第2章 习题解答
第二章 自由能 化学势 习题解答

第二章 自由能、化学势和溶液2-1 判断下列过程的Q 、W 、△U 、△H 、△S 、△G 值的正负。
( 1)理想气体自由膨胀。
( 2)两种理想气体在绝热箱中混合。
解:2-2 说明下列各式的适用条件。
( 1) △G = △H 一T △S ;(2)dG =一SdT + Vdp (3)-△G = -W '答:公式(1):封闭体系的定温过程公式(2):不做其它功、均相、纯组分(或组成不变的多组分)的封闭体系 公式(3):封闭体系、定温、定压的可逆过程。
2-3 298K 时,1mol 理想气体从体积10dm 3膨胀到20dm 3,计算(1)定温可逆膨胀;(2)向真空膨胀两种情况下的 △G 解: (1)J V V nRT P P nRT G 3.17172010ln 298314.81ln ln2112-=⨯⨯===∆ (2) △G = -1717.3 J2-4 某蛋白质由天然折叠态变到张开状态的变性过程的焓变△H 和熵变△S 分别为251.04kJ·mol -1和753J·K -1·mol -1,计算(1)298K 时蛋白变性过程的△G ; (2) 发生变性过程的最低温度。
解:将△H 和△S 近似看作与温度无关(1)kJ S T H G 646.261075329804.2513=⨯⨯-=∆-∆=∆- (2)K S H T 4.333753251040==∆∆=2-5 298K ,P Ө 下,1mol 铅与乙酸铜在原电池内反应可得电功9183.87kJ ,吸热216.35kJ,计算△U 、△H 、△S 和△G解: △G = W ' = - 9183.87kJ △S = Q / T = 216.35 / 298 = 726 J/K△U = Q + W = - 9183.87 + 216.35 = -8967.52 kJ △H = △G + T △S = -8967.52 kJ2-6 广义化学势Z Z Z Z n V T Bn P S B n V S B n P T B B n F n H n U n G ,,,,,,,,)()()()(∂∂=∂∂=∂∂=∂∂=μ式中哪几项不是偏摩尔量? 答: Z n V S B n U ,,)(∂∂、Z n P S B n H ,,)(∂∂、Z n V T Bn F,,)(∂∂不是偏摩尔量2-7 由 2.0 mol A 和1.5 mol B 组成的二组分溶液的体积为425cm -3,已知V B , m 为250.0cm -3·mol -1,求V A,m 。
教材第二章习题解答

第二章原子结构和元素周期律习题解答1.指出下列各原子轨道相应的主量子数n及角量子数l的数值是多少?轨道数分别是多少?2p 3d 4s 4f 5s【解答】 2p 主量子数2,角量子数1,轨道数33d 主量子数3,角量子数2,轨道数54s 主量子数4,角量子数0,轨道数14f 主量子数4,角量子数3,轨道数75s 主量子数5,角量子数0,轨道数1 2.当主量子数n=4时,可能有多少条原子轨道?分别用Ψn,l,m 表示出来。
电子可能处于多少种运动状态?(考虑自旋在内)【解答】当n=4时,可能有n2=16条原子轨道。
n l M4 01230,±10,±1,±20,±1,±2,±3Ψ4,0,0,Ψ4,1,0,Ψ4,1,1,Ψ4,1,-1,Ψ4,2,0,Ψ4,2,1,Ψ4,2,-1,Ψ4,2,2,Ψ4,2,-2,Ψ4,3,0,Ψ4,3,1,Ψ4,3,-1,Ψ4,3,2,Ψ4,3,-2,Ψ4,3,3,Ψ4,3,-3 每条轨道上可以容纳两个自旋相反的电子,16条原子轨道,电子可能处于32种运动状态。
3.将下列轨道上的电子填上允许的量子数。
(1)n=,l=2,m=0,ms=±1/2(2)n=2,l= ,m=0,ms=±1/2(3)n=4,l=2,m= ,ms=-1/2(4)n=3,l=2,m=2,m=s=-1/2(5)n=2,l= ,m=-1,ms=+1/2(6)n=5,l=0,m= ,ms【解答】(1) 3,4,5,……,正整数;(2) 0,1(3) 0,±1,±2(4) +1/2,-1/2(5) 1(6) 04.填上n、l、m、m s等相应的量子数:量子数确定多电子原子轨道能量E的大小;Ψ的函数式则是由量子数所确定;确定核外电子运动状态的量子数是;原子轨道或电子云的角度分布图的不同情况取决于量子数。
