epdm薄膜橡胶包覆材料的粘-超弹本构模型研究
第三章粘弹性流体的本构方程

第三章非线性粘弹流体的本构方程1.本构方程概念本构方程(constitutive equation),又称状态方程——描述一大类材料所遵循的与材料结构属性相关的力学响应规律的方程。
不同材料以不同本构方程表现其最基本的物性,对高分子材料流变学来讲,寻求能够正确描述高分子液体非线性粘弹响应规律的本构方程无疑为其最重要的中心任务,这也是建立高分子材料流变学理论的基础。
两种。
唯象性方法,一般不追求材料的微观结构,而是强调实验事实,现象性地推广流体力学、弹性力学、高分子物理学中关于线性粘弹性本构方程的研究结果,直接给出描写非线性粘弹流体应力、应变、应变率间的关系。
以本构方程中的参数,如粘度、模量、松弛时间等,表征材料的特性。
分子论方法,重在建立能够描述高分子材料大分子链流动的正确模型,研究微观结构对材料流动性的影响。
采用热力学和统计力学方法,将宏观流变性质与分子结构参数(如分子量,分子量分布,链段结构参数等)联系起来。
为此首先提出能够描述大分子链运动的正确模型是问题关键。
根据研究对象不同,象性方法和分子论方法虽然出发点不同,逻辑推理的思路不尽相同,而最终的结论却十分接近,表明这是一个正确的科学的研究基础。
目前关于高分子材料,特别浓厚体系本构方程的研究仍十分活跃。
同时,大量的实验积累着越来越多的数据,它们是检验本构方程优劣的最重要标志。
从形式上分,速率型本构方程,方程中包含应力张量或形变速率张量的时间微商,或同时包含这两个微商。
积分型本构方程,利用迭加原理,把应力表示成应变历史上的积分,或者用一系列松弛时间连续分布的模型的迭加来描述材料的非线性粘弹性。
积分又分为单重积分或多重积分。
判断一个本构方程的优劣主要考察:1)方程的立论是否科学合理,论据是否充分,结论是否简单明了。
2)一个好的理论,不仅能正确描写已知的实验事实,还应能预言至今未知,但可能发生的事实。
3)有承前启后的功能。
例如我们提出一个描写非线性粘弹流体的本构方程,当条件简化时,它应能还原为描写线性粘弹流体的本构关系。
基于ABAQUS的橡胶材料粘弹性特性仿真

基于ABAQUS的橡胶材料粘弹性特性仿真王永冠1,黄友剑1,卜继玲21.株洲时代新材科技股份有限公司技术中心,株洲,412007.2.西南交通大学机械工程学院,成都,610031摘要:本文通过一个橡胶关节产品的径向载荷作用下材料及产品力学性能的变化为例,研究橡胶材料的粘弹性对其及产品性能的影响。
分析过程充分说明Abaqus是研究橡胶粘弹性能的强有力的有限元分析工具。
关键词:橡胶材料,ABAQUS,粘弹性,滞回曲线1 引言自然界有两类众所周知的材料:弹性固体和粘性流体。
弹性固体具有确定的构形,在静载作用下发生的变形与时间无关;粘性流体没有确定的形状,在外力作用下形变随时间而发展。
而有一些材料常同时具有弹性和粘性两种不同机理的变形,综合体现弹性固体和粘性流体的特性,材料的这种性质称为粘弹性。
这类材料受力后的变形过程是一个延迟过程。
因此,这类材料的应力不仅与当时的应变有关,而且与应变的全部变化过程有关,材料应力应变意义对应的关系已不存在,应以应变关系与时间有关,这类材料称为粘弹性材料[1]。
2 材料粘弹性力学行为物质粘弹性的宏观表象描述,着重于物质的力学行为与时间、频率和温度的相关性。
本节简要阐述物质的粘弹性性能:准静态条件下物体的应力应变随时间而变化的基本现象,即蠕变和应力松弛;谐变作用时粘弹性性能的频率相关性;粘弹性行为的温度依赖性。
本文通过一个橡胶关节产品径向加载下的计算,且考虑橡胶材料的粘弹性属性,来全面系统地研究橡胶产品的各项力学性能。
有限元模型及材料属性定义见图1所示。
图1 橡胶关节的有限元模型及材料属性定义考虑橡胶材料的粘弹性性能,在定义超弹性属性后,还需在材料属性定义中继续添加材料的粘弹性参数或滞回参数。
ABAQUS提供了多种粘弹性或滞回参数的输入方式,最常见的有多项系数拟合、松弛及蠕变的实验数据输入两种方式[2]。
本文采用前者对橡胶材料粘弹性属性进行描述。
同时还可以输入时间温度参数,以描述橡胶材料粘弹性的时温效应[2]。
EPDM包覆层材料静动态压缩实验研究

