高斯证明正十七边形与拓扑学
正十七边形作图

1. 如圖, 以 O 為圓心作圓,過 O 作直徑 AC; 2. 過 O 作 AC 的垂線,交圓於 B; 3. 在 OB、OC 上 分別 截 取 I、D 使 得 OI = 1 1 OA, OD= OA; 4 16 4. 以 D 為 圓 心, DI 為 半 徑 作 圓,分 別 交 OA、OC 於 W1 , W2 ; 5. 以 W1 為 圓 心, W1 I 為 半 徑 作 弧,交 W1 A 於 E1 ; 6. 以 W2 為 圓 心, W2 I 為 半 徑 作 弧,交 W1 A 於 E3 ; P5
m
4. 在邊數不超過 100 的正多邊形中,僅用尺規 作 圖 的 有 24 個 。 它 們 分別 是: 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 51, 60, 64, 68, 80, 85, 96 邊形。 1
4.3
+
B P4
+ +
P3 P2
+
P7
+
P1 K P8 C P9
+ + + + + + + P11 + P12 + + +
I
+
N5 F
+
O E
N3
+
A
P16
P10
P15
+
P14
P13
3
4.5
正 十 七 邊 形 作 圖 :方法(三 )
1. 如圖, 以 O 為圓心作圓,作兩條彼此正交的直徑 AB 和 CD; 2. 過 A 與 D 分別作切線交於 S; 1 3. 在 AS 上取點 E 使得 AE = AS ; 4 4. 以 E 為圓心, OE 為半徑,作弧交 AS 於 F, F’; 5. 以 F 為圓心, OF 為半徑,作弧交 AS 於 H; 6. 以 F’ 為圓心, OF’ 為半徑,作弧交 AS 於 H’; 7. 過 H 作 AH 的垂線交 OC 的延線於 T; 8. 延長 HT 至 Q, 使得 TQ = AH’; 9. 以 BQ 為直徑,作圓交 CT 於 M; 10. 作 OM 的中垂線, 交圓於 P; 11. 以 P 為圓心, PC 為半徑,在圓周上靠 B 的一邊截取 P1 點; 12. 從 P1 出發在圓周上以 P P1 為半徑截取 P2 , P3 , · · · , P15 作為正十七邊形的各頂點。 B
高斯与正十七边形

高斯与正十七边形数学就象一棵美丽的星球,他那博大精深、简明透彻的数学美就是他的引力场。
许许多多人类的精英被他的引力所吸引,投入他的怀抱为他献出了自己毕生的精力。
被誉为“数学王子”的伟大数学家高斯就是其中之一。
高斯是个数学天才,幼年时巧妙地计算1+2+3+…+100为101×50=5050的故事几乎尽人皆知。
其实,学生日期的高斯不仅数学成绩优异,而且各科成绩都名列前茅。
小学毕业后,高斯考了文科学校。
由于他古典文学成绩突出,入学后直接上了二年级。
两年以后高斯又升入了高中哲学班。
15岁时,高斯在一位公爵的资助下上了大学-卡罗琳学院。
在那里,他掌握了希腊文、拉丁文、法文、英文有丹麦文,又学会了代数、几何、微积分。
语言学和数学是他最喜爱的两门课程。
18岁时,高斯进入了哥廷根大学深造。
这时,高斯面临着一个非常痛苦的选择:是把语言学作为自己的终生事业?还是把数学作为自己的终生事业?两棵下不了决心进行最后的选择。
后来,一次数学研究上的突破改变了两个引力场的均衡。
高斯终于下定决心,飞向了数学之星。
事情是这样的,尺规作图是几何学的重要内容之一,从古希腊开始,人们一直认为正多边形是最美的图形,因此,用尺规作图法能够作出哪些正多边形,历来就是一个极具魅力的问题。
到高斯的时代,人们已经解决了边数是n 23•、n 24•、n 25•、n 253••(=n 0,1,2,3……)的正多边形的尺规作图问题。