【解答】主量子数n和角量子数l;主量子数n、角量子数l和磁量子数m;主量子数n、角量子数l、磁量子数m和自旋量子数m;s 角量子数l和磁量子数m。
第二章习题解答

第二章2-3 设系统传递函数为342)(2++=s s s G 初始条件0/)0(,1)0(=-=dt dc c 。
求单位阶跃输入r (t)=1(t)时,系统的输出响应c (t)。
【解】系统传递函数与微分方程是一一对应的,故通过传递函数先求出微分方程,然后通过拉氏变换的方法求解微分方程。
系统对应的微分方程为 4()3()2()c c t c t r t ++= 在给定的非零初始条件下,进行拉氏变换22(43)()(0)(0)4(0)s s C s sc c c s++---=整理后2221()(43)(43)s C s s s s s s +=-++++部分分式展开后,拉氏反变换111223242/35/25/6()[()][][](43)(43)13255326t t s c t L C s L L s s s s s s s s e e -----+==-=-+++++++=-+2-4 在图2-48中,已知G (s) 和H (s)两方框对应的微分方程分别为()2()5()4()3()6()c t c t e t b t b t c t +=+=图2-48 习题2-4系统结构框图且初始条件为零,试求传递函数C (s)/R (s)。
【解】求出每个方框的传递函数,利用反馈等效的方法求C(s)/R(s)。
根据定义可得 5()2G s s =+,6()43H s s =+ 255()5()25(43)10075(2)56()1()()(2)(43)30411361(2)(43)C s G s s s s R s G s H s s s s s s s +++====+++++++++2-5 图2-49是由电阻、电容和运算法放大器组成的无源网络和有源网络,试列写以V in (t)为输入量,V out (t)为输出量的传递函数。
(a) (b )(c) (d)图2-49 习题2-5电路图【解】(a) 1211211,1RZ R Z C s RC s C s===+ 22112121211()1()11Z C s RC s G s R Z Z R C C s RC s C s +===+++++(b ) 21122211R Z R Z R Cs R Cs ===+ 2222111211()1R Z R Cs R G s Z R R R Cs +=-==-+ (c) 32321123232321()(1)1()1()1R R R R Cs Cs Z R Z R R Cs R R Cs R R Cs++==+==++++ 323232211132(1)()11()()1R R Cs R R Cs R Z R Cs G s Z R R R R Cs ++++=-=-=-++ (d)本题和(b)、(c)做法图通,因为反馈通路有接地的部分。
第二章习题解答

1. 2mol 298K ,5dm 3的He(g),经过下列可逆变化:(1) 等温压缩到体积为原来的一半; (2) 再等容冷却到初始的压力。
求此过程的Q W U H S ∆∆∆、、、和。
已知=),(,g He C m p 20.8J •K -1•mol -1。
解:体系变化过程可表示为W=W 1+W 2=nRTln 12V V+0=2×8.314×298×ln0.5=-3435(J)Q=Q 1+Q 2=W 1+ΔU 2=-3435+n m v C ,ΔT=-3435+n m v C ,(298-298/2)=-3435+(-3716)=-7151(J)ΔU=ΔU 1+ΔU 2=ΔU 2=-3716(J)ΔS=ΔS 1+ΔS 2=nRln 12V V +⎰21,T T m v TdTnC =2×8.314×ln0.5+2×1.5×8.314ln0.5=-2818(1-∙K J )2. 10mol 理想气体从40℃冷却到20℃,同时体积从250dm 3 变化到50dm 3。
