小学六年级比例知识点复习

合集下载

六年级比例知识点

六年级比例知识点

六年级第四单元比例总结1、比例的意义和性质。

(1)24:16=60:40,内项、外项。

会根据比例形式写乘法算式(2)会判断两组数是否成比例:P58.2(3)会根据乘法算式写比例:P59.4(4)会判断4个数字能否成比例:法1:任意2组相除答案是否相等法2:任意2组相乘答案是否相等2、解比例。

(1)应用题:找关系;列比例;用乘法化为方程(注意转化单位):P62.3(2)已知3个数和x 成比例,求x:有3种。

3、正比例。

P65(1)定义:)(一定k xy=,会判断两种量是否成正比例。

方法:两种对应量相除,看比值是否一定。

(2)正比例图像的特点:P65;会根据图像找某个量。

4、反比例。

P70(1)定义:)(一定k xy =会判断两种量是否成反比例。

方法:两种对应量相除看积是否一定。

5、比例尺。

P74(1)定义:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

图上距离:实际距离=比例尺(2)求比例尺;求实际距离;求图上距离。

(3)画图:P74.①确定比例尺②求图上距离③画平面图④标名称和比例尺6、图形的放大与缩小。

(1)特点:形状相同,大小不同。

(2)方法:①数原图每边占几格;②算出原图放大或缩小后占几格;③画出算出来后的图形。

7、解决问题:关键找某个量一定,其余两个量成正比例或反比例,然后按照解比例的方法列方程计算。

(1)同一时间、地点,物体的高度与影长成正比例关系。

(2)速度一定,行驶的路程与时间成正比例关系。

(3)路程一定,行驶的速度与时间成反比例关系。

(4)工作总量一定,工作时间与工作效率成反比例关系。

六年级比例的知识点

六年级比例的知识点

六年级比例的知识点比例是数学中非常重要的概念之一,它用于描述两个或多个数量之间的关系。

了解和运用比例是六年级学生的基本要求,下面将介绍六年级比例的几个重要知识点。

一、什么是比例?比例是指两个数量之间的大小关系,通常用等于号“=”表示。

比例可以表示为两个数之比相等的关系,例如:苹果和橙子的比例是3:5,可以表示为3/5。

也可以表示为百分比形式,如30%。

二、比例的四种关系在比例中,有四种常见的关系,分别是正比、反比、复合比和比例函数。

1. 正比关系正比关系是指两个量相互之间的变动方向保持一致,即当一个量增加时,另一个量也增加;当一个量减少时,另一个量也减少。

例如,一辆汽车以每小时50公里的速度匀速行驶,行驶时间和行驶距离就是正比关系。

行驶1小时距离为50公里,行驶2小时距离为100公里。

2. 反比关系反比关系是指两个量相互之间的变动方向相反,即当一个量增加时,另一个量减少;当一个量减少时,另一个量增加。

例如,一辆汽车以每小时60公里的速度行驶,行驶时间和行驶距离就是反比关系。

行驶1小时距离为60公里,行驶2小时距离为30公里。

3. 复合比关系复合比关系是指由两个或多个比例构成的关系。

在复合比中,可以通过比例的乘法和除法运算来求解未知数量。

例如,苹果和橙子的比例是3:5,橙子和香蕉的比例是4:7,求解苹果、橙子和香蕉的比例关系。

4. 比例函数比例函数是指含有两个或多个变量的函数,其中变量之间存在比例关系。

比例函数通常使用字母表示,如y = kx,其中k为比例系数。

三、比例的应用比例在日常生活中有许多应用,下面列举一些常见的例子。

1. 长度比例比例可以用于描述物体的长度关系,如地图上的比例尺。

比例尺表示地图上的长度与实际地面的长度之间的比例关系,例如1:1000表示地图上的1厘米对应实际地面上的1000厘米。

2. 价格比例比例可以用于描述商品的价格关系,如打折活动。

例如,某商品原价为100元,打8折后的价格为80元。

小学数学六年级比例知识点

小学数学六年级比例知识点

小学数学六年级比例知识点在小学六年级数学学习中,比例是一个重要的知识点。

比例在日常生活中应用广泛,例如购物时的价格比较、食谱中的食材比例等等。

掌握了比例的概念和运算方法,学生能够更好地理解和解决实际问题。

一、比例的定义比例是指两个或多个具有相同性质的量之间的对应关系。

比例常用两个比例项的比值表示,形式为a:b或a/b,其中a和b称为比例项。

二、比例的性质1. 比例的交换性:比例a:b与b:a相等。

2. 比例的比值性:如果a:b=c:d,则a/c=b/d。

3. 比例的平行性:如果a:b=c:d,且b不为0,则a/b=c/d。

三、比例的表示方法1. 倍数关系表:通过倍数关系表可以清楚地列出两组具有比例关系的数。

2. 比例尺:比例尺是表示长度或面积比例的一种工具。

比例尺的使用可以帮助我们在图纸上进行测量和绘制。