但是,还没有人能作出正7边形、正11边形、正17边形等等。
很多人认为,当边数是大于5的素数时,那样的正多边形是不可以用尺规作图完成的。
高斯一直对正多边形尺规作图问题非常着迷。
经过持久地,如醉如痴的思考与画图,于1796年3月30日,19岁的高斯出人意料地作出了正17边形。
并且,他把正多边形作图问题与高次方程联系起来,彻底解决了哪些正多边形能作出,哪些正多边形不能作出。
他证明了一切边数形如122+t(=t 0,1,2,3,……)的正多边形都只可以作出,而边数为7、11、14,……的正多边形是作不出的。
正17边形的高斯做法

正17边形的高斯做法做正17边形等于求方程x^17-1=0的根即(x-1)(x^16+x^15+.....+x+1)=f(x)(x-1)=0的根注意f(x)=0有16个根e1~e16,令其中的单位原根为e1并令ei=e^i根据韦达定理,16个根的和为x^15项的系数乘-1第一步,把16个根分成两组∑1和∑2∑1=(e1+e2+e4+e8)+(e1+e2+e4+e8)∑2=(e3+e5+e6+e7)+(e3+e5+e6+e7)(这里用下划线表示共扼根)注意∑1+∑2=-1(韦达定理)而∑1*∑2=-4(有兴趣的朋友可以验算一下)于是根据韦达定理,∑1和∑2分别是方程x^2+x-4=0的根,可解出;第二步,把∑1分成两组,∑11=(e1+e8)+(e1+e8)∑12=(e2+e4)+(e2+e4)注意∑11+∑12=∑1而∑11*∑12=∑2(有兴趣的朋友可以验算一下)因为∑1和∑2在前面已经解出所以∑11、∑12可以从方程x^2-(∑1)x+(∑2)=0解出(韦达定理)下面的步骤相似,可继续把∑11分解为∑111=e1+e1 和∑112=e8+e8∑111+∑112=∑11∑111*∑112=∑12同样可用韦达定理解出;最后就简单了∑111=e1+e1 而e1*e1 =1所以就可利用韦达定理解出e1来了!将你要画的正17边形的边长为d,它的外接圆的半径为R。
则d和R的关系是Sin(360度/(17*2))=d/(2R)正17边形的边对应的圆心角度数为360/17,正17边形的一条边和其两个端点与圆心连接的半径成为一个等边三角形;然后从圆心作出一条垂线到边上,就能得出一个直角三角形,圆心的那个角是圆心角的一半,即360度/(17*2),对边是d/2,斜边是R,所以得出Sin(360度/(17*2))=d/(2R)最后,根据该公式,如果你想画出一个边长为1厘米的正17边形,则把d=1代入公式,得出R的值。
解读数学王子高斯正十七边形的作法-上

解读“数学王子”高斯正十七边形的作法(上)江苏省泰州市朱庄中学曹开清 225300一、高斯的传奇故事高斯(Carl Friedrich Gauss 1777.4.30~1855.2.23),德国数学家、物理学家、天文学家。
有一天,年幼的高斯在一旁看著作水泥工厂工头的父亲计算工人们的周薪。
父亲算了好一会儿,终于将结果算出来了。
可是万万没想到,他身边传来幼嫩的童音说:“爸爸,你算错了,总数应该是……”父亲感到很惊异,赶忙再算一遍,结果证实高斯的答案是对的。
这时的高斯只有3岁!高斯上小学了,教他们数学的老师布特勒(Buttner)是一个态度恶劣的人,他讲课时从不考虑学生的接受能力,有时还用鞭子惩罚学生。
有一天,布德勒让全班学生计算1+2+3+4+5+……+98+99+100=?的总和,并且威胁说:“谁算不出来,就不准回家吃饭!”布德勒说完,就坐在一旁独自看起小说来,因为他认为,做这样一道题目是需要些时间的。
小朋友们开始计算:“1 +2 =3,3+3=6,6+4=10,……”数越来越大,计算越来越困难。