已知该气体的m p C ,=29.20J •K-1•mol-1,求S ∆。
解:假设体系发生如下两个可逆变化过程250dm 3 等温 50dm 3 等容 50dm 340℃ ΔS 1 40℃ ΔS 2 20℃ΔS=ΔS 1+ΔS 2=nRln 12V V +⎰21,T T m v TdTnC=10Rln25050+10×(29.20-8.314)×ln 4015.2732015.273++ =-147.6(1-∙K J )3. 2mol 某理想气体(m p C ,=29.36 J •K -1•mol -1)在绝热条件下由273.2K,1.0MPa 膨胀到203.6K ,0.1MPa 求该过程的Q W U H S ∆∆∆、、、和。
解:273.2K 绝热 203.6K1.0MPa 膨胀 0.1MPa等温压缩 等容冷却∵m p C ,=29.3611--∙∙mol K J∴ m v C ,=29.36-8.314=21.0461-∙K J且Q=0ΔU=⎰21,T T m v dT nC =2×21.046×(203.6-273.2)=-2930(J)W=-ΔU=2930(J)4. 有一带隔板的绝热恒容箱,在隔板两侧分别充以不同温度的H 2和O 2,且V 1=V 2(见图),若将隔板抽去,试求算两种气体混合过程的S ∆(假设此两种气体均为理想气体)。
第2章 部分习题答案

-7.2812510=-111.010012 然后移动小数点,使其在第1,2位之间
111.01001=1.1101001×22
e=2
于是得到: e =E – 127
S=1,E=2+127=129=1000,0001,M=1101001
最后得到32位浮点数的二进制存储格式为
1100 0000 1110 1001 0000 0000 0000 0000
第二章 习题解答
7.若浮点数 x 的IEEE754标准32位存储格式为(8FEFC000 )16, 求其浮点数的十进制值。 【解】: 将x展开成二进制:
1000 , 1111, 1110 ,1111 ,1100,0000,0000,0000 数符:1 阶码:0001,1111 尾数:110,1111,1100,0000,0000,0000 指数e=阶码-127=00011111-01111111 =(-96)10 包括隐藏位1的尾数:
符号位为01,故运算结果未溢出。 x-y=1101
.
第5页
第二章 习题解答
20. 已知x和y,分别用带求补器的原码阵列乘法器、带求补器的补码阵 列乘法器和直接补码阵列乘法器计算x×y。
(1) x=0.10111 y=-0.器
[x]原=0.10111 [y]原=1.10011 乘积的符号位为: xf⊕yf=0⊕1=1 因符号位单独考虑,算前求补器的使能控制信号为0,经算前求补
+ [y]补 1 1. 0 0 1 0 1 1 1. 1 1 1 0 0
符号位出现“11”,表示无溢出,x-y=-0.00100
.
第3页
第二章 习题解答
13. 已知[x]补=1.1011000,[y]补=1.0100110,用变形补码计算 2[x]补+1/2[y]补=?,同时指出结果是否发生溢出。
第2章习题解答

第二章习题解答2.01 试给出数据通信系统的基本模型并说明其主要组成构件的作用。
答:1)信源和信宿信源就是信息的发送端,是发出待传送信息的设备;信宿就是信息的接收端,是接收所传送信息的设备,在实际应用中,大部分信源和信宿设备都是计算机或其他数据终端设备(data terminal equipment,DTE)。
2)信道信道是通信双方以传输媒体为基础的传输信息的通道,它是建立在通信线路及其附属设备(如收发设备)上的。
该定义似乎与传输媒体一样,但实际上两者并不完全相同。
一条通信介质构成的线路上往往可包含多个信道。
信道本身也可以是模拟的或数字方式的,用以传输模拟信号的信道叫做模拟信道,用以传输数字信号的信道叫做数字信道。
3)信号转换设备其作用是将信源发出的信息转换成适合于在信道上传输的信号,对应不同的信源和信道,信号转换设备有不同的组成和变换功能。
发送端的信号转换设备可以是编码器或调制器,接收端的信号转换设备相对应的就是译码器或解调器。