3. 分数形式:将比例转化为分数形式可以更直观地表示比例关系。

四、比例的运算1. 比例的等比乘除:在比例中,如果将两个比例项同时乘以(或除以)同一个非零数,那么得到的新的比例与原比例相等。

2. 比例的合并:当两个比例都有相同的比例项时,可以将其合并为一个比例。

五、比例的应用1. 比例的扩大和缩小:比例可以帮助我们在实际问题中进行数值的扩大和缩小计算。

比如说,地图尺寸的缩小或放大,可以使用比例进行计算。

2. 求解未知量:通过已知比例关系和已知量,可以求解未知量。

例如,知道一个图形的某条边长度与其他边的比例,可以通过比例关系求解其他边的长度。

六、练习题1. 甲园和乙园的面积比为5:8,已知甲园的面积为60平方米,求乙园的面积。

2. 小明用2个小时做完了10道题目,求他还需要多少时间才能做完20道题目?3. 一张长方形的长和宽的比是3:2,且长是12cm,求宽是多少?4. 某商品原价为80元,现以打7折出售,求现价是多少?七、总结小学数学六年级比例知识点涵盖了比例的定义、性质、表示方法、运算方法以及应用等内容。

(完整版)小学六年级_比和比例知识点梳理

(完整版)小学六年级_比和比例知识点梳理

复习课:比和比例知识点四:正比例和反比例的意义和判断方法1、正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

正比例的关系式:〜 k (一定)x2、反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。

反比例的关系式:xy k (一定)3、判断正、反比例的方法:一找二看三判断(1)找变量:分析数量关系,确定哪两种量是相关联的量。

(2)看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。

(3)判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量, 就不成比例4、正比例、反比例的区别与联系知识点五:用比例知识解决问题1、按比例分配问题(1)按比例分配应用题:把一个量按照一定的比分配成几部分,求每个部分数量各是多少的应用题叫做按比例分配应用题。

(2)解题方法一般方法:把比转化成为分数,用分数方法解答,即先求出总分数,然后求出各部分量占总量的几分之几,最后按照求一个数的几分之几多少的解题方法,分别求出各部分的量是多少归一法:把比看做分得的分数,先求出各部分的总分数,然后再用“总量总份数=平均每份的量(归一)",再用"一份的量各部分量所对应的份数”,求出各部分的量。

用比例知识解答:首先设未知量为。

再根据题中“已知比等于相对应的量的比”作为等量关系式列出含有x的比例式,再解比例求出X。

2、用正、反比例知识解答应用题的步骤(1)分析数量关系。

判断成什么比例。

(2)找等量关系。

如果成正比例,则按等比找等量关系式;如果成反比例,则按等积找等量关系式。

(3)解比例式。

设未知数为X,并代入等量关系式,得正比例式或反比例式。

(4)解比例。

(5)检验并写出答语。

精讲典型题例题1填空(1)一项工程,甲单独做要4天,乙单独做要5天完成,甲和乙的工作效率比是(): ()(2)把2米:4厘米化成最简单的整数比是(),比值是()。

小学六年级比例知识点

小学六年级比例知识点

小学六年级比例知识点在小学六年级的数学学习中,比例是一个重要的知识点。

它不仅在数学学科中有着广泛的应用,还与我们的日常生活息息相关。

接下来,让我们一起深入了解一下比例的相关知识。

一、比例的定义比例,表示两个比相等的式子。

例如,2:3 =4:6,这就是一个比例。

在比例中,组成比例的四个数,叫做比例的项。

两端的两项叫做比例的外项,中间的两项叫做比例的内项。

二、比例的基本性质比例的基本性质是:在比例中,两个外项的积等于两个内项的积。

比如在 2:3 = 4:6 这个比例中,2×6 = 3×4 = 12。

这一性质在解决比例问题时非常有用。

三、比例的判断如何判断两个比是否能组成比例呢?我们可以通过计算两个比的比值来判断。

如果两个比的比值相等,那么它们就能组成比例;如果比值不相等,就不能组成比例。

例如,判断 3:4 和 6:8 是否能组成比例。

先计算 3÷4 = 075,6÷8 =075,因为两个比的比值相等,所以 3:4 和 6:8 能组成比例。

四、解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

例如,解比例:x:2 = 3:6根据比例的基本性质,得到 6x = 2×36x = 6x = 6÷6x = 1五、正比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

