高中数学统计与概率测试题

合集下载

高中数学统计与概率测试题

高中数学统计与概率测试题

高中数学统计与概率测试题高中数学统计与概率测试题选择题1.某校期末考试后,为了分析该校高一年级1000名学生的研究成绩,从中随机抽取了100名学生的成绩单。

以下说法中正确的是()A。

1000名学生是总体B。

每名学生是个体C。

每名学生的成绩是所抽取的一个样本D。

样本的容量是1002.某班级在一次数学竞赛中为全班同学生设置了一等奖、二等奖、三等奖以及参与奖,各个奖品的单价分别为:一等奖20元、二等奖10元、三等奖5元,参与奖2元,获奖人数的分配情况如图。

以下说法不正确的是()A。

获得参与奖的人数最多B。

各个奖项中三等奖的总费用最高C。

购买奖品的费用平均数为9.25元D。

购买奖品的费用中位数为2元3.XXX为了调查消费者对滴滴打车出行的真实评价,采用系统抽样方法从2000人中抽取100人做问卷调查。

为此将他们随机编号1,2,⋯,2000,适当分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的100人中,编号落入区间[1,820]的人做问卷A,编号落入区间[821,1520]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为()A。

23B。

24C。

25D。

264.为了解城市居民的环保意识,某调查机构从一社区的120名年轻人、80名中年人、60名老年人中,用分层抽样方法抽取了一个容量为n的样本进行调查,其中老年人抽取3名,则n=()A。

13B。

12C。

10D。

95.A、B、C、D四位妈妈相约各带一个小孩去观看花卉展,她们选择共享电动车出行,每辆车只能带一大人和一小孩,其中孩子们表示都不坐自己妈妈的车,则A的小孩坐C妈妈或D妈妈的车概率是A。

1/15B。

C。

D。

6.如图,海水养殖厂进行某水产品的新旧网箱养殖方法产量对比,收获时各随机抽取了100个网箱,测量各箱水产品产量(单位:kg),其频率分布直方图如图。

根据频率分布直方图,下列说法正确的是①新网箱产量的方差的估计值高于旧网箱产量的方差的估计值②新网箱产量中位数的估计值高于旧网箱产量中位数的估计值③新网箱产量平均数的估计值高于旧网箱产量平均数的估计值④新网箱频率最高组的总产量的估计值接近旧网箱频率最高组总产量估计值的两倍A。