但是不久,高斯就拿着写着解答的小石板走到布德勒的身边。
高斯说:“老师,我做完了,你看对不对?“做完了?这么快就做完了?肯定是胡乱做的!”布德勒连头都没抬,挥挥手说:“错了,错了!回去再算!”高斯站着不走,把小石板往前伸了伸说:“我这个答案是对的。
”布德勒抬头一看,大吃一惊。
小石板上写着5050,一点也没有错!高斯的算法是1 +2 +3+……+98+99+100100+99+98+……+3+2+1101+101+101+……+101+101+101=101×100=1010010100÷2=5050高斯并不知道,他用的这种方法,其实就是古代数学家经过长期努力才找出来的求等差数列和的方法,那时他才八岁!1796年的一天,德国哥廷根大学。
高斯吃完晚饭,开始做导师给他单独布置的三道数学题。
前两道题他不费吹灰之力就做了出来了。
高斯仅用没有刻度的尺子与圆规便构造出了正17边形

高斯仅用没有刻度的尺子与圆规便构造出了正17边形解法一:将你要画的正17边形的边长为d,它的外接圆的半径为R。
则d和R的关系是Sin(360度/(17*2))=d/(2R)正17边形的边对应的圆心角度数为360/17,正17边形的一条边和其两个端点与圆心连接的半径成为一个等边三角形;然后从圆心作出一条垂线到边上,就能得出一个直角三角形,圆心的那个角是圆心角的一半,即360度/(17*2),对边是d/2,斜边是R,所以得出Sin(360度/(17*2))=d/(2R)最后,根据该公式,如果你想画出一个边长为1厘米的正17边形,则把d=1代入公式,得出R的值。
1、先画一个R半径的圆;2、用圆规支脚支在圆周的一个点上,取d为半径,交圆周于一点,然后把这两点连起来,就是17边形的一条边了;3、如此类推,把17条边画完就是一个正17边形了解法二:在与圆O的直径AB垂直的半径OC上,作出OC的中点D,在OB上作一点E,使OE等于半径的1/8;以E为圆心,ED长为半径作弧,与OA、OB分别交于F、G;以F为圆心,FD 长为半径作弧,交OA延长线于H,以G为圆心,GD长为半径作弧,交OA于I;作OB中点J,以线段IJ为直径作圆,交OC于K;过K作AB的平行线,与以线段OH为直径的圆交于远端L,过L作OC的平行线,与圆O交于M。
弧AM就是圆O的1/17,依次连结各点就行了解法三:将你要画的正17边形的边长为d,它的外接圆的半径为R。
则d和R的关系是Sin(360度/(17*2))=d/(2R) 正17边形的边对应的圆心角度数为360/17,正17边形的一条边和其两个端点与圆心连接的半径成为一个等边三角形;然后从圆心作出一条垂线到边上,就能得出一个直角三角形,圆心的那个角是圆心角的一半,即360度/(17*2),对边是d/2,斜边是R,所以得出Sin(360度/(17*2))=d/(2R) 最后,根据该公式,如果你想画出一个边长为1厘米的正17边形,则把d=1代入公式,得出R的值。
解读“数学王子”高斯正十七边形的作法(上)

解读“数学王子”高斯正十七边形的作法江苏省泰州市朱庄中学曹开清225300一、高斯的传奇故事高斯(Carl Friedrich Gauss 1777.4.30~1855.2.23),德国数学家、物理学家、天文学家。
有一天,年幼的高斯在一旁看著作水泥工厂工头的父亲计算工人们的周薪。
父亲算了好一会儿,终于将结果算出来了。
可是万万没想到,他身边传来幼嫩的童音说:“爸爸,你算错了,总数应该是……”父亲感到很惊异,赶忙再算一遍,结果证实高斯的答案是对的。
这时的高斯只有3岁!高斯上小学了,教他们数学的老师布特勒(Buttner)是一个态度恶劣的人,他讲课时从不考虑学生的接受能力,有时还用鞭子惩罚学生。