例如,汽车行驶的速度一定,行驶的路程和时间成正比例。

因为路程÷时间=速度(一定)。

六、反比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

比如,长方形的面积一定,长和宽成反比例。

因为长×宽=面积(一定)。

七、比例尺比例尺是表示图上一条线段的长度与地面相应线段的实际长度之比。

小学六年级比例知识点总结

小学六年级比例知识点总结

小学六年级比例知识点总结一、比例的基本性质: 1。

2。

成反比例的量,除了量的增减外,还有两种情况:一是一种量变化,引起另一种量的相应的变化,这时前后两种量的变化的比,等于后者同前者的比;二是两种量的前后两个数相除所得的商,等于它们的和同除以它们的差,即1: 4。

3。

成正比例的量,它们的比值是一定的,一般在0和1之间,其中最大的是一。

二、比例的基本性质:两种相关联的量,一种量变化,如果另一种量也随着它变化,那么这两种量的乘积就(扩大),这两种量的乘积就(缩小)。

3。

如果两个比相除又叫两个比的比值,表示这两个比相除的结果,这种说法不确切。

4。

比例的基本性质可归纳为以下几点:(1)比例中项必须是一个数,或者是一个数的比,两个外项互为倒数。

(2)比例两个外项的积等于两个内项积的。

(3)两个外项的积等于两个内项积的。

(4)比例的基本性质两边同时乘或除以相同的数( 0除外)比值不变,这与正比例、反比例的情形不同,而且0除外。

(5)两个外项的积等于两个内项积的,叫做两个外项互为倒数。

(6)如果两个外项的积等于两个内项积的,并且一个外项是另一个外项的倒数,那么这两个外项互为倒数。

(7)把比例的基本性质和正比例、反比例的基本性质结合起来,就可以写出比例的基本性质,用字母表示为: p:q=a3。

5。

比例的基本性质两边同时乘或除以一个相同的数(零除外)比值不变,这与反比例的情形类似,但是比例的基本性质中“比例的基本性质两边同时乘或除以相同的数(零除外)比值不变”是没有意义的,因为比例的基本性质的两边仍然可能分别是不相等的量,比值也可能分别是不相等的量,都满足不变性质,故本题错误。

(8)(简)设比例中两个外项的积为x,则x:(9)由比例的基本性质,可知当一个外项是另一个外项的(p÷q),且比例的两个外项的积为a时,比例的两边相等,即两个外项的积等于两个内项积的,这时,(a÷a)成反比例。

当a成比例时,比例的两边仍然相等,即两个外项的积不等于两个内项积的,即a与a成反比例。

六年级比例解方程知识点

六年级比例解方程知识点

一、比例与比例方程的概念:1.比例:比例是两个量之间的相对关系,表示为a:b,也可以写成a/b。

例如,如果有两个数量相等的物体A和B,它们的重量分别是2千克和4千克,则A和B的比例为2:4,或者可以简化为1:22.比例方程:比例方程是指用比例关系表示的等式,一般形式为a:b=c:d,其中a、b、c、d是已知的数,其中有一个未知数,目的是求解该未知数。

二、比例解方程的方法:1. 交叉相乘法:适用于解第一类比例方程,即已知a:b=c:d,求解其中一个未知数的值。

通过交叉相乘得到等式ad=bc,然后解这个等式即可得到未知数的值。

2.逐差法:适用于解第二类比例方程,即已知a:b=c:d,求解其中一个已知数的值。

通过逐差运算把已知数的差与未知数的差相等,即得到等式a-c=b-d,然后解这个等式即可得到已知数的值。

三、比例解方程的应用:比例解方程可以应用于各种实际问题中,例如:1.用于比例问题的求解:比如已知一些物体的重量和长度成比例,求解未知物体的长度或重量。

2.用于价格计算:比如已知一些商品的价格和数量成比例,求解未知商品的价格或数量。

3.用于图形的放缩:比如已知一座房子的平面图的尺寸与实际房子的尺寸成比例,求解未知房子的尺寸。

四、例题及解法:例题1:已知a:b=3:5,求解a的值。

解法:根据交叉相乘法,得到等式5a=3b。

然后我们需要知道b的值才能解得a的值。

如果已知b的值为15,则代入等式中,得到5a=3*15=45,将等式两边同除以5,得到a=9、所以当b=15时,a的值为9例题2:已知a:b=2:3,求解b的值。