高中数学-阶段验收评价(三)统计与概率跟踪测试卷及答案

高中数学-阶段验收评价(三)统计与概率跟踪测试卷及答案

阶段验收评价(三)统计与概率一、单项选择题(本大题共8小题,每小题5分,共40分)1.某学校共有36个班级,每班50人,现要求每班派3名代表参加会议,在这个问题中,样本容量是( )A .30B .50C .108D .150解析:选C 由样本的定义知,样本容量n =36×3=108.2.小波一星期的总开支分布如图①所示,一星期的食品开支如图②所示,则小波一星期的鸡蛋开支占总开支的百分比为( )A .1%B .2%C .3%D .5%解析:选C 由题图②知,小波一星期的食品开支为300元,其中鸡蛋开支为30元,占食品开支的10%,而食品开支占总开支的30%,所以小波一星期的鸡蛋开支占总开支的百分比为3%.3.某校高三级部分为甲、乙两个级部,现用分层抽样的方法从高三级部中抽取30名老师去参加教研会.已知乙级部中每名老师被抽到的可能性都为13,则高三级部的全体老师的人数为( )A .10B .30C .60D .90解析:选D 因为乙级部中每名老师被抽到的可能性都为13,所以高三年级中每名老师被抽到的可能性都为13,由30÷13=90(人),可得全体老师人数.4.从装有5个红球和3个白球的口袋内任取3个球,那么,互斥而不对立的事件是 ( )A .至少有一个红球;都是红球B .至少有一个红球;都是白球C .至少有一个红球;至少有一个白球D .恰有一个红球;恰有两个红球解析:选D 根据互斥事件、对立事件的定义可得.5.已知一组数据8,9,10,x ,y 的平均数为9,方差为2,则x 2+y 2= ( )A .162B .164C .168D .170解析:选D 由题意可知15(8+9+10+x +y )=9,15[(8-9)2+(9-9)2+(10-9)2+(x -9)2+(y -9)2]=2,解得x 2+y 2=170.6.如图是一容量为100的样本的质量的频率分布直方图,则由图可估计样本质量的中位数为( ) A .11 B .11.5 C .12D .12.5解析:选C 由频率分布直方图得组距为5,故样本质量在[5,10),[10,15)内的频率分别为0.3和0.5,从而中位数为10+0.20.5×5=12,故选C. 7.种植两株不同的花卉,若它们的成活率分别为p 和q ,则恰有一株成活的概率为( )A .p +q -2pqB .p +q -pqC .p +qD .pq解析:选A 恰有一株成活的概率为p (1-q )+q (1-p )=p +q -2pq .8.(2020·新高考山东卷)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )A .62%B .56%C .46%D .42%解析:选C 不妨设该校学生总人数为100,既喜欢足球又喜欢游泳的学生人数为x ,则100×96%=100×60%-x +100×82%,解得x =46,所以既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是46%.故选C. 二、多项选择题(本大题共4小题,每小题5分,共20分) 9.下列说法正确的是( )A .一组数据不可能有两个众数B.一组数据的方差必须是正数C.将一组数据中的每一个数据都加上或减去同一常数后,方差不变D.在频率分布直方图中,每个小长方形的面积等于相应小组的频率解析:选CD A错,众数可以有多个;B错,方差可以为0.10.不透明的口袋内装有红色、绿色和蓝色卡片各2张,一次任意取出2张卡片,则与事件“2张卡片都为红色”互斥而非对立的事件是()A.2张卡片都不是红色B.2张卡片恰有一张红色C.2张卡片至少有一张红色D.2张卡片都为绿色解析:选ABD从6张卡片中一次取出2张卡片的所有情况有“2张都为红色”“2张都为绿色”“2张都为蓝色”“1张红色1张绿色”“1张红色1张蓝色”“1张绿色1张蓝色”,在选项给出的四个事件中,与“2张卡片都为红色”互斥而非对立的事件有“2张卡片都不是红色”“2张卡片恰有一张红色”“2张卡片都为绿色”,而“2张卡片至少有一张红色”包含事件“2张卡片都为红色”,二者并非互斥事件.故选A、B、D.11.在一个古典概型中,若两个不同的随机事件A,B发生的概率相等,则称A和B是“等概率事件”,如:随机抛掷一个骰子一次,事件“点数为奇数”和“点数为偶数”是“等概率事件”.关于“等概率事件”,以下判断正确的是()A.在同一个古典概型中,所有的样本点之间都是“等概率事件”B.若一个古典概型的事件总数大于2,则在这个古典概型中除样本点外没有其他“等概率事件”C.因为所有必然事件的概率都是1,所以任意两个必然事件都是“等概率事件”D.同时抛掷三枚硬币一次,则事件“仅有一个正面”和“仅有两个正面”是“等概率事件”解析:选AD对于A,由古典概型的定义知,所有样本点的概率都相等,故所有的样本点之间都是“等概率事件”,故A正确;对于B,如在1,3,5,7,9五个数中,任取两个数,所得和为8和10这两个事件发生的概率相等,故B错误;对于C,由题可知“等概率事件”是针对同一个古典概型的,故C错误;对于D,同时抛掷三枚硬币一次共有8种不同的结果,其中“仅有一个正面”包含3种结果,其概率为38,“仅有两个正面”包含3种结果,其概率为38,故这两个事件是“等概率事件”,故D正确.故选A、D.12.下列对各事件发生的概率判断正确的是 ( )A .某学生在上学的路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,那么该生在上学路上到第3个路口首次遇到红灯的概率为427B .三人独立地破译一份密码,他们能单独译出的概率分别为15,13,14,假设他们破译密码是彼此独立的,则此密码被破译的概率为25C .从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是13D .设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A不发生的概率相同,则事件A 发生的概率是29解析:选AC 对于A ,该生在第3个路口首次遇到红灯的情况为前2个路口不是红灯,第3个路口是红灯,所以概率为 1-132×13=427,故A 正确; 对于B ,用A ,B ,C 分别表示甲、乙、丙三人能破译出密码,则P (A )=15,P (B )=13,P (C )=14,“三个人都不能破译出密码”发生的概率为45×23×34=25,所以此密码被破译的概率为1-25=35B 错误;对于C ,该试验的样本空间Ω={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)},记A 为“取出的2个数之差的绝对值为2”,则A ={(1,3),(2,4)},故所求概率为13,故C 正确;对于D ,易得P (A ∩B )=P (B ∩A ), 即P (A )P (B )=P (B )P (A ), 即P (A )[1-P (B )]=P (B )[1-P (A )], 所以P (A )=P (B ),又P (A ∩B )=19,所以P (A )=P (B )=13所以P (A )=23,故D 错误.故选A 、C.三、填空题(本大题共4小题,每小题5分,共20分)13.某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人):篮球组 书画组 乐器组 高一 45 30 a 高二151020学校要对这三个小组的活动效果进行抽样调查,按小组分层抽样,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a 的值为________. 解析:由题意知,1245+15=30120+a,解得a =30.答案:3014.一个三位自然数百位、十位、个位上的数字依次为a ,b ,c ,当且仅当有两个数字的和等于第三个数字时称为“有缘数”(如213,134等),若a ,b ,c ∈{1,2,3,4},且a ,b ,c 互不相同,则这个三位数为“有缘数”的概率为________.解析:由1,2,3组成的三位自然数为123,132,213,231,312,321,共6个;同理,由1,2,4组成的三位自然数为6个,由1,3,4组成的三位自然数为6个,由2,3,4组成的三位自然数为6个,共有24个.由1,2,3或1,3,4组成的三位自然数为“有缘数”,共12个,所以三位数为“有缘数”的概率为1224=12. 答案:1215.(2019·全国卷Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________. 解析:∵x =10×0.97+20×0.98+10×0.9910+20+10=0.98,∴经停该站高铁列车所有车次的平均正点率的估计值为0.98. 答案:0.9816.一个口袋内装有大小相同的红球、白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出白球的概率为______;摸出红球的概率为________.解析:由题意知A =“摸出红球或白球”与B =“摸出黑球”是对立事件,又P (A )=0.58,∴P (B )=1-P (A )=0.42,又C =“摸出红球或黑球”与D =“摸出白球”也是对立事件,∵P (C )=0.62,∴P (D )=0.38.设事件E =“摸出红球”,则P (E )=1-P (B ∪D )=1-P (B )-P (D )=1-0.42-0.38=0.2. 答案:0.38 0.2四、解答题(本大题共6小题,共70分)17.(10分)某公司为了了解一年内的用水情况,抽取了10天的用水量如下表所示:天数111221 2用水量/吨22384041445095(1)在这10天中,该公司用水量的平均数是多少?(2)在这10天中,该公司每天用水量的中位数是多少?(3)你认为应该用平均数和中位数中的哪一个数来描述该公司每天的用水量更合适?解:(1)x=110(22+38+40+2×41+2×44+50+2×95)=51(吨).(2)中位数为41+442=42.5(吨).(3)平均数受数据中的极端值(2个95)影响较大,使平均数在估计总体时可靠性降低,10天的用水量有8天都在平均值以下,故用中位数描述每天的用水量更合适.18.(12分)小王某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列正点到达的概率;(2)这三列火车至少有一列正点到达的概率.解:用A,B,C分别表示这三列火车正点到达的事件,则P(A)=0.8,P(B)=0.7,P(C)=0.9,所以P(A-)=0.2,P(B-)=0.3,P(C-)=0.1.(1)由题意得A,B,C之间相互独立,所以恰好有两列火车正点到达的概率为P1=P(A-BC)+P(A B-C)+P(AB C-)=P(A-)P(B)P(C)+P(A)P(B-)P(C)+P(A)P(B)P(C-)=0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.(2)三列火车至少有一列正点到达的概率为P2=1-P(A-B-C-)=1-P(A-)P(B-)P(C-)=1-0.2×0.3×0.1=0.994.19.(12分)两台机床同时生产一种零件,在10天中,两台机床每天的次品数如下:甲:1,0,2,0,2,3,0,4,1,2.乙:1,3,2,1,0,2,1,1,0,1.(1)哪台机床次品数的平均数较小?(2)哪台机床的生产状况比较稳定?解:(1)x甲=(1+0+2+0+2+3+0+4+1+2)×110 1.5,x乙=(1+3+2+1+0+2+1+1+0+1)×110=1.2.∵x甲>x乙,∴乙机床次品数的平均数较小.(2)s2甲=110×[(1-1.5)2+(0-1.5)2+(2-1.5)2+(0-1.5)2+(2-1.5)2+(3-1.5)2+(0-1.5)2+(4-1.5)2+(1-1.5)2+(2-1.5)2]=1.65,同理s2乙=0.76,∵s2甲>s2乙,∴乙机床的生产状况比较稳定.20.(12分)甲、乙两人玩一种游戏,每次由甲、乙各出1到5根手指头,若和为偶数算甲赢,否则算乙赢.(1)若以A表示和为6的事件,求P(A).(2)现连玩三次,若以B表示甲至少赢一次的事件,C表示乙至少赢两次的事件,试问B与C是否为互斥事件?为什么?(3)这种游戏规则公平吗?试说明理由.解:(1)样本空间与点集S={(x,y)|x∈N*,y∈N*,1≤x≤5,1≤y≤5}中的元素一一对应.因为S中点的总数为5×5=25(个),所以样本点总数为n=25.事件A包含的样本点共5个,即(1,5),(2,4),(3,3),(4,2),(5,1),所以P(A)=525=15.(2)B与C不是互斥事件,因为事件B与C可以同时发生,如甲赢一次,乙赢两次的事件即符合题意.(3)这种游戏规则不公平.结合(1)知和为偶数的样本点个数为13个,即甲赢的概率为13 25,乙赢的概率为12 25,所以这种游戏规则不公平.21.(12分)某班100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数x与数学成绩相应分数段的人数y之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x∶y 1∶12∶13∶44∶5 解:(1)由频率分布直方图知(2a+0.02+0.03+0.04)×10=1,解得a=0.005.(2)由频率分布直方图知这100名学生语文成绩的平均分为55×0.005×10+65×0.04×10+75×0.03×10+85×0.02×10+95×0.005×10=73(分).(3)由频率分布直方图知语文成绩在[50,60),[60,70),[70,80),[80,90)各分数段的人数依次为0.005×10×100=5,0.04×10×100=40,0.03×10×100=30,0.02×10×100=20.由题中给出的比例关系知数学成绩在上述各分数段的人数依次为5,40×12=20,30×43=40,20×54=25.故数学成绩在[50,90)之外的人数为100-(5+20+40+25)=10.22.(12分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1 000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:支付方式支付金额不大于2 000元大于2 000元仅使用A27人3人仅使用B24人1人(1)估计该校学生中上个月A,B两种支付方式都使用的人数.(2)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率.(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B的学生中本月支付金额大于2 000 元的人数有变化?说明理由.解:(1)由题知,样本中仅使用A的学生有27+3=30(人),仅使用B的学生有24+1=25(人),A,B两种支付方式都不使用的学生有5人.故样本中A,B两种支付方式都使用的学生有100-30-25-5=40(人).估计该校学生中上个月A,B两种支付方式都使用的人数为40100×1 000=400.(2)记事件C为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”,则P(C)=125=0.04.(3)记事件E为“从样本仅使用B的学生中随机抽查1人,该学生本月的支付金额大于2 000元”.假设样本仅使用B的学生中,本月支付金额大于2 000元的人数没有变化,则由(2)知,P(E)=0.04.答案示例1:可以认为有变化.理由如下:P(E)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化.所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的.所以无法确定有没有变化.。

