cos ,0sin <>ααD.0cos ,0sin ><αα9.已知0cos sin <∙αα,则α是第几象限角( )A.第一象限角B.第二象限角C.第三象限角D.第二或第四象限角二、填空题:1.已知21cos -=α,α是第三象限角,则αsin = ,αtan =2.43tan =α,则αsin = ,αcos = 3.已知3tan =α,则ααααcos 4sin 3cos sin +-= 4.a =+ααcos sin ,则αα33cos sin += 5.πππcos 1023sin 30cos 22sin 5+-+= 6.若51cos =α,α是第四象限角,则)2cos(απ+= 三、解答题:1.化简(1))sin()2tan()2tan()cos(απαππαπα+---(2))3tan()5cos()tan()tan()2sin(απαππαπααπ----+-2.已知2cos sin =+αα,求值:(1)ααcos sin ⋅(2)αα44cos sin +3.若ααπ,53)cos(=-是第三象限角,ββ,54sin =是第二象限角,求)tan(βα-的值.4.已知21)sin(=-θπ,θ是第二象限角,求)2cos(θπ-的值.5.已知2tan =θ,求αααα22cos sin cos sin 21-+的值.【三】两角和与差的三角函数一、单选题:1.=-)75sin( ( ) A.262- B.- 262- C.462- D.- 426+2. 15sin 2115cos 23-=( ) A.22 B.2 C.- 22 D.226+ 3.在ABC ∆中,若135cos ,54cos ==B A ,则C cos 的值是( ) A.6516 B.6556 C.- 6516 D.- 6556 4.若53sin =α,且),2(ππα∈,则=-)4cos(απ( ) A.-52 B.-102 C.-1027 D.-527 5.已知3tan ,2tan ==βα,则)tan(βα+的值为( ) A.-71 B.-1 C.75 D.51 6.已知54tan 1tan 1+=+-αα,则=-)4tan(απ( ) A.4+5 B.4-5 C.-4-5 D.-4+57. 在ABC ∆中,已知B A tan ,tan 是方程01832=-+x x 的两个根,则=C tan ( )A.2B.-2C.4D.-4 8.=-8sin 8cos 22ππ( ) A.0 B.22 C.1 D.- 229.已知31cos sin =+αα,则α2sin 的值是( ) A.98 B.- 98 C.917 D.- 91710.已知54cos ),0,2(=-∈x x π,则=x 2tan ( ) A.247 B.- 247 C.724 D.- 72411.已知 360180<<α,则=2cos α( ) A.-2cos 1α- B. 2cos 1α- C.-2cos 1α+ D. 2cos 1α+12.已知α是第三象限角,并且2524sin -=α,则=2tan α( ) A.34 B.43 C.- 43 D.- 3413.已知θ是第三象限角,且95cos sin 44=+θθ,则θ2sin 等于() A.322 B.- 322 C.32 D.- 3214.化简=-ααcos 3sin 3( ) A.)3sin(32πα- B.)3cos(32πα- C.)6sin(32πα- D.)6cos(32πα+ 15.=---)4(sin )4(cos 22απαπ( )A.α2sinB.-α2sinC.α2cosD.-α2cos二、填空题:1.已知θ是锐角,且a =θ2sin ,则θθcos sin +=2.化简=--+2cos 4)24(sin 2sin 12απα 3.已知2tan =α,则=-+αααα22cos sin cos sin 21 4.已知31sin cos 2cos sin =-+αααα,则=α2tan 5.=+-15tan 3115tan 36.若322cos =α时,=+αα44cos sin 7.=-+ 50tan 70tan 350tan 70tan 8.=+12cos 12sin 3ππ ,=125cos 12cos ππ 9.已知αα,53cos =是第四象限角,则=2tan α 10.已知3tan =α,则=ααcos sin三、解答题:1.已知1312sin =α,53cos -=β,βα,均为第二象限角,求)cos(βα-.2.已知βα,都是锐角,1411)cos(,71cos -=+=βαα,求βcos 的值.3.已知 18090,900,2tan ,31tan <<<<-==βαβα,求βα+.4.计算:(1) 10cos 310sin 1-;(2))310(tan 40sin - ;(3))212cos 4(12sin 312tan 32-- ;(4) 20sin 280cos 380sin --.5.已知2tan =θ,求)2sin(21sin 2cos 22θθθ+--.6.设32+是一元二次方程01)cot (tan 2=++-x x θθ的一个根,求θ2sin 的值.7.已知2cos sin 2cos 3sin -=+-αααα,求:(1)α2tan ;(2)αααα22cos cos sin sin 2++.8.已知θθcos 4sin 3=,且0sin <θ,求2tan θ.9.已知222tan -=θ,且πθπ22<<,求)4sin(21sin 2cos 22πθθθ+--的值.10.已知θs i n 和θcos 是方程0)13(22=++-m x x 的两根,求θθθθt a n 1c o sc o t 1s i n -+-的值.11.已知135)4sin(=-x π,且)4,0(π∈x ,求x 2cos .【四】三角函数的图象和性质 一、单选题:1.要得到函数)62sin(π-=x y 的图象,只需将函数2sin xy =的图象( )A.向右平移6π个单位 B.向左平移6π个单位 C. 向右平移3π个单位 D. 向左平移3π个单位2.在下面函数中,既是偶函数,又是周期函数的是( )①)42sin(2)(π-=x x f ②2cos )(xx f =③x x x f sin )(=④|tan |)(x x f =A.①和④B.③和④C.②④D.①②③④ 3.如果α是锐角,ααcos sin +的值域为( )A.[)2,1B.(]2,1 C.[]1,0 D.(]1,0 4.下列函数中,周期为π的偶函数是( )A.x y 2sin =B.2cos xy =C.x x y 2cos 2sin =D.xxy 22tan 1tan 1+-= 5.函数)0)(5cos()5sin(>--=ωπωπωx x y 的周期是2,则ω=( )A.1B.πC.2πD.4π6.已知π<<x 0,且x x cos sin >,则∈x ( )A.(0,4π)B.(4π,43π)C.(4π,π)D.(43π,π)7. 函数x y 2cos 2=的最小正周期是( )A.4π B.2πC.πD.2π 8.