解法:根据逐差法,得到等式a-c=b-d。

已知a:b=2:3,所以a-2=b-3、然后我们需要知道a的值才能解得b的值。

如果已知a的值为4,则代入等式中,得到4-2=b-3,即2=b-3、将等式两边同加3,得到5=b。

所以当a=4时,b的值为5以上就是六年级比例解方程的知识点,希望能够帮助你更好地理解和应用比例解方程的方法。

六年级数学《比和比例》知识点

六年级数学《比和比例》知识点

六年级数学《比和比例》知识点一、比的意义和性质1、比的意义两个数相除又叫做两个数的比。

2、比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。

3、比的应用通过比可以应用一些问题。

二、比例的意义和性质1、比例的意义表示两个比相等的式子叫做比例。

2、比例的性质在一个比例中,组成比例的两个数,叫做比例的项。

在一比例里,两外项的积等于两内项的积。

这叫做比例的基本性质。

3、解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。

这个求未知项的过程,叫做解比例。

三、正比例和反比例1、成正比例的量如果两种量是相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量。

2、成反比例的量如果两种量是相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量。

3、正比例和反比例的判断方法判断两种量是否成正比例或反比例的方法:一是看这两种相关联的量中相对应的两个数的比值是否一定;二是看这两种量中相对应的两个数的积是否一定。

比的意义:两个量的关系可以用比来表示,我们通常称之为“比”。

定义:在两个量的比中,我们把数量放在前面,单位“1”放在后面,我们称之为前项,后项。

比与除法、分数的关系:比的前项相当于被除数或分子,后项相当于除数或分母,比值相当于商或分数值。

比的性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。

比例的意义:表示两个比相等的式子叫做比例。

组成比例的四个数叫做比例的项。

两外两项叫做内项,中间两项叫做外项。

如果中间的两项是两个相同的数,这样的比例叫做对称比例。

比例尺的意义:我们把图上距离和实际距离的比叫做比例尺。

我们把比例尺分为放大比例尺和缩小比例尺两种。

缩小比例尺的计算方法:已知实际距离求图上距离,根据公式计算即可;已知图上距离求实际距离根据公式计算即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

比例一、知识要点1、基本概念(1)两个数相除,又叫做这两个数的比,“∶”是比号,比号前面的数叫做比的前项,比号后面的数叫做比的后项,前项除以后项所得的商叫做比值。

比的后项不能为0。

(2)分数的基本性质∶分数的分子和分母同时乘以或者除以相同的数(0除外),分数的大小不变。

乘积是1的两个数互为倒数。

1的倒数是1,0没有倒数。

(3)商不变的规律∶在除法里,被除数和除数同时扩大或者同时缩小相同的倍(0除外),商不变。

(4)比的基本性质∶比的前项和后项同时乘以或者除以相同的数(0除外),它们的比值不变。

(5)小数的性质∶在小数的末尾添上零或者去掉零小数的大小不变。

(6)公因数只有1的两个数叫做互质数。

如(5和7,7和9,8和9)最简整数比∶比的前项和后项是互质数。

(7)比的化简∶用商不变的性质、分数的基本性质或比的基本性质来化简。

(8)比例∶①表示两个比相等的式子叫做比例。

如∶(3∶4=9∶12)。

比例有四个项,分别是两个内项和两个外项。

在3∶4=9∶12中,其中3与12叫做比例的外项,4与9叫做比例的内项。

比例的四个数均不能为0。

(9)比例的基本性质∶在一个比例中,两个外项的积等于两个内项的积。

(10)比、比例、比例尺、百分数的后面不能带单位。

误区:1、8:2=4是比例2、若5x=6y ,则x:y=5:6(11)解比例:根据比例的基本性质,如果一直比例中的任何三项,就可以求出这个比例中的另外一个未知项。

求比例中得未知项,叫做解比例。

2、正比例∶两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

(1)用字母表示∶xy = k (一定) (2)正比例关系两种相关联的量的变化规律∶同时扩大,同时缩小,比值不变。

例如∶汽车每小时行驶的速度一定,所行的路程和所用的时间是否成正比例。

路程例如∶ = 速度时间速度×时间 = 路程路程= 时间速度当速度一定时,路程和时间成正比例关系当路程一定时,速度和时间成反比例关系当时间一定时,路程和速度成正比例关系(3)判断两种量是否成正比例关系得方法:1、先判断这两种量是不是相关联得量,一种量是不是随着另外一个量得变化而变化。