高中数学概率统计专题练习题及答案

高中数学概率统计专题练习题及答案

高中数学概率统计专题练习题及答案一、选择题1. 掷一枚骰子,结果为奇数的概率是多少?A. 1/2B. 1/6C. 2/3D. 1/32. 从1至20这20个数字中随机选出一个数,选出的数是素数的概率是多少?A. 1/5B. 1/4C. 1/2D. 2/53. 一只盒子中有5张红牌和3张蓝牌,从中随机抽取2张牌,同时放回,再随机抽取2张牌,求两次抽取都是红牌的概率是多少?A. 1/16B. 3/8C. 1/4D. 1/8二、计算题1. 一次考试中,甲乙丙三位同学都有70%的概率通过考试。

求三位同学中至少有一位通过考试的概率。

答案:1 - (1 - 0.7)^3 = 0.9732. 从1至100这100个数字中随机选出一个数,选出的数是2的倍数且小于等于50的概率是多少?答案:50/100 = 0.53. 有A、B两个车站,A车站开往B车站的列车间隔是15分钟,B车站开往A车站的列车间隔是10分钟。

现在一个人随机到达A车站,请问他至少要等待几分钟才能搭乘到开往B车站的列车?答案:最小公倍数(15, 10) = 30分钟三、应用题1. 每个学生参加一次足球比赛的概率是0.4,问一个班级20个同学中至少有10个学生参加比赛的概率是多少?答案:利用二项分布公式,计算P(X≥10),其中n=20,p=0.4,k≥10。