有一天,布德勒让全班学生计算1+2+3+4+5+……+98+99+100=?的总和,并且威胁说:“谁算不出来,就不准回家吃饭!”布德勒说完,就坐在一旁独自看起小说来,因为他认为,做这样一道题目是需要些时间的。
小朋友们开始计算:“1 + 2 =3,3+3=6,6+4=10,……”数越来越大,计算越来越困难。
但是不久,高斯就拿着写着解答的小石板走到布德勒的身边。
高斯说:“老师,我做完了,你看对不对?“做完了?这么快就做完了?肯定是胡乱做的!”布德勒连头都没抬,挥挥手说:“错了,错了!回去再算!”高斯站着不走,把小石板往前伸了伸说:“我这个答案是对的。
”布德勒抬头一看,大吃一惊。
小石板上写着5050,一点也没有错!高斯的算法是1 +2 +3+……+98+99+100100+99+98+……+3+2+1101+101+101+……+101+101+101=101×100=1010010100÷2=5050高斯并不知道,他用的这种方法,其实就是古代数学家经过长期努力才找出来的求等差数列和的方法,那时他才八岁!1796年的一天,德国哥廷根大学。
高斯吃完晚饭,开始做导师给他单独布置的三道数学题。
前两道题他不费吹灰之力就做了出来了。
正十七边形的画法及证明

正十七边形的画法及证明1796年的一天,德国哥廷根大学,一个很有数学天赋的19岁青年吃完晚饭,开始做导师单独布置给他的每天例行的三道数学题。
前两道题在两个小时内就顺利完成了。
第三道题写在另一张小纸条上:要求只用圆规和一把没有刻度的直尺,画出一个正17边形。
他感到非常吃力。
时间一分一秒的过去了,第三道题竟毫无进展。
这位青年绞尽脑汁,但他发现,自己学过的所有数学知识似乎对解开这道题都没有任何帮助。
困难反而激起了他的斗志:我一定要把它做出来!他拿起圆规和直尺,他一边思索一边在纸上画着,尝试着用一些超常规的思路去寻求答案。
当窗口露出曙光时,青年长舒了一口气,他终于完成了这道难题。
见到导师时,青年有些内疚和自责。
他对导师说:“您给我布置的第三道题,我竟然做了整整一个通宵,我辜负了您对我的栽培……”导师接过学生的作业一看,当即惊呆了。
他用颤抖的声音对青年说:“这是你自己做出来的吗?”青年有些疑惑地看着导师,回答道:“是我做的。
但是,我花了整整一个通宵。
”导师请他坐下,取出圆规和直尺,在书桌上铺开纸,让他当着自己的面再做出一个正17边形。
青年很快做出了一个正17边形。
导师激动地对他说:“你知不知道?你解开了一桩有两千多年历史的数学悬案!阿基米德没有解决,牛顿也没有解决,你竟然一个晚上就解出来了。
你是一个真正的天才!” 原来,导师也一直想解开这道难题。
那天,他是因为失误,才将写有这道题目的纸条交给了学生。
每当这位青年回忆起这一幕时,总是说:“如果有人告诉我,这是一道有两千多年历史的数学难题,我可能永远也没有信心将它解出来。
”这位青年就是数学王子高斯。
高斯用代数的方法解决的,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。
关于正十七边形的高斯画法有一个定理在这里要用到的:若长为|a|,|b|的线段可以用几何方法做出来,那么长为|c|的线段也能用几何方法做出的,其中c是方程x^2+ax+b=0的实根。
正十七边形尺规作图与详解.docx

实用标准文档解读“数学王子”高斯正十七边形的作法一、高斯的传奇故事高斯 (Carl Friedrich Gauss1777.4.30~1855.2.23),德国数学家、物理学家、天文学家。
有一天,年幼的高斯在一旁看著作水泥工厂工的父算工人的周薪。
父算了好一会儿,于将果算出来了。