2、再判断这两种相关联得量中相对应得两个数得比值(也就是商)是否一定。

若一定,则这两种量就成正比例关系,否则就不成正比例关系。

(4)正比例关系图像是一条从(0,0)出发得无限延伸得射线。

误区:1、一本数的总页数一定,看完得页数和未看完得页数成正比例关系。

2、以为y/x=k,所以y和x成正比例关系。

3、反比例∶两种相关联的量一种量变化,另种量也随着变化,如果这两种量中,相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做成反比例关系。

(1)用字母表示∶xy=k(一定)(2)反比例关系的两种相关联的量的变化规律:是一种量扩大,另一种量缩小,一种量缩而另一种量则扩大,积不变。

例如:图上距离一定,实际距离和比例尺是否成反比例。

(3)判断两种量是否成反比例关系得方法:1、1、先判断这两种量是不是相关联得量,一种量是不是随着另外一个量得变化而变化。

2、再判断这两种相关联得量中相对应得两个数得乘积是否一定。

若一定,则这两种量就成反比例关系,否则就不成反比例关系。

误区:1、六年一班得出勤人数与缺勤认输成反比例关系。

2、铺地板得面积一定是,方砖得边长和所需得块数成反比例关系。

4、正比例和反比例的比较5、比例尺(1)比例尺是一幅图的图上距离与实际距离的比。

公式为∶比例尺=图上距离∶实地距离 或 比例尺=实际距离图上距离 比例尺有两种表示方法:数值比例尺和线段比例尺。

两种种表示方法可以互换。

(2)比例尺的表现方式∶①数值比例尺∶用数字的比例式或分数式表示比例尺的大小。

例如:地图上1厘米代表实地距离500千米,可写成∶1∶50,000,000或写成∶500000001。

②线段比例尺∶在地图上画一条线段,并注明地图上1厘米所代表的实际距离。

例如:(3)根据作用不同,比例尺可以分为缩小比例尺和放大比例尺误区:1、比例尺的前项都是1。

2、在一幅地图上,10cm 的线段表示5000km 的实际距离,求这幅地图的比例尺。

10:5000=1:500(4)图形的放大与缩小(5)运用比例尺解决实际问题。

二、练习1、求比值1452∶0.72 74∶171 321∶2312、化简比751∶0.24 12.6∶0.4 201∶1513、解比例25:7=X:35 514: 35= 57:x 23:X= 12∶ 14X ∶0.75= 81∶25 X ∶154=31∶1.5 21∶51=41∶X531∶0.4=272∶X 2.8∶54=0.7∶X 25.025.1=6.1X4、填空1. 甲乙两数的比是11:9,甲数占甲、乙两数和的)()(,乙数占甲、乙两数和的)()(。

甲、乙两数的比是3:2,甲数是乙数的( )倍,乙数是甲数的)()(。

2. 某班男生人数与女生人数的比是43,女生人数与男生人数的比是( ),男生人数和女生人数的比是( )。

女生人数是总人数的比是( )。

3. 一本书,小明计划每天看72,这本书计划( )看完。

4. 一根绳长2米,把它平均剪成5段,每段长是)()(米,每段是这根绳子的)()(。

5. 王老师用180张纸订5本本子,用纸的张数和所订的本子数的比是( ),这个比的比值的意义是( )。

6. 一个正方形的周长是58米,它的面积是( )平方米。

7. 89吨大豆可榨油31吨,1吨大豆可榨油( )吨,要榨1吨油需大豆( )吨。

8. 甲数的32等于乙数的52,甲数与乙数的比是( )。

9. 把甲数的71给乙,甲、乙两数相等,甲数是乙数的)()(,甲数比乙数多)()(。

10. 甲数比乙数多41,甲数与乙数比是( )。

乙数比甲数少)()(。

11. 在6 ∶5 = 1.2中,6是比的( ),5是比的( ),1.2是比的( )。

在4 ∶7 =48 ∶84中,4和84是比例的( ),7和48是比例的( )。

12. 4 ∶5 = 24÷( )= ( ) ∶1513. 一种盐水是由盐和水按1 ∶30 的重量配制而成的。

其中,盐的重量占盐水的(—),水的重量占盐水的(—)。

图上距离3厘米表示实际距离180千米,这幅图的比例尺是( )。

一幅地图的比例尺是图上6厘米表示实际距离( )千米。

实际距离150千米在图上要画( )厘米。

14. 12的约数有( ),选择其中的四个约数,把它们组成一个比例是( )。

写出两个比值是8的比( )、( )。

15. 加工零件的总个数一定,每小时加工的零件个数的加工的时间( )比例;订数学书的本数与所需要的钱数( )比例;加工零件的总个数一定,已经加工的零件和没有加工的零件个数( )比例。