答案约为0.599。

2. 一批产品有10%的次品率,现从中随机抽取20个产品,求其中恰好有3个次品的概率。

答案:利用二项分布公式,计算P(X=3),其中n=20,p=0.1,k=3。

答案约为0.201。

3. 一支篮球队最近10场比赛中获胜的概率是0.8,在下一场比赛中,求该队至少获胜8次的概率。

答案:利用二项分布公式,计算P(X≥8),其中n=10,p=0.8,k≥8。

答案约为0.967。

以上为高中数学概率统计专题练习题及答案。

希望对您的学习有所帮助!。

高中数学统计与概率习题精选

高中数学统计与概率习题精选

1、(15广东)已知随机变量X 服从二项分布(),B n p ,若()30E X =,()20D X =,则p = .2.(14湖北)根据如下样本数据x 3 45 67 8 y4.02.50.5-0.52.0-3.0-得到的回归方程为y bx a =+,则( ).A.0,0a b >> B.0,0a b >< C.0,0a b <> D.0,0a b <<3、(14浙江)随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________.4、(16新课标1)某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元。

在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(1)求X 的分布列;(2)若要求P(X≤n)≥0.5,确定n 的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?5、(15山东)已知某批零件的长度误差(单位:毫米)服从正态分布()20,3N ,从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布()2,Nμσ,则,。

)(A )4.56% (B )13.59% (C )27.18% (D )31.74% 6、(15湖北)设211(,)XN μσ,222(,)Y N μσ,这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .21()()P Y P Y μμ≥≥≥B .21()()P X P X σσ≤≤≤C .对任意正数t ,()()P X t P Y t ≤≥≤D .对任意正数t ,()()P X t P Y t ≥≥≥7、(14新课标1)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表);(2)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布()2,Nμδ,其中μ近似为样本平均数x ,2δ近似为样本方差2s(i )利用该正态分布,求()187.8212.2PZ <<;(ii )某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间()187.8,212.2的产品件数.利用(i )的结果,求EX .附:15012.2≈.若()2,ZN μδ,则()0.6826P Z μδμδ-<<+=,()220.9544P Z μδμδ-<<+=.8、(15湖南)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 为正态分布N(0,1)的密度曲线)的点的个数的估计值为( )A.2386 B.2718 C.3413 D.4772 9、(15天津)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛。