函数)326)(3cos(2πππ≤≤-=x x y 的最小值是( ) A.-2 B.-3 C.-1 D.19.若函数x x f y sin )(=是周期为π的奇函数,则)(x f 可以是( ) A.x sin B.x cos C.x 2sin D.x 2cos10.函数)2||0,0,0)(sin(πϕωϕω<<>>+=A x A y 在一个周期内的图象的最高点是(12π,2),最低点是(127π,-2),则ϕω,的值分别是( )A.321π,B.2,6πC.2,3πD.1,3π 11.函数)3sin()23cos(ππ-+=x x y 的周期是( )A.32π B.3π C.- 32π D.π 12.下列函数中不是奇函数的是( )A.x x y cos sin +=B.1cos -=x x yC.xxx y cos tan sin -=D.|tan |x x y =二、填空题:1.x y sin =的定义域为2.若函数a x y +=2sin2的最大值为4,则a = ;若函数2sin 2x a y -=的最大值为4,则a =3.函数2)5cos 5(sin xx y +=的最小正周期为4.函数)32sin(2π-=x y 的单调增区间为 ,单调减区间为5.函数x x y 44c o s s i n -=的周期为 ,当x = 时,m a xy = ;当x = 时,min y = 6.函数)4tan(π-=x y 的定义域为7.比较大小:(1)︒80cos ︒130cos ;(2))3tan(π- 5tan π;(3)56sin π 58sin π;(4)511tan π 45tan π8.若35sin ax -=成立,则a 的取值范围是9.函数x x y cos sin 2+=的值域为三、解答题:1.求函数最大值和最小值及对应的x 取值.(1)x y cos 21-= (2)x x y cos sin += (3))3cos()3cos(ππ--+=x x y(4)x x y 2cos 2sin 3= (5)x x y 2sin 2cos 3-= (6))cos (sin sin 2x x x y +=2.求下列函数的值域:(1)3cos2+-sinxy(2)1=xy4sinsin2+-=xx3.已知函数1=x+x(+xf(1)求函数的周期;(2)当x取何值时,22cossin)3函数有最大值与最小值,并求出最大值和最小值.4.已知函数1cos sin 23cos 212++=x x x y (1)求函数的周期;(2)当x 取何值时,函数有最大值与最小值.5.已知222sin -=θ且πθπ22<<,求)4sin(21sin 2cos 22θθθ+--的值.6.已知函数)sin(ϕω+=x A y 的图象如下图所示:(1) 求函数周期;(2)求函数解析式.【五】三角函数综合测试 一、 单选题:1.(03年)若α是第二象限角,则下列命题中正确的是( )A.αααcos sin tan = B.αα2cos 1sin -=C.ααcos )cos(-=-D.απαsin )3sin(=- 2.(03年)函数x x y cot 2sin =的最小正周期是( )A.πB.2π C.23π D.2π3.(04年)︒960sin =( ) A.-21 B.21 C.-23 D.234.(05年)若角α满足条件ααααcos sin ,0cos sin ><,则α在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知θθ,52cos =为第四象限角,则)3sin(θπ+=( )A.53B.- 53C.521D.- 5216.(06年)函数x x y 22sin cos -=的最大值是( ) A.2 B.2 C.0 D.17.(06年)设2tan =α,且0cos <α,则αsin =( ) A.-522 B. 522 C.-52 D.518.(07年)若21)sin(=+πθ,则)2cos(θπ-=( ) A.23 B.- 23 C.±23D.±219.(08年)已知31sin -=α,α是第三象限角,则αtan =( )A.42 B.- 42 C.22 D.- 22 10.(10年)若函数)0(cos sin >⋅=ωωωx x y 的最小正周期为4π,则ω=( ) A.41 B.21C.2D.4 11.下列区间是函数)4sin(π+=x y 的单调增区间的是( )A.],2[ππB.]4,0[πC.]0,[π-D.]2,4[ππ12.要得到)32sin(π+=x y 的图象,只需将函数x y 2sin =的图象( )A.向右平移3π个单位B.向左平移3π个单位C.向右平移6π个单位D. 向左平移6π个单位13.设Z k ∈,正切函数x y tan =的定义域为( ) A.R z k ∈ B.)232,22(ππππ++k k z k ∈ C.)22,22(ππππ+-k k z k ∈ D.)2,2(ππππ+-k k z k ∈14.函数)4sin(π+=x y 取得最大值时,x =( )A.{}Z k k x x ∈=,2|πB.⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,22|ππC.⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,4|ππD.⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,42|ππ15.下列函数周期为π的偶函数是( )A.|sin |x y =B.x x y 2cos 2sin +=C.x x y cos sin ⋅=D.x x y tan sin ⋅= 二、填空题:16.(03年)︒+︒15cot 15tan =17.(04年)βα,都是锐角,且βαsin sin >,则αcos 与βcos 的大小关系是18.(06年)若)2(53sin παπα<<=,则)6sin(πα+=19.(07年))4cos(cos sin πααα-+=20.(08年)=︒+︒15cos 15sin21.已知2tan =α,则=+)4tan(απ三、解答题:22.(03年)求函数1cos 2cos 21)(+-=x x x f 的最大值和最小值.23.(05年)已知21)4tan(=+απ,(1)求αtan 的值;(2)求ααα2cos 1cos 2sin 2+-的值.24.(06年)已知)20(1tan 12sin sin 22παααα<<=++,求ααcos sin +的值.25.(08年)正弦型函数)sin(ϕω+=x A y 在一个周期内的图象如图:21 (1)指出函数的周期;(2)写出函数的解析式.26.(09年)已知函数x x x x f 2cos cos sin 2)(+⋅=,(1)求)43(πf 的值;(2)若22)4(=αf 且23παπ<<,求αcos 的值.27.(10年)已知3tan -=θ,(1)求θ2tan 的值;(2)求)4sin(21sin 2cos 22θπθθ--+的值.。