2.02 试解释以下名词:数据,信号,模拟数据,模拟信号,数字数据,数字信号。
答:数据:通常是指预先约定的具有某种含义的数字、符号和字母的组合。
信号:信号是数据在传输过程中的电磁波的表示形式。
模拟数据:取值是连续的数据。
模拟信号:是指幅度随时间连续变化的信号。
数字数据:取值是离散的数据。
数字信号:时间上是不连续的、离散性的信号2.03 什么叫传信速率?什么叫传码速率?说明两者的不同与关系。
答:传信速率又称为比特率,记作R b,是指在数据通信系统中,每秒钟传输二进制码元的个数,单位是比特/秒(bit/s,或kbit/s或Mbit/s)。
传码速率又称为调制速率、波特率,记作N Bd,是指在数据通信系统中,每秒钟传输信号码元的个数,单位是波特(Baud)。
若是二电平传输,则在一个信号码元中包含一个二进制码元,即二者在数值上是相等的;若是多电平(M电平)传输,则二者在数值上有R b=N Bd×log2 M的关系。
第2章习题解答
第2章习题解答2.2已知半径为a 、长为l 的圆柱体内分布着轴对称的体电荷,已知其电荷密度()0Va ρρρρ=,()0a ρ≤≤。
试求总电量Q 。
解:2π200002d d d d π3laV VQ V z la aρρρρρϕρ===⎰⎰⎰⎰2.3 半径为0R 的球面上均匀分布着电荷,总电量为Q 。
当球以角速度ω绕某一直径(z 轴)旋转时,试求其表面上的面电流密度。
解:面电荷密度为 24πS QR ρ=面电流密度为 00200sin sin sin 4π4πS S S Q Q J v R R R R ωθρρωθωθ=⋅=== 2.4 均匀密绕的螺旋管可等效为圆柱形面电流0S S J e J ϕ=。
已知导线的直径为d ,导线中的电流为0I ,试求0S J 。
解:每根导线的体电流密度为 00224π(/2)πI I J d d== 由于导线是均匀密绕,则根据定义面电流密度为 04πS IJ Jd d ==因此,等效面电流密度为 04πS IJ e dϕ=2.6 两个带电量分别为0q 和02q 的点电荷相距为d ,另有一带电量为0q 的点电荷位于其间。
为使中间的点电荷处于平衡状态,试求其位置。
当中间的点电荷带电量为-0q 时,结果又如何? 解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。
由库仑定律,实验电荷受02q 的排斥力为12214πq F xε=实验电荷受0q 的排斥力为02214π()q F d x ε=- 要使实验电荷保持平衡,即21F F =,那么由00222114π4π()q q x d x εε=-,可以解得 d d x 585.0122=+=如果实验电荷为0q -,那么平衡位置仍然为d d x 585.0122=+=。
只是这时实验电荷与0q 和02q 不是排斥力,而是吸引力。
2.7 边长为a 的正方形的三个顶点上各放置带电量为0q 的点电荷,试求第四个顶点上的电场强度E 。
物理化学 答案 第二章_习题解答
=
(0.3 × 48.66 +
0.7 ×12) KJ·mol-1
=
23.0KJ·mol-1
B
∑ ∑ ∑ S
2-2 已知当 NaCl 溶液在 1kg 水中含物质的量为 n(单位为 mol)的 NaCl 时,体积 V 随 n 的变化关系为:
V/m3 = 1.00138×10-3 + 1.66253×10-5n/mol +1.7738×10-3(n/mol)3/2 + 1.194×10-7(n/mol)2
求当 n 为 2mol 时 H2O 和 NaCl 的偏摩尔体积为多少? 解:设水用“A”表示,NaCl 用“B”表示,由题意得:
1
⎜⎜⎝⎛
∂V ∂n B
⎟⎟⎠⎞ = 1.66253 ×10−5
+ 1.7738 ×10−3
×
3 2
1
× (n / mol) 2
+ 1.194 × 10−7
× 2(n / mol)
那么当 n=2 时,NaCl 的偏摩尔体积
VB
= 1.66253 × 10−5
+ 1.7738 × 10−3
×
3
×
2
1 2
mol·dm3 = 0.547mol·dm-3
bB
=
nB mA