《统计与概率》高考模拟

《统计与概率》高考模拟

《统计与概率》高考模拟一、选择题(本大题共12小题,每小题5分,共60分)1.(2019·成都统考)某工厂生产,,A B C 三种不同型号的产品,产品数量之比为:5:3k ,现用分层抽样的方法抽出个容量为120的样本,已知A 型号产品抽取了24件,则C 型号产品抽取的件数为( ) A.24 B.30 C.36 D.402.(2019·菏泽模拟)在样本频率分布直方图中,共有9个小长方形,若某个小长方形的面积等于其他8个小长方形的面积和的25,且样本容量为140,则该组的频数为( ) A.28 B.40 C.56 D.603.(2019·河南八市高一联考)如图所示的茎叶图记录了甲、乙两名同学在10次英语听力比赛中的成绩(单位:分),已知甲得分的中位数为76分,乙得分的平均数是75分,则下列结论正确的是( )A.76x =甲B.甲数据中3x =,乙数据中6y =C.甲数据中6x =,乙数据中3y =D.乙同学成绩较为稳定4.在5件产品中,有4件正品,从中任取2件,2件都是正品的概率是( )A.4 5B.1 5C.3 5D.2 55.有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为()A.18B.36C.54D.726.(2019·辽宁实验中学月考)甲盒中有200个螺杆,其中有x个A型的,乙盒中有240个螺母,其中有y个A型的.今从甲、乙两盒中各任取一个,不能配成A型螺栓的概率为25,则恰可配成A型螺栓的概率为()A.1 20B.15 16C.3 5D.19 207.(2019·绵阳中学高一期末)口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为()A.0.45B.0.67C.0.64D.0.328.随机猜测“选择题”的答案,每道题猜对的概率为0.25,则两道选择题至少猜对一道的概率为()A.7 16B.1 16C.9 16D.3 89.(2019·绵阳中学高一期末)现有10道题,其中6道甲类题,4道乙类题,小明同学从中任取3道题解答.已知所取的3道题中有2道甲类题,1道乙类题.若小明同学答对每道甲类题的概率都是35,答对每道乙类题的概率都是45,且各题答对与否相互独立.则小明同学至少答对2道题的概率为()A.12 25B.57 125C.36 125D.93 12510.设矩形的长为a,宽为b,其比满足1:0.6182b a=≈,这种矩形给人以美感,称为黄金矩形.黄金矩形常应用于工艺品设计中,下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本甲批次:甲批次:0.598 0.625 0.628 0.595 0.639乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是()A.甲批次的总体平均数与标准值更接近B.乙批次的总体平均数与标准值更接近C.两个批次总体平均数与标准值接近程度相同D.两个批次总体平均数与标准值接近程度不能确定11.从甲、乙两个城市分布随机抽取14台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图),设甲、乙两组数据的平均数分别为,x x 甲乙,中位数分别为,m m 甲乙,则( )A.,x x m m <>甲乙甲乙B.,x x m m <<甲乙甲乙C.,x x m m >>甲乙甲乙D.,x x m m ><甲乙甲乙12.(2019·武昌模拟)学校要从甲、乙、丙三名同学中选取两名去参加物理竞赛,因为他们的水平相当,所以准备采取抽签的方式决定.学校制作了三个签,其中两个写有“参赛”,一个写有“不参赛”.抽签时,由甲先抽,然后乙抽,最后丙抽.记事件A :甲抽中“参赛”,事件B :乙抽中“参赛”,则( ) A.()()P A P B =且事件,A B 独立 B.()()P A P B =且事件,A B 不独立 C.()()P A P B >且事件,A B 独立 D.()()P A P B >且事件,A B 不独立二、填空题(本大题共4小题,每小题5分,共20分)13.(2019·南阳检测)为了调查某野生动物保护区内某种野生动物数量,调查人员逮到这种动物1200只,作过标记后放回,一星期后,调查人员再次逮到该种动物1000只,其中作过标记的有100只,估计保护区有这种动物______只. 14.(2019·郑州一中期末)用两种不同的颜色给图中三个矩形随机涂色,每个矩形只涂一种颜色,则相邻两个矩形涂不同颜色的概率是_________.15.(2019沈阳质检)某工厂生产,A B两种元件,先从一批产品中随机抽取这两种元件各5件进行检测,检测结果记录如下:由于表格被污损,数据,x y看不清,统计员只记得,A B两种元件的检测数据的平均数相等,方差也相等,则xy ________.16.两台机床同时生产直径为10的零件,为了检验产品质量,质量检验员从两台机床生产的产品中各抽出4件进行测量,结果如下:如果你是质量检验员,在收集到上述数据后,你将通过运算来判断哪台机床生产的零件质量更好、更符合要求,那么你的判断是_________.三、解答题(本大题共6小题,共70分)17.(2019·武汉二中月考)(10分)一个地区共有5个乡镇,人口3万人,其中人口比例为3:2:5:2:3.从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的抽样方法?并写出具体过程.18.(2019·海口一中质检)(12分)随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示.(1)根据茎叶图判断哪个班的平均身高较高; (2)计算甲班的样本方差.19.(2019·育才中学期中)(12分)一个口袋内装有大小相同的1个白球和已编有号码的3个黑球,从中摸出2个球. (1)共有多少种不同的结果?(2)2个球均为黑球有多少种不同结果? (3)2个球均为黑球的概率是多少?20.(2019·北京十一中学期中)(12分)某校进入高中数学竞赛复赛的学生中,高一年级有6人,高二年级有12人,高三年级有24人,现采用分层抽样的方法从这些学生中抽取7人进行采访. (1)求应从各年级分别抽取的人数;(2)若从抽取的7人中再随机抽取2人做进一步了解(注高一学生记为i A ,高二学生记为i B ,高三学生记为1,2,3,i C i =⋅⋅⋅,). ①列出所有可能的抽取结果;②求抽取的2人均为高三年级学生的概率.21.(2019·济南模拟)(12分)现有甲、乙、丙三名学生参加某大学的自主招生考试,考试分两轮,第一轮笔试,第二轮面试,只有第一轮笔试通过才有资格进入第二轮面试,面试通过就可以在高考录取中获得该校的优惠加分,两轮考试相互独立.根据以往多次的模拟测试,甲、乙、丙三名学生能通过笔试的概率分别为0.4,0.8,0.5,能通过面试的概率分别为0.8,0.4,0.64.根据这些数据我们可以预测:(1)甲、乙、丙三名学生中至少有两名学生通过第一轮笔试的概率 (2)甲、乙、丙三名学生恰有2人获得该校优惠加分的概率.22.(2019·长沙八校联考)(12分)某医药公司研发一种新的保健产品,从生产的一批产品中抽取200盒作为样本,测量产品的一项质量指标值,该指标值越高越好,由测量结果得到如图所示的频率分布直方图:(1)求a,并试估计这200盒产品的该项指标的平均值;(2)国家有关部门规定每盒产品该项指标值不低于150均为合格,且按指标值的从低到高依次分为合格、优良、优秀三个等级,其中(185,215)为优良,不高于185为合格,不低于215为优秀.用样本的该项质量指标值的频率代替产品的该项质量指标值的概率.①求产品该项指标值的优秀率;②现从这批产品中随机抽取3盒,求其中至少有1盒该项质量指标值为优秀的概率.参考答案 1. 答案:C 解析:由2453120k k =++得2k =,故C 型号产品抽取的件数为312036253⨯=++.2.答案:B解析:设该小长方形的面积为x ,则2(1)5x x =-,解得27x =,即该组的频率为27,所以频数为2140407⨯=.3. 