可是万万没想到,他身来幼嫩的童音:“爸爸,你算了,数是⋯⋯”父感到很惊异,赶忙再算一遍,果高斯的答案是的。
的高斯只有 3 !高斯上小学了,教他数学的老布特勒(Buttner)是一个度劣的人,他从不考学生的接受能力,有用鞭子学生。
有一天,布德勒全班学生算1+2+3+4+5+⋯⋯+98+99+100=?的和,并且威:“ 算不出来,就不准回家吃!”布德勒完,就坐在一旁独自看起小来,因他,做一道目是需要些的。
小朋友开始算:“ 1 + 2=3,3+3=6,6+4=10,⋯⋯”数越来越大,算越来越困。
但是不久,高斯就拿着写着解答的小石板走到布德勒的身。
高斯:“老,我做完了,你看不?“做完了?么快就做完了?肯定是胡乱做的!”布德勒都没抬,手:“ 了,了!回去再算!”高斯站着不走,把小石板往前伸了伸:“我个答案是的。
”布德勒抬一看,大吃一惊。
小石板上写着5050 ,一点也没有!高斯的算法是1+ 2 + 3+⋯⋯+ 98 +99 + 100100+99 +98+⋯⋯+3+ 2+1101+ 101 + 101 +⋯⋯+101 +101 + 101 =101 ×100 =1010010100 ÷2= 5050高斯并不知道,他用的种方法,其就是古代数学家期努力才找出来的求等差数列和的方法,那他才八!1796 年的一天,德国哥廷根大学。
高斯吃完晚,开始做他独布置的三道数学。
前两道他不吹灰之力就做了出来了。
第三道写在另一小条上:要求只用和没有刻度的直尺,作出一个正十七形。
道把他住了——所学的数学知竟然解出道没有任何帮助。
一分一秒的去了,第三道竟毫无展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高斯证明正十七边形与拓扑学
高斯是一位伟大的数学家,他在数学领域做出了许多重要的贡献。
其中,他以拓扑学的角度证明了正十七边形的构造问题,这是一项非常有意义的研究。
在本文中,我们将探讨高斯是如何运用拓扑学来解决正十七边形的构造问题的。
让我们来了解一下正十七边形的构造问题。
正十七边形是一个具有十七个边且所有边相等的多边形。
在古代,人们一直在寻找一种方法来构造正十七边形,但一直没有找到。
这个问题困扰了数学家们很长时间,直到高斯的出现。
高斯通过拓扑学的研究,发现了一种巧妙的方法来解决正十七边形的构造问题。
他首先将正十七边形与一个更简单的多边形进行比较,这个多边形是正十七边形的一个子集。
通过研究这个更简单的多边形,高斯发现了一种将正十七边形分割成更小部分的方法。
高斯的方法是基于拓扑学的原理。
他将正十七边形视为一个拓扑空间,并通过分割这个空间来解决构造问题。
他发现,通过将正十七边形分割成一系列更小的多边形,可以逐步逼近所需的形状。
这种分割方法不仅使问题变得更加简单,还能够保持所需的形状的准确性。
通过高斯的方法,我们可以将正十七边形分割成多个小部分,并逐步逼近所需的形状。
这种分割方法是基于拓扑学的原理,可以确保
最终构造出的正十七边形的准确性。
高斯的研究为解决正十七边形的构造问题提供了一种新的思路,也为拓扑学的发展做出了重要贡献。
通过高斯的研究,我们可以看到拓扑学在解决几何问题中的重要性。
拓扑学不仅可以帮助我们理解空间的结构,还可以提供一种新的思维方式来解决复杂的几何问题。
高斯的工作不仅为正十七边形的构造问题提供了解决方案,还为拓扑学的研究开辟了新的方向。
高斯以拓扑学的角度证明了正十七边形的构造问题,通过分割和逼近的方法解决了这个复杂的几何问题。
他的研究不仅为解决正十七边形的构造问题提供了新的思路,还为拓扑学的发展做出了重要贡献。
通过高斯的工作,我们可以看到拓扑学在解决几何问题中的重要性,以及它对数学发展的深远影响。