16. 如果x ÷y = 712 ×2,那么x 和y 成( )比例;如果x:4=5:y ,那么x 和y 成( )比例。

5、应用题1. 建筑工人用水泥、沙子、石子按2∶3∶5配制成96吨的混凝土,需要水泥、沙子、石子各多少吨?2. 一个县共有拖拉机550台,其中大型拖拉机台数和手扶拖拉机台数的比是 3∶8,这两种拖拉机各有多少台?3 (正)一个晒盐场100克海水可以晒出3克盐 如果一块盐田一次放入585000吨海水可以晒出多少吨盐?4 (正)一辆车去时每小时行60千米 6.5小时到达目的地 回来时每小时行78千米 多长时间能够返回出发点?5 (反) 修一条水渠每天工作6小时12天可以完成 如果工作效率不变每天工作8小时多少天可以完成任务?6 (反)学校举行团体操表演如果每列25人 要排24列 如果每列20人 要排多少列?讲义∶比和比例的应用(1)、分数形式这种形式的题目是它把比写成分数形式,这样迷惑学生。

例、六(1)班有50人其中女生是男生的2/3,男生和女生各多少人?解析∶32=2﹕3,把分数改写成比的形式,就很容易“按比例分配”了。

32=2﹕3 2+3=5500×52=20(人) 500×53=30(人) 法二∶设男生有x 人,则女生有32x 人,根据题意∶ x+32x=50 35x=50 x=3050-30=20(人)(2)、总量不明显这种题目是待分配的总量不明显,需要先求出总量。

例、甲乙丙三人共同生产100个零件,甲完成了三成,乙和丙完成的数量比是2:5,乙和丙各完成多少个? 解析∶现已知乙丙完成的数量之比,只要找到他们两个完成的总数,就很容易“按比例分配”了。

100×(1-103)=70(个) 2+5=7 70×72=20(个) 70×75=50(个) (3)、比不明显在这种形式的题目中,几个项的比不明显,只有先找到几个项的比,才能够“按比例分配”。

例、一个车间有职工70人,男职工比女职工少25%,男职工和女职工各有多少人?解析∶在本题中,只要我们找到男职工和女职工的数量之比,就很容易“按比例分配”求出男职工和女职工各有多少人了。

我们先把女职工看做单位“1”,那么,男职工就可以表示为1-25%。

1-25%=75%=43 43﹕1=3﹕4 3+4=770×73=30(人)70×74=40(人) 再如,一批零件共200个,由甲乙丙三个工人生产,甲乙两人生产的零件数之比是3﹕4,甲比丙多生产30个,他们三人各生产多少个?解析∶甲比丙多生产30个,如果丙再生产30个,则他生产的零件数就和甲的一样多。

这样,在总数上加上30个,就容易“按比例分配”了。

3+4+3=10(200+30)×103=69(个)——甲 (200+30)×104=92(个)——乙 69-30=39(个)——丙(4)、已知比的某一项的具体量,求另一项的具体量这种题型是已知两个量的比,并且知道比的前项或后项的具体量,求另一项的具体量。

例、小红读一本故事书,已读的和未读的页数的比是2﹕7,已经读了24页,还剩下多少页?解析∶已经读了24页,站2份,就可以先求出每份是多少页。

24÷2=12(页)12×7=84(页)(5)、需要合并比在一些题目中,已知几个量的某几项的比,但这些比是分离的,则需要把几个比合并为一个比。

例、一段公路长340千米,由甲、乙、丙三个工程队修,甲工程队与乙工程队完成的长度之比是2﹕3,甲工程队完成的是丙的74,甲、乙、丙三个工程队各完成多少千米? 解析∶在本题中,我们知道甲、乙两个工程队完成的长度之比,同时知道甲、丙两个工程队完成的长度之比,如果把这两个比合并为一个比,就很容易“按比例分配”了。

相关文档
最新文档