答案:C解析:因为甲得分的中位数为76分,所以6x =,所以75x =甲,故A 、B 错误;因为乙得分的平均数是75分,所以5668687072(70)808688897510y ++++++++++=,解得3y =,故C 正确;由茎叶图中甲、乙成绩的分布可知D 错误. 4. 答案:C 解析: 5. 答案:B解析:从左到右四个矩形的面积分别为0.04、0.1、0.3、0.38,所以第五个矩形的面积为10.040.10.30.380.18----=,即样本数据落在区间[10,12)内的频率为0.18,所以样本数据落在区间[10,12)内的频数为2000.1836⨯=. 6. 答案:C 解析: 7. 答案:D 解析:答案:A解析:每道题猜对的概率为10.254=,则猜错的概率为34,由独立事件概率的计算公式得:两道选择题都猜错的概率为3394416⨯=,所以至少猜对一道的概率为9711616-=.故选A. 9. 答案:D解析:设小明同学答对题的个数为X ,则23134257(2)255555125P X ⎛⎫==⨯+⨯⨯⨯= ⎪⎝⎭,23436(3)55125P X ⎛⎫==⨯=⎪⎝⎭,故93(2)(2)(3)125P X P X P X ==+==≥.则小明同学至少答对2道题的概率为93125.选D. 10. 答案:A 解析:0.5980.6250.6280.5950.6390.6175x ++++==甲,0.6180.6130.5920.6220.6200.6135x ++++==乙,故选A.11. 答案:A解析:由题中茎叶图可得56101014182225303038414348170147x +++++++++++++==甲, 88101220222323313234344243171147x +++++++++++++==乙, 23.5,23m m ==甲乙,故,x x m m <>甲乙甲乙,故选A. 12. 答案:B解析:因为221122(),()332323P A P B ==⨯+⨯=,所以()()P A P B =,但211()323P AB =⨯=,从而()()()P AB P A P B ≠,故,A B 相互不独立.答案:12000解析:设保护区内有这种动物x 只,每只动物被逮到的概率是相同的,所以12001001000x =,解得12000x =. 14. 答案:14解析:由于只有两种颜色,不妨将其标注为1和2.若只用一种颜色,则有111,222,共2种情况;若用两种颜色,则有122,212,221,211,121,112,共6种情况.所以基本事件共有8个,其中相邻两个矩形颜色不同的事件有2个,故所求概率2184P ==. 15. 答案:72解析:因为1(777.599.5)8,5A B x x =⨯++++==1(68.58.5)5x y ⨯++++,所以由A B x x =,得17x y +=.①因为21(110.251 2.25) 1.15A s =⨯++++=,22214(8)0.250.25(8)5B s x y ⎡⎤=⨯+-+++-⎣⎦,所以由22A B s s =,得22(8)(8)1x y -+-=.②由①②,解得72xy =. 16. 答案:乙解析:先计算平均直径:1(109.810 10. 2) 104x =+++=甲;1(10.1109.910)104z x =+++=.由于x x =甲乙,因此,平均直径不能反映两台机床生产的零件的质量优劣.再计算方差:222221(1010)(9.810)(1010)(10.210)0.024s ⎡⎤=-+-+-+-=⎣⎦甲; 222221(10.110)(1010)(9.910)(1010)0.0054s ⎡⎤=-+-+-+-=⎣⎦乙.由于22s s <乙甲,这说明乙机床生产出的零件直径波动小.因此,从产品质量稳定性的角度考虑,乙机床生产的零件质量更好、更符合要求.17.答案:见解析解析:因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法,具体过程如下:①3万人分为5层,其中一个乡镇为一层.②按照样本容量的比例随机抽取各乡镇应抽取的样本.33006015⨯=(人),23004015⨯=(人),530010015⨯=(人),23004015⨯=(人),33006015⨯=(人),因此各乡镇抽取人数分别为60人、40人、100人、40人、60人.③将抽取的300人组到一起,即得到一个300人的样本.18.答案:见解析解析:(1)甲、乙两班同学的平均身高分别为:170,171.1x x ==甲乙,所以乙班同学的平均身高较高.(2)甲班的样本方差为:22221[(158170)(162170)(163170)10s =-+-+-+甲222222(168170)(168170)(170170)(171170)(179170)(179170)-+-+-+-+-+-2(182170)]57.2+-=.19.答案:见解析解析:(1)设已编号的3个黑球分别为黑1、黑2黑3,则从中摸出2个球,共有6种不同的结果,分别为(黑1,黑2)、(黑1,黑3)、(黑2,黑3)、(白,黑1)、(白,黑2)、(白,黑3).(2)由(1)知,2个球均为黑球有3种不同的结果.(3)由于6种结果是等可能的,其中2个球均为黑球(记为事件A )有3种不同的结果,31()62P A ∴==. 20.答案:见解析解析:(1)由分层抽样的特征,得61271;726122461224⨯=⨯=++++;247461224⨯=++,所以应从高一年级抽取1人,高二年级抽取2人,高三年级抽取4人.(2)由(1)知,高一年级有1人,记为1A ,高二年级有2人,记为12,B B ,高三年级有4人,记为1234,,,C C C C .①从中抽取2人,所有可能的结果为:11121112131412,,,,,,A B A B AC AC AC AC B B , 1112131421222324121314232434,,,,,,,,,,,,,B C B C B C B C B C B C B C B C C C C C C C C C C C C C ,共21种.②由①知,共有21种情况,抽取的2人均为高三年级学生的可能结果为:121314232434,,,,,C C C C C C C C C C C C ,共6种,所以抽取的2人均为高三年级学生的概率62217P ==. 21.答案:见解析解析:(1)记事件A :甲通过第一轮笔试,事件B :乙通过第一轮笔试,事件C :丙通过第一轮笔试,事件D :至少有两名学生通过第一轮笔试,则()0.4P A =,()0.8,()0.5P B P C ==.()()()()()()()()()()()P D P ABC P ABC P ABC P ABC P A P B P C P A P B P C =+++=+()()()()()()0.40.80.50.40.20.50.60.80.5P A P B P C P A P B P C ++=⨯⨯+⨯⨯+⨯⨯0.40.80.50.6+⨯⨯=,所以至少有两名学生通过第一轮笔试的概率为0.6.(2)因为甲、乙、丙三名学生中每个人获得优惠加分(两轮都通过)的概率均为0.32,故恰有2人获得优惠加分的概率为230.320.680.208896⨯⨯=. 22.答案:见解析解析:(1)由10(20.0020.0080.0090.0220.024)1a ⨯⨯+++++=,解得0.033a =. 设平均值为x ,则0.021700.091800.221900.332000.24x =⨯+⨯+⨯+⨯+⨯ 2100.082200.02230200+⨯+⨯=,即产品的该项指标的平均值为200.(2)①由直方图知该指标值不低于215包括直方图中的最后2个长方形区域,由互斥事件的概率公式可得该项指标值的优秀率10(0.0080.002)0.1P =⨯+=.②设抽取的3盒中恰好有X 盒该项质量指标值为优秀,由①可得随机抽取1盒不是优秀的概率为10.10.9-=,则由独立事件的概率可得,抽取的3盒该项质量指标值均不是优秀的概率为30.90.729=,由对立事件的概率可得,抽取的3盒中至少有1盒该项质量指标值为优秀的概率为10.7290.271-=.。