EPDM包覆层材料静动态压缩实验研究蒋晶;周长省;赵磊;陈雄;许进升【摘要】为获得EPDM材料不同应变率下的力学特性,文中利用万能试验机与分离式霍普金森压杆(SHPB)装置完成静态和动态压缩实验,并对动态实验数据进行有效性检验.基于所得不同应变率下的应力应变曲线,发现EPDM是一种率敏感材料,产生相同变形时所对应的应力随应变率的增加而增加,但当达到一定高应变率时,应变率敏感性会减弱;且材料在大应变时会出现硬化现象,应力增幅变大.【期刊名称】《弹箭与制导学报》【年(卷),期】2015(035)005【总页数】4页(P95-98)【关键词】EPDM;分离式霍普金森压杆(SHPB);压缩;高应变率;率敏感【作者】蒋晶;周长省;赵磊;陈雄;许进升【作者单位】南京理工大学机械工程学院,南京210094;南京理工大学机械工程学院,南京210094;国营9234厂,合肥230000;南京理工大学机械工程学院,南京210094;南京理工大学机械工程学院,南京210094【正文语种】中文【中图分类】V45EPDM橡胶材料因其密度低、热分解温度高、吸热值大、耐老化且力学性能优异等特点[1-2],是固体火箭发动机包覆层的理想材料。
随着固体火箭发动机工作压强的提高以及高能推进剂的推广与应用,抗高过载冲击火箭武器的发展,必须对绝热包覆层的性能有更全面的认知,固体火箭发动机才能得到更进一步的发展与突破。
EPDM材料作为固体火箭发动机的一部分,在其装配、运输、存储以及点火发射时会受到不同载荷作用。
王明等[3]研究了三元乙丙橡胶/聚苯乙烯(EPDM/PS)交替多层复合材料的拉伸断裂性能;王勇等[4]研究了硫化体系、填充体系、增塑体系和硫化时间对EPDM高温下压缩永久变形的影响。
而为能较全面地获得EPDM材料的力学特性,研究EPDM材料不同应变率下的压缩力学行为,文中利用万能试验机以及分离式霍普金森压杆(SHPB),获得EPDM材料高低应变率下的压缩力学曲线。
胶黏剂超弹性理论与试验力学及ABAQUS仿真案例总结

胶黏剂超弹性理论及ABAQUS仿真案例总结摘要:一部胶黏剂固化后呈现的是橡胶这种超弹性状态,对齐固化后的性能研究与计算基本等于橡胶超弹性研究。
框架:一、超弹性材料本构模型理论二、橡胶材料力学行为的实验研究三、基于ABAQUS橡胶材料的工程实例仿真与实验验证方法四、基于COMSOL胶黏剂超弹性仿真案例一、超弹性材料本构模型理论对于固化后呈现软而韧的胶黏剂,基本可等同于橡胶超弹性材料。
二、橡胶材料力学行为的实验研究2.1引言试验设计与研究是材料设计的关键,主要研究各类配合剂与材料性能,诸如力学性能、功能性能、耐久性及加工性能等之间的相关性,进而从中解析材料组分的品种、类型和用量对橡胶材料性能的影响规律。
本章主要是通过对密封件橡胶试样EP7001和EP7118F进行单向拉伸的准静态力学实验,研究分析橡胶的各种力学行为,主要包括橡胶的Mullins效应及其能量损耗、橡胶材料的应力应变行为和起始模量、橡胶材料力学行为的调制应变相关性、橡胶材料变形行为的率相关性以及橡胶材料应力行为的应变历史相关性等。
另外,还特别针对9种不同体积含量的N330炭黑填充天然橡胶材料进行了单向拉伸的准静态力学实验,研究分析炭黑的填充对硫化橡胶相关力学行为的影响规律。
2.2橡胶材料试样的制备及实验准备在试验方法中,拉伸试验是评价力学、机械特性最基本的方法,所以在各国标准中都放在首要位置。
拉伸试验时,采用某橡胶制品公司生产的EP7001橡胶、EP7118F橡胶以及天然(NR)橡胶为原材料,所制备试样的形状与尺寸满足国家标准《硫化橡胶或热塑性橡胶拉伸应力应变性能的测定》(GB/T528-2009)中“1型”哑铃状试样的要求,试样狭窄部分的标准厚度为2mm。
试验在美特斯工业系统(中国)有限公司生产的CMT4104微机控制电子万能试验机上进行,如图2-1所示,其力值和位移精度均为0.5级,大变形传感器选用25mm标距,夹具选用偏心轮夹具PA103A,此夹具特别适用于橡胶材料的拉伸试验,随着拉伸力的增大,夹具钳口对试样的夹持也越来越紧,避免了试样夹持部分的打滑。
短纤维增强EPDM包覆薄膜超弹性本构模型

† (Tactical