天津市2020年春季高考数学模拟试卷A

天津市2020年春季高考数学模拟试卷A

天津市2020年春季高考数学模拟试卷A1、答第Ⅰ卷前,考生务必将自己的姓名、准考号、考试科目涂写在答题卡上,并将本人考试用条形码贴在答题卡的贴条形码处。

2、每小题选出答案后,用2B铅笔把答案卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在试卷上的无效。

3、考试结束,监考员将本试卷和答题卡一并收回。

—、单项选择题:本大题共8小题,每小题6分,共48分。

在每小题给出的四个选项中,只有一项是最符合题目要求的。

1、设集合M={x x-1=0},A ={1,2},则M∪N=A、{1,1,2}B、{2}C、{1,2}D、{-1,1,2}2、设K为常数,若函数y=(2k+1)x+b(-∞,﹢∞)内是增函数,则A、K>B、 K<C、K>-D、 K<-3、不等式(3x+4)(5-x)<0的解集是A、{x x<-或x>5}B、{x<x<5}D、{x<-或x>5}4、若f(x)是偶函数,当0x1时,f(x)=2x(1-x),则f(-)=A、-B、C、D、第一页5、已知sin=-(x),则cos2=A、B、C、6、sin(-)=A、B、C、7、已知向量A、-B、C、-6D、68、双曲线4x2-9y=1的渐近线方程式A、 Y=B、 Y=C、 Y=D、 Y=第二页 xx年天津市高等院校春季招生统一考试数学A 第二卷(非选择题)注意事项;1、答第II卷前,考生须将密封线内的项目填写清楚。