=
wB M (1 − wB )
=
0.095 0.18 × (1 − 0.095)
mol·kg-1 = 0.583mol·kg-1
2-4 若将 25℃、101.325KPa 纯理想气体的状态定为气体的标准状态,则氧气的标准
熵 S1O =205.03J·K-1·mol-1,现改为 25℃、100Kpa 的纯理想气体作为气体的标准态,氧气
第二章习题解答.doc
8第二章 高频小信号放大器典型例题分析与计算例2-1 图2-18所示电路为一等效电路,其中L =0.8uH,Q 0=100,C =5pF,C 1 =20pF,C 2 =20pF,R =10k Ω,R L =5k Ω,试计算回路的谐振频率、谐振电阻。
题意分析 此题是基本等效电路的计算,其中L 为有损电感,应考虑损耗电阻0R (或电导0g )。
解由图2-18可画出图2-19所示的等效电路。
图2-18 等效电路 图2-19 等效电路(1)回路的谐振频率0f由等效电路可知L =0.8H μ,回路总电容C ∑为12122020515(pF)2020C C C C C C ∑⨯=+=+=++则0f ==45.97(MHz)=(2)R L 折合到回路两端时的接入系数p 为211212121112C C p C C C C C C ωω===++则9()2233110.50.0510s 510L P R -=⨯=⨯⨯ 电感L 的损耗电导0g 为0660011245.97100.810100g LQ ωπ-==⨯⨯⨯⨯⨯ ()643.3010s -=⨯总电导 23-3031110.0433100.05101010L g g P R R ∑-=++=+⨯+⨯⨯ ()30.193310s -=⨯谐振电阻 ()P 1 5.17k R g ∑==Ω例2-2 有一个RLC 并联谐振电路如图2-20所示,已知谐振频率f 0=10MHz,L =4μH ,Q 0=100,R =4k Ω。
试求(1)通频带20.7f ∆;(2)若要增大通频带为原来的2倍,还应并联一个多大电阻?题意分析 此题是一个RLC 并联谐振电路的基本计算,了解通频带的变化与回路电阻的关系。
解 (1)计算通频带电感L 的损耗电导0g 为 图2-20 RLC 并联谐振回路066001121010410100g LQ ωπ-==⨯⨯⨯⨯⨯()639.810s -=⨯回路总电导6031139.810410g g R ∑-=+=+⨯⨯ ()6289.810s -=⨯10回路的有载品质因数L Q 为666011g 21010410289.810L Q L ∑ωπ--==⨯⨯⨯⨯⨯⨯13.74=回路通频带()()6600.7101020.72810Hz 0.728MHz 13.74L f f Q ∆⨯===⨯= (2)若通带增大一倍,即20.71.456MHz f ∆=,计算应再并多大电阻R '根据题意要求通频带增大一倍,则回路的有载品质因数应减小一倍,即16.872LL Q Q '== 对应的'g ∑应该增大一倍,即 ()6'2579.610s g g ∑∑-==⨯ 因为0'11g g R R∑=++' 所以0''11g g g g R R ∑∑∑⎛⎫=-+=- ⎪'⎝⎭()6289.810s -=⨯则 3.45k R '=Ω图2-21 单调谐放大电路11例2-3 单调谐放大器如图2-21所示。
第二章部分习题解答
第二章 习题2.1.13 在图中R 1= R 2 = R 3 = R 4 = 300Ω,R 5 = 600Ω, 试求开关 S 断开和闭合时a 、b 之间的等效电阻。
【解】开关 S 断开时:Ω=++=++=200600//)300300//()300300(//)//()(54231R R R R R R开关 S 闭合时:Ω=+=+=+=200600//)150150(600//]300//300300//300[//)]//()//[(54321R R R R R R2.3.5 在图示的电路中,求各理想电流源的端电压、功率及各电阻上消耗的功率。