Abstract Short fiber reinforced EPDM inhibitor film is used for a new winding coating process, which is mainly to solve the reliable problem in free loading solid rocket grains with complicated structure. Based on fiber reinforced continuum mechanics theory, a simple anisotropic hyperelastic constitutive model is proposed to describe their large deformation, highly non-linear and strongly anisotorpic mechanical behaviors in the work process of solid rocket motor. The unitvolume strain energy function is decomposed into two parts: representing the strain energy from isotropic rubber matrix and anisotropic fiber tensile deformation. By introducing fiber direction to modify fiber strain energy, the specific method of obtaining model parameters by uniaxial and off-axis tension data is presented.Results show that it is highly suitable to characterize their anisotropic mechanical behaviors in the fiber direction from 0◦ to 45◦ and the error is less than 5% compared with experimental data. It is concluded that the proposed model is highly accurate and easy to achieve numerical development, which can provide theoretical basis for the structural integrity analysis of solid rocket motor. Key words EPDM, inhibitor, anisotropic, hyperelastic, constitutive model
EPDM_PP共混型热塑性弹性体的研究现状_于莉

EPDM/PP共混型热塑性弹性体的研究现状于 莉1,汪文俊2,程新建1,王艳飞1,肖卫东1(1.湖北大学化学与材料科学学院,湖北武汉 430062;2.华中科技大学生命科学与技术学院,湖北武汉 430062) 摘要:综述EPDM/PP共混型热塑性弹性体的制备、微观相态结构、性能影响因素以及在汽车行业、建筑业、密封制品、减震制品及医疗器械等领域的应用。
指出EPDM/PP共混型热塑性弹性体要获得进一步的应用,尚需在生产设备、化学改性、控制PP的降解、新型EPDM/PP的阻燃剂方面作更深入的研究。
关键词:EPDM;PP;共混型热塑性弹性体;动态硫化 中图分类号:TQ330.4;TQ32511+4;TQ33412 文献标识码:B 文章编号:10002890X(2003)1020625205 PP是一种重要的高分子材料,其物理性能优异、耐应力开裂性能和耐磨性好,并有较好的耐热性、优良的化学稳定性和电性能以及优异的加工性能,因此得到广泛应用。
EPDM是一种综合性能较好的橡胶,它的分子链上没有不饱和键,因此与其它橡胶相比,具有更好的耐老化、耐介质性能和更优异的物理性能,但其强度不高。
将PP与EPDM按一定比例共混,所得的共混物兼具二者优点,保持了EPDM的高弹性,克服了EPDM塑炼时的粘辊性,有很好的抗疲劳性能、良好的耐磨性能和耐介质性能、很高的撕裂强度以及优异的耐臭氧和耐候性能。
热塑性弹性体(TPE)是一种兼有塑料和橡胶特性,在常温下显示橡胶弹性,在高温下又能塑化成型的高分子材料,因此又称作第3代橡胶。