2、考生须用蓝、黑色钢笔或圆珠笔直接打在试卷上。

二、填空题:本大题共6小题,每小题6分,共36分,把答案填在题中的横线上。

9、二次函数y=在区间(-∞,2)单调递减,则m的取值范围是10、已知正四棱柱的对角面DBB1D1是正方形且面积是4cm2,则正四棱柱的体积是11、与直线2x=y=5垂直,且过点A(2,-1)的直线方程式12、焦距为4,离心率e=,且焦点在x轴上的椭圆方程是13、一个口袋装有5个白球和2个黑球,这些球除颜色外完全相同,从中任取两个,求至少取到一个黑球的概率14、离散型随机变量ξ的概率分布为P(ξ=k)=(k=1,2,3),c 为常数,则P(0、5<ξ<2、5)=第三页三、解答题:本大题共4小题,共66分,解答应写出文字说明,证明过程或演算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天津春季高考数学模拟
试题精选文档
TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-
一、选择题
1、设全集U={1,2,3,4,5,6},集合A={2,4,6},则CuA=
(A ){2,4,6} (B ){1,3,5}
(C ){1,2,3,4,5,6} (D )Φ
2、已知1≤a≤5,则15a a -+- =
(A )6 - 2a (B )2a-6 (C )-4 (D )4
3、函数)5ln(3
12x x x y -+-+-=的定义域= A.()()2,33,5⋃ B. [)()2,33,5⋃ C.[)[)2,33,5⋃ D.[)[]2,33,5⋃
4、若)2(log log 2
121x x -<,则x 的取值范围是
A. (0,1)
B.(1,+)∞
C.(0,2)
D.(1,2)
5、已知向量a=(3,-2),b=(4,3),则(3a - 2b)·a=
(A )-21 (B )3 (C )27 (D )51
6、已知函数()()2123f x k x kx =-++为偶函数,则其单调递减区间为:
(A )(-∞,0) (B )(0,+∞)
(C )(-∞,1) (D )(-∞,+∞)
7、在数列{an}中,a n+1 = a n +3,a 2 = 2,则a 7 =
(A )11 (B )14 (C )17 (D )20
8、从4名男生中选1人,3名女生中选2人,将选出的3人排成一排,不同排 法共有:
(A )24种 (B )35种 (C )72种 (D )210种
9、袋中装有3个黑球和2个白球,一次取出两个球,恰好是黑、白球各一个的概率为:
(A ) 1/5 (B ) 3/10 (C ) 2/5 (D ) 3/5
10、函数1sin 3x y ⎛⎫=+ ⎪⎝⎭
的最小正周期是: (A )π/6 (B )π/3 (C )3π (D )6π
11、在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知a 2 + b 2 – c 2 = ab , 则C=
(A )π/6(B )π/3(C )5π/6(D )2π/3
12、用一个平面截正方体,所得的截面图形不可能是:
(A )等腰三角形 (B )直角三角形 (C )梯形 (D )矩形
13、设a>0,若直线经过点(a ,0)、(0,2a)、(1,2),则其方程是:
(A )2x + y – 4 = 0 (B )x + 2y – 5 = 0
(C )2x - y = 0 (D )2x + y = 0
14、已知抛物线y 2 = mx 的准线方程为x = -2,则常数m=
(A )4 (B )-4 (C )8 (D )-8
15、已知直线1l :2x + y + m = 0,直线2l :x + 2y + n = 0,则:
(A )1l 与2l 相交但不垂直 (B )1l 与2l 相交且垂直
(C )1l 与2l 行 (D )1l 与2l 的位置关系取决于m 、n 的值
二、填空题
16、不等式(x + 3)2 <1的解集是__________。

17、已知m a = 4,b m = 8,m c
= 16(m>0),则a b c m +- =_______。

18、若复数(1+2i)(k+i)的实部和虚部相等,则实数k=________。

19、半径为10的圆中,135°圆心角所对圆弧的长为________。

20、已知tanα= 2,则tan(π/4+α)________。

21、在等比数列{an}中,公比q=3,前n 项和为n s ,则
42s s = ___。

三、解答题
22、已知二次函数f(x) = ax 2 + bx 满足:①f(2)=0;②方程f(x)=x 有两个相等的实数根,求:
(Ⅰ)函数f(x)的解析式
(Ⅱ)函数f(x)在区间[0,3]上的最大值和最小值
23、正三棱柱的底面边长为4,过BC 的一个平面交棱AA1于点D ,且AD=2,求:
(Ⅰ)二面角A-BC-D 的度数
(Ⅱ)三角形BCD 的面积
24、已知椭圆的标准方程为221169144x y +=,双曲线的标准方程为22
1916x y -=,求:
(Ⅰ)椭圆的焦点坐标
(Ⅱ)双曲线的渐近线方程
(Ⅲ)以椭圆的右焦点为圆心,且与双曲线的渐近线相切的圆的标准方程。

相关文档
最新文档