【解】由KCL ,电阻R 1上电流: A I I I 11212=-=-=左边电流源:端电压(其与R1并联,电压相等): V IR U 2020111=⨯== 功率 W U I P S 20201111=⨯==右边电流源:由KVL 可得端电压 V R I IR U 401022012212=⨯+⨯=+= 功率 W U I P S 40202222=⨯==电阻上消耗的功率:W R I P R 2020121211=⨯==,W R I P R 4010222222=⨯==2.3.9 试用电压源与电流源等效变换的方法计算图中2Ω电阻中的电流。
【解】对电路作等效变换,有:1Ω2A1Ω3Ω6Ω6V 12V 2ΩIR 1R 4R 5R 2R 3S3Ω6Ω2Ω I2A2V2A 2Ω-+ 1A10Ω20ΩR 1 R 2I 1I 2 2AU 1U 2I3Ω6Ω 2Ω I2A 2V 1Ω- + 6V + - 1Ω计算电流:A I 122228=++-=2.4.2 试用支路电流法求图示电路中的各支路电流,并求三个电源的输出功率和负载电阻R L 取用的功率。
0.8Ω和0.4Ω分别为两个电压源的内阻。
【解】对节点A ,由KCL 有:I I I =++1021 对回路,由KVL : I I 48.01201+=I I 44.01162+=联立求解得:I 1=9.38A ,I 2= 8.75A ,I =28.13A , 三个电源的输出功率:W I I E P E 10558.021111=⨯-⨯=, W I I E P E 9844.022222=⨯-⨯=,W I IR I U P S L S AB IS 11251013.284=⨯⨯=⨯=⨯=负载电阻R L 取用的功率:W R I P L IS 316413.281613.28422=⨯=⨯== P L =3164W 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
j n
k
x ( k )e
j( )k
X (e
)
第2章 时域离散信号和系统的频域分析
1. 解: (6) 因为
X (e
j
)
n
x ( n )e
j n
则
d X (e d j
j
)
d
n
x ( n )e d
j n
n
第2章 时域离散信号和系统的频域分析
若 a n 为正项级数,且
n
比值判定法确定Z变换的收敛域
a n 1 an
lim
n
q
则 (i) 当 q < 1 时级数收敛 (ii) 当 q > 1 时级数发散 (iii) 当 q = 1 时级数可能收敛也可能发散
Z变换存在的条件是级数 x ( n ) z
n
1 2
x1 ( n )e
j n
n
( n 3)e
j n
e
j 3
(2) x 2 ( n )
F T [ x 2 ( n )]
( n 1) ( n )
1 2
( n 1)
n
x 2 ( n )e
j n
j
1
π π
X (e
j
)e
j n
d
j 0
π π
X (e
j
)d
π π
X (e
j
)e
d 2 x (0 ) 4
(3) X ( e
j
)
可知 ,所以:
X (e )
n
x ( n )e
jw n
n 3
7
x (n )e
2
x(n)
1 2
2
n
X (e
j
) d
2
2
所以
π
X (e
j
) d 2
2
n
x(n)
2
n 3
7
x(n)
2 (1 1 4 1 1 4 1 1) 2 8
(6) π
|
d X (e d
) sin
j
1 2j
(e
j
e
j
j
)
j
F T ( h o ( n )) jH I ( e 1 2 e
j *( 1)
)
j *1
1 2
(e
e
)
n
h o ( n )e
j n
0
1 2
e
所以
1 2 ho ( n ) 0 1 2
3
e
j n
n 3 j 4 j
j
3
e
j n
n0
3
e
j n
n0
3
e
j n
n 1
1 e
j 3
1 e 1 e
j 3 j
1 e e
e
1 e
j 4 j
1 e
j 3
1 e 1 e
j 3 j
e
j 4
(4) x 4 ( n ) u ( n 3) u ( n 4 )
F T [ x 4 ( n )]
n
1
x 4 ( n )e e
j n
j n
n
( u ( n 3) u ( n 4 ))e
j n
n 3
j 2
j n
j
n
( u ( n 3) u ( n 4 ))e