TPE大致可分为嵌段共聚物和机械共聚物两大类,尽管化学合成的嵌段共聚TPE有许多优点,但与传统的硫化胶相比,存在热稳定性差、压缩变形大、密度大及价格昂贵等缺点,使其应用受到限制。
而共混型热塑性弹性体除具有嵌段共聚TPE基本特征外,还具有制备工艺简单、设备投资少、成本低及性能可调范围宽等优点[1]。
EPDM/PP是开发最早的、比较成熟的一种TPE,国内在20世纪80年代初开始该体系的研究,迄今方兴未艾。
橡胶材料超弹性本构模型的简化标定方法-本构关系模型

橡胶材料超弹性本构模型的简化标定方法本构关系模型-论文网论文摘要:不同于线弹性材料,橡胶这种超弹性材料的本构模型需要试错来确定合适的模型。
本文提出用杆单元的一维模型可以达到块体单元的三维全模型的效果,从而极大缩短试错过程。
论文关键词:超弹性,本构关系模型,标定0、背景橡胶隔振器在舰船上的使用日益广泛。
为了满足不同的功能配置,需要设计不同的橡胶隔振器。
在橡胶隔振器设计过程中,需要对不同设计方案的动力学特性进行评估。
通常采用的试验方法,不仅周期长,而且花费多。
因此,对隔振器进行仿真评估就有了实际的需求。
进行仿真分析必须知道材料的本构模型。
橡胶隔振器通常由金属支撑和橡胶块体组成。
对于金属材料,其力学性能比较简单,通常只有弹性模量和泊松比两个材料参数;对于橡胶这种超弹性(hyperelastic)材料而言,其应力应变关系通常由一条曲线来描述,该曲线由不同形式的本构模型来进行数学表达(如多项式)。
选择合适的本构模型是仿真分析能否成功的关键之一。
通常作法是,根据实验数据通过选取不同模型进行试算来实现,这一试算过程本文称之为标定。
由于不同的实验数据曲线和不同的数学模型之间并不存在明确的对应关系,标定过程可能需要多次的反复试错。
这是一个令人生厌的过程。
因此,尽可能的简化标定过程对于提高工作效率具有显著的意义。
本文以ABAQUS为平台对此进行探讨,以供同行参考。
1、橡胶材料的本构模型在主流的商业有限元软件中,橡胶的本构模型都有涉及。
以本文采用的ABAQUS为例,其橡胶模型主要包括多项式和非多项式两大类,和七个具体命名的模型(Arruda-Boyce,Marlow,Mooney-Rivlin,NeoHooke,Ogden,VanderWaals和Yeoh)。
其中Mooney-Rivlin模型、NeoHooke模型和Yeoh模型是取多项式模型取某个特定项数时的特例。
它们的关系见表1。
表1ABAQUS超弹性材料模型在上述模型中常用的有多项式模型和Ogden模型。
动态硫化三元乙丙橡胶聚丙烯热塑性弹性体的研究进展

动态硫化三元乙丙橡胶/聚丙烯热塑性弹性体的研究进展汤 琦,孙 豪,宗成中(青岛科技大学高分子科学与工程学院,山东青岛 266042)摘要:介绍动态硫化三元乙丙橡胶(EPDM)/聚丙烯(PP)热塑性弹性体(TPV)的发展历程、配合体系、动态硫化工艺、应用领域和发展前景。
相较于传统橡胶,动态硫化TPV作为新一代橡胶产品的典型代表,无论在生产工艺还是性能上均具有较大优势,且TPV对环境的影响较小,符合绿色环保理念。
未来EPDM/ PP TPV的研究方向将主要集中在环保、低挥发性有机物、高性能化和多功能化等方面。
关键词:三元乙丙橡胶;聚丙烯;动态硫化;热塑性弹性体;配合体系;工艺;研究进展中图分类号:TQ334 文章编号:2095-5448(2021)01-0005-06文献标志码:A DOI:10.12137/j.issn.2095-5448.2021.01.0005动态硫化热塑性弹性体(TPV)是一类特殊的TPV,是橡胶和树脂在熔融共混时,橡胶相被硫化破碎为岛相分散在连续相(树脂)中而形成的[1]。
三元乙丙橡胶(EPDM)/聚丙烯(PP)TPV是开发最早、技术比较成熟的一种TPV。
EPDM具有合成工艺简单、耐候性能和耐臭氧性能好等特点,但其硫化胶不易回收利用;PP是一种通用型塑料,具有加工性能、耐腐蚀性能、耐热性能和耐磨性能好等优点,但弹性较差。
通过动态硫化制得的EPDM/PP TPV不仅可以弥补EPDM的不足,同时在原料、性能以及产品价格方面具有竞争优势[2-3]。
本工作根据近年来国内外对EPDM/PP TPV的研究情况,详细介绍其发展历程、配合体系、动态硫化工艺、应用领域以及发展前景。