高中数学概率与统计概率分布练习题及答案

高中数学概率与统计概率分布练习题及答案

高中数学概率与统计概率分布练习题及答案1. 离散型随机变量问题1一次买彩票,抽奖号码是从1到30的整数,每个号码中奖的概率是相等的。

求以下事件的概率:a) 中奖号码小于等于10b) 中奖号码是偶数c) 中奖号码是质数解答1a) 中奖号码小于等于10的概率为10/30,即1/3。

b) 中奖号码是偶数的概率为15/30,即1/2。

c) 中奖号码是质数的概率为8/30,即4/15。

问题2某商品的销售量每天可以是0、1、2或3箱,各箱销售的概率分别为0.1、0.3、0.4和0.2。

求销售量的概率分布表。

解答2销售量的概率分布表如下:销售量 | 0 | 1 | 2 | 3--- | --- | --- | --- | ---概率 | 0.1 | 0.3 | 0.4 | 0.22. 连续型随机变量问题3某地每天的气温符合正态分布,均值为20摄氏度,标准差为3摄氏度。

求以下事件的概率:a) 气温大于等于15摄氏度b) 气温在15摄氏度到25摄氏度之间解答3a) 气温大于等于15摄氏度的概率可以通过计算标准正态分布的累积概率得到,约为0.8413。

b) 气温在15摄氏度到25摄氏度之间的概率可以通过计算标准正态分布的累积概率得到,约为0.6827。

问题4某工厂生产的铆钉的长度符合正态分布,均值为5毫米,标准差为0.2毫米。

若从工厂中随机抽取一只铆钉,求其长度在5.2毫米到5.5毫米之间的概率。

解答4将问题转化为标准正态分布,得到长度在1到2.5之间的概率约为0.3944。

以上是高中数学概率与统计概率分布的练习题及答案。

新课标高中数学选修23(统计与概率)测试题

新课标高中数学选修23(统计与概率)测试题

新课标高中数学选修2—3(统计与概率)测试题命题:广东省汕头市潮阳林百欣中学 许吟裕(2006-4-8)一、选择题(本题共10小题,每小题5分,共50分,在每小题给出的4个选项中,只有1项是符合题目要求的。

) 1.从总体中抽得的样本数据为3.8,6.8,7.4则样本平均数x 为:( )A. 6.5B. 6C. 5D. 5.52.高三年级有12个班,每班50人按1—50排学号,为了交流学习经验,要求每班学号为 18的同学留下进行交流,这里运用的是( )抽样法:A.抽签法B.系统抽样C.分层抽样D.随机数表法3.如果数据x 1,x 2,x 3,…,x n 的平均数为 ,方差为62,则数据3x 1+5,3x 2+5,…,3x n +5的平均数和方差分别是 ( ) A . B . C . D . 4.甲、乙两个水文站同时作水文预报,如果甲站、乙站各自预报的准确率为0.8和0.7,那么,在一次预报中两站都准确预报的概率为 ( ) A .0.7 B .0.56 C .0.7 D .0.85.从分别写有A 、B 、C 、D 、E 的5张卡片中,任取两张,这两张卡片上的字母恰好是按字母顺序相邻的概率为 ( )A .B .C .D .6.已知盒子中有散落的围棋棋子15粒,其中6粒黑子,9粒白子,从中任意取出2粒恰好是同一色的概率 ( )A .B .C .D .7)A .B .C .D .8.甲、乙两人独立解答某道题,解不出来的概率分别为a 和b ,那么甲、乙两人都解出这道题的概率是 ( ) A .1-ab B .(1-a )(1-b ) C .1-(1-a )(1-b ) D .a (1-b )+b (1-a ) 9.有3个相识的人某天各自乘火车外出,假设火车有10节车厢,那么至少有两人在车厢内相遇的概率为 ( )A .B .C .D .26和x 2653和+x 29653和+x 2363和x 51521031073517711051635342014121107200292571442918710.一患者服用某种药品后被治愈的概率是95%,则患有相同症状的四位病人中至少有3人被治愈的概率为 ( ) A .0.86 B .0.90 C .0.95 D .0.99二,填空题(本题共4小题,每小题5分,共20分)11.甲投篮的命中率为0.7,乙投篮的命中率为0.8,每人各投3次,每人恰好都投中2次的概率为___________。