j
j n
n 3
3
e
j n
e
j 3
e
1 e
e
j 2
e
j 3
1 2 co s 2 co频域分析
j
)d ;
(3) X ( e j ) ; (4)确定并画出傅里叶变换实部 R e[ X ( e j )] 的时间序列 x a ( n ) (5) | X (e j ) | 2 d ;
π π
(6) |
π
π
d X (e d
j
)
| d 。
2
第2章 时域离散信号和系统的频域分析
题5图
第2章 时域离散信号和系统的频域分析
5. 解:(1) X ( e j 0 )
可知 0 ,所以: X ( e j 0 )
j (2) π X (e )d π
n
x ( n )e
jw n
0
n 3
7
x(n) 6
因为 x ( n ) 所以
2π
n 1 n0 n 1
第2章 时域离散信号和系统的频域分析
对于实因果序列,可以根据ho(n)及h(0)恢复h(n),即
h ( n ) h o ( n ) u ( n ) h (0) ( n )
2 u (n) 1 0 n 0 n 0 n 0
所以
0 n0 h ( n ) h o ( n ) h (0 ) ( n ) n 0 2 ho ( n ) n 0 n 0 n 1 其它n
0
j
)e
j n
d ]
0
0
e
d
1
2 jn
e
j n
0
sin ( 0 n )
n
第2章 时域离散信号和系统的频域分析
5. 设题5图所示的序列x(n)的FT用X(ejω)表示,不直接求出
X(ejω),完成下列运算: (1) X ( e j 0 ) ; (2)
π π
X (e
第2章 时域离散信号和系统的频域分析
习题与上机题
1.设X(ejω)和Y(ejω)分别是x(n)和y(n)的傅里叶变换,
试求下面序列的傅里叶变换: (1) (2) (3) (6) x(n–n0) x*(n) x(–n) nx(n)
第2章 时域离散信号和系统的频域分析
1. 解: (1) D T F T x ( n n 0 ) 设
求X(ejω)的傅里叶反变换x(n)。 解:
x ( n ) IF T [ X ( e 1 2 1 2 [
0 j
)]
j n
1 2
X (e
j
)e
j
j n
d d
X (e
j n
j
)e
d 1
0
0
X (e
0
)e
j n
X (e
*
[ x ( n ) x ( n )]
用图形表示如下:
第2章 时域离散信号和系统的频域分析
3 2.5 2 1.5 1 0.5 0 -0.5 -1
-8
-6
-4
-2
0
2
4
6
8
第2章 时域离散信号和系统的频域分析
5. 解:(5) | X (e j ) | 2 d
π
π
根据帕斯维尔定理
第2章 时域离散信号和系统的频域分析
5. 解:
(4)确定并画出傅里叶变换实部 R e[ X ( e j )]的时间序列 x a ( n )
因为序列x(n)的共轭对称部分xe(n)对应着X(ejω)的实部Re[X(ejω)]
所以:
xa ( n ) xe (n ) 1 2 { 0 . 5 , 0 , 0 . 5 , 1 , 0 , 0 , 1 , 2 , 1 , 0 , 0 , 1 , 0 .5 , 0 , 0 .5 } 1 2 [ x ( n ) x ( n )]
j
1 即 h(n) 1 0
F T ( h ( n )) H (e
)
n
h (n )e
j n
1 e
j
2e
1 j 2
co s
2
第2章 时域离散信号和系统的频域分析
14. 求出以下序列的Z变换及收敛域: (1) (3) (5) 2-nu(n) 2-nu(-n) δ(n-1) (2) (4) (6) -2-nu(-n-1) δ(n) 2-n[u(n)-u(n-10)]
j
)
| d
2
因为 F T n x ( n ) j 根据帕斯维尔定理
j 2
d X (e d
j
)
所以
d X (e d
j
)
F T jn x ( n )
d X (e d
)
d 2
2
n
2
jn x ( n )
2
n 3
7
nx(n)
1 2
( n 1)
(3) x 3 ( n ) a u ( n ) 0 a 1 ( 4 ) x 4 ( n ) u ( n 3) u ( n 4 )