1 发展历程从简单机械共混到动态部分硫化共混,又从动态部分硫化共混到动态完全硫化共混,EPDM/ PP TPV的发展经历了几代研究者的研究,其发展历程如下。
第1阶段:简单机械共混。
通过物理共混的方法将橡胶和塑料在一定的设备中进行简单混合,得到的共混物的弹性、物理性能以及耐介质性能较差,橡胶相未发生交联反应[4]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
epdm薄膜橡胶包覆材料的粘-超弹本构模型研究
摘要:本研究旨在分析epdm薄膜橡胶包覆材料的粘-超
弹性本构模型。
为此,实验研究中采用了拉伸、压缩、剪切和滚动测试。
研究结果表明,在拉伸过程中,epdm薄膜橡胶的
弹性模量在10kPa-1000kPa之间变化较大,而在压缩拉伸过程中,模量基本保持不变。
此外,剪切和滚动测试表明,由于EPDM薄膜橡胶具有优异的粘合弹性特性,因此可以应用于各种行业中。
例如,它可以用于制造高质量的密封件,可以帮助降低系统泄漏和损坏的风险。
同样,EPDM薄膜橡胶可以用于阻尼装置,可以减少由于强度变化而引起的冲击和振动。
除此之外,EPDM薄膜橡胶还可以用于家具和家用电器,以减少使用者受到的损伤。
而且,它还可以用来制作高性能的导热垫,可以有效地减少工厂的热损失。
此外,EPDM薄膜橡胶还用于制作软管和电缆线,可以增强其耐久性和抗拉强度,可以有效保护电气系统免受破坏。
因此,EPDM薄膜橡胶是一种多功能材料,可以满足各种应用要求。
此外,EPDM薄膜橡胶还可以用于建筑行业,主要是用于制作隔热材料,防止室内温度的变化对建筑物结构产生不利影响。
EPDM薄膜橡胶也可以用于过滤器或制作过滤器外壳,有效减少污染物的污染。
此外,它还可以用于船舶、汽车和其他交通工具,使之具有更强的抗老化性和耐腐蚀性。
最后,还可以将EPDM薄膜橡胶用于制造建
筑材料,如PVC管道和橡胶地板,增强其耐磨性和抗氧化性。
因此,EPDM薄膜橡胶在各种行业中都有广泛的应用,为消费者提供了很多实用的解决方案。
此外,由于EPDM膜橡胶对
温度有一定的要求,因此在使用过程中需要注意。
例如,当它暴露在115°C以上的高温环境中时,其性能会大大降低,而
在低温下,其抗紫外线性能也会受到影响。
此外,它也不适合长期暴露于酸碱性材料中,因为它们会破坏EPDM薄膜橡胶
的结构,减弱其性能。
因此,在使用EPDM薄膜橡胶时,应
避免将其暴露于高温或酸碱性材料中,否则它的性能会受到不利影响。
此外,在长期使用EPDM薄膜橡胶时,也需要注意
其疲劳耐久性,定期检查其焊接点是否损坏,以确保其安全性和可靠性。
另外,在使用EPDM薄膜橡胶时,还需要考虑安
装的难度问题。
由于EPDM薄膜橡胶具有自粘性质,因此需
要合理调整温度和湿度条件,以便更好地附着在表面上。
如果出现了安装不利影响,可能会导致EPDM薄膜橡胶的性能受
到影响,从而影响用户的使用体验。
所以,在使用EPDM薄
膜橡胶时,必须正确选择和安装,以确保其性能不受影响。
最后,使用EPDM薄膜橡胶需要根据实际应用需求,正确选择
合适的产品,以保证较高的使用效果。
因此,EPDM薄膜橡胶为工业应用提供了一种可靠的解决方案,使得消费者能够从中获益。
另外,EPDM薄膜橡胶具有良好的耐热性和耐湿性,因此可以用于各种不同环境,如高温、低温、潮湿等环境中。
此外,它还有一定的抗保护性,可以有效抵御外界的紫外线、氧化剂、污染物等有害物质的侵袭。
因此,它可以用于制作各种过滤器、气囊和润滑油来满足不同工业应用的要求。
此外,EPDM薄膜橡胶可以极大改善日常生活的习惯或家居装修,具有较强的装饰性和耐磨性。
它还可以用于室外和室内装饰,如壁纸、天花板、地板和栏杆等装饰,可以使空间更加温馨、舒适和时尚。
此外,EPDM薄膜橡胶还可以用于装饰和电子行业,如手机壳、MP3壳、U盘壳、相册壳等。
这些产品可以有效
防护内部组件,而且具有耐久性和良好的柔韧性,能够抵御不同环境中的有害物质侵袭。
此外,EPDM薄膜橡胶还可以用于
汽车制造行业,如门密封垫、车窗密封垫、活塞环、气管套等,具有优异的耐油性和密封性,可以有效阻止汽车部件的漏油和漏气现象。
另外,EPDM薄膜橡胶还可以应用于制造家具和建筑材料,如室内榻榻米、屋面、屋架、内部外壳等,有助于防止外界有害物质的侵袭。