高中数学:概率统计专题

高中数学:概率统计专题

高三文科数学:概率与统计专题一、选择题:1.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量单位:kg分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A.13B.12C.23D.343、在一组样本数据x1,y1,x2,y2,…,x n,y n n≥2,x1,x2,…,x n不全相等的散点图中,若所有样本点x i,y i i=1,2,…,n都在直线y=错误!x+1上,则这组样本数据的样本相关系数为A-1 B0 C错误! D14.如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为A103 B15C110D1205.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学科&网则此点取自黑色部分的概率是A.14B.π8C.12D.π46.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是二、填空题:7、从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_______;8、将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.9.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,制作了对照表: 由表中数据得回归直线方程错误!=错误!x +错误!中的错误!=-2,预测当气温为-4 ℃时,用电量约为________度. 三、解答题10.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售;如果当天卖不完,剩下的玫瑰花做垃圾处理;Ⅰ若花店一天购进17枝玫瑰花,求当天的利润y 单位:元关于当天需求量n 单位:枝,n ∈N 的函数解析式;Ⅱ花店记录了100天玫瑰花的日需求量单位:枝,整理得下表: 日需求量n 14 15 16 17 18 19 20 频数102016161513101假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润单位:元的平均数;气温℃ 18 13 10 -1 用电量度243438642若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率;11. 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值75,85 85,95 95,105 105,115 115,125 分组频数 6 26 38 22 8 I在答题卡上作出这些数据的频率分布直方图:II估计这种产品质量指标值的平均数及方差同一组中的数据用该组区间的中点值作代表;III根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定12. 某地区2009年至2015年农村居民家庭人均纯收入y单位:千元的数据如下表:年份2009201020112012201320142015年份代号t1234567人均纯收入y1求y关于t的线性回归方程;2利用1中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:错误!=错误!,错误!=错误!-错误!错误!.13.某省会城市地铁将于2017年6月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下:1若以区间的中点值为该区间内的人均月收入,求参与调查的人员中“赞成定价者”与“认为价格偏高者”的月平均收入的差距是多少结果保留2位小数;2由以上统计数据填下面2×2列联表分析是否有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.附:K2=错误!14.为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸单位:cm .下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.1求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小.2一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.ⅰ从这一天抽检的结果看,是否需对当天的生产过程进行检查ⅱ在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.精确到附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学统计与概率测试题一选择题1.某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法中正确的是( )A.1000名学生是总体 B.每名学生是个体C.每名学生的成绩是所抽取的一个样本 D.样本的容量是1002.某班级在一次数学竞赛中为全班同学生设置了一等奖、二等奖、三等奖以及参与奖,各个奖品的单价分别为:一等奖20元、二等奖10元、三等奖5元,参与奖2元,获奖人数的分配情况如图,则以下说法不正确的是()A.获得参与奖的人数最多 B.各个奖项中三等奖的总费用最高C.购买奖品的费用平均数为9.25元 D.购买奖品的费用中位数为2元3.滴滴公司为了调查消费者对滴滴打车出行的真实评价,采用系统抽样方法从2000人中抽取100人做问卷调查,为此将他们随机编号1,2,⋯,2000,适当分组后在第一组采用[1,820]的人做问卷简单随机抽样的方法抽到的号码为9,抽到的100人中,编号落入区间A,编号落入区间[821,1520]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C 的人数为()A. 23 B. 24 C. 25 D. 264.为了解城市居民的环保意识,某调查机构从一社区的120名年轻人、80名中年人、60名老年人中,用分层抽样方法抽取了一个容量为n的样本进行调查,其中老年人抽取3名,则n=( )A.13 B.12 C.10 D.9A B C D四位妈妈相约各带一个小孩去观看花卉展,她们选择共享电动车出行,每辆车5 ,,,只能带一大人和一小孩,其中孩子们表示都不坐自己妈妈的车,则A的小孩坐C妈妈或D 妈妈的车概率是A . 13B . 12C . 59D . 236.如图,海水养殖厂进行某水产品的新旧网箱养殖方法产量对比,收获时各随机抽取了100个网箱,测量各箱水产品产量(单位:kg),其频率分布直方图如图根据频率分布直方图,下列说法正确的是①新网箱产量的方差的估计值高于旧网箱产量的方差的估计值②新网箱产量中位数的估计值高于旧网箱产量中位数的估计值③新网箱产量平均数的估计值高于旧网箱产量平均数的估计值④新网箱频率最高组的总产量的估计值接近旧网箱频率最高组总产量估计值的两倍A . ①②③B . ②③④C . ①③④D . ①④7.甲、乙两位射击运动员的5次比赛成绩(单位:环)如茎叶图所示,若两位运动员平均成绩相同,则成绩较稳定(方差较小)的那位运动员成绩的方差为( )A . 5B . 4C . 3D . 28.一只蚂蚁在边长为4的正三角形区域内随机爬行,则它在离三个顶点距离都大于2的区域内的概率为 ( )A. B . 34 C .D . 149.现有甲、乙两台机床同时生产直径为40mm 的零件,各抽测10件进行测量,其结果如下图,则不通过计算从图中数据的变化不能反映的数字特征是( )A . 极差B . 方差C . 平均数D . 中位数10.某公司某件产品的定价x 与销量y 之间的数据统计表如下,根据数据,用最小二乘法得出y 与x 的线性回归直线方程为: 6.517.5y x =+,则表格中n 的值应为( )A . 45B . 50C . 55D . 6011.A 地的天气预报显示,A 地在今后的三天中,每一天有强浓雾的概率为30%,现用随机模拟的方法估计这三天中至少有两天有强浓雾的概率,先利用计算器产生0-9之间整数值的随机数,并用0,1,2,3,4,5,6表示没有强浓雾,用7,8,9表示有强浓雾,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数:402 978 191 925 273 842 812 479 569 683231 357 394 027506 588 730 113 537 779则这三天中至少有两天有强浓雾的概率近似为( )A . 14B .25C .710D .1512.一个口袋中装有大小相同的2个白球和3个黑球,从中摸出一个球,放回后再摸出一个球,则两次摸出的球恰好颜色不同的概率为 ( )A .25B .712C .1225D . 1625二填空题13.在区间[5,5]-内随机地取出一个数a,使得221{|20}x x ax a∈+->的概率为.14.甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球、2个白球,乙袋装有1个红球、5个白球.现分别从甲、乙两袋中各随机抽取1个球,则取出的两球颜色不同的概率为__________.(用分数作答)15.已知下列命题:①线性回归方程为856y x=+,意味着x每增加一个单位,y平均增加8个单位②投掷一颗骰子实验,有掷出的点数为奇数和掷出的点数为偶数两个基本事件③互斥事件不一定是对立事件,但对立事件一定是互斥事件④在适宜的条件下种下一颗种子,观察它是否发芽,这个实验为古典概型其中正确的命题有__________________.16.我国古代数学算经十书之一的《九章算术》有一衰分问题:“今有北乡八千一百人,西乡久千人,南乡五千四百人,凡三乡,发役五百人.”意思是用分层抽样从这三个乡中抽出了500人服役,则南乡应该抽出__________人.三解答题17.南方智运汽车公司在我市推出了共享汽车“Warmcar”,有一款车型为“众泰云”新能源共享汽车,其中一种租用方式“分时计费”规则为:0.15元/分钟+0.8元/公里.已知小李家离上班地点为10公里,每天租用该款汽车上、下班各一次,由于堵车、及红绿灯等原因每次路上开车花费的时间t(分钟)是一个随机变量,现统计了100次路上开车花费时间,在各时间段内是频数分布情况如下表所示:(1)写出小李上班一次租车费用y(元)与用车时间t(分钟)的函数关系;(2)根据上面表格估计小李平均每次租车费用;(3)“众泰云”新能源汽车还有一种租用方式为“按月计费”,规则为每个月收取租金2350元,若小李每个月上班时间平均按21天计算,在不计电费和情况下,请你为小李选择一种省钱的租车方式.18.某市大力推广纯电动汽车,对购买用户依照车辆出厂续驶里程R的行业标准,予以地方财政补贴.其补贴标准如下表:2017年底随机调査该市1000辆纯电动汽车,统计其出厂续驶里程R,得到频率分布直方图如上图所示.用样本估计总体,频率估计概率,解决如下问题:(1)求该市每辆纯电动汽车2017年地方财政补贴的均值;(2)某企业统计2017年其充电站100天中各天充电车辆数,得如下的频数分布表:(同一组数据用该区间的中点值作代表)2018年2月,国家出台政策,将纯电动汽车财政补贴逐步转移到充电基础设施建设上来.该企业拟将转移补贴资金用于添置新型充电设备.现有直流、交流两种充电桩可供购置.直流充电桩5万元/台,每台每天最多可以充电30辆车,每天维护费用500元/台;交流充电桩1万元/台,每台每天最多可以充电4辆车,每天维护费用80元/台.该企业现有两种购置方案:方案一:购买100台直流充电桩和900台交流充电桩;方案二:购买200台直流充电桩和400台交流充电桩.假设车辆充电时优先使用新设备,且充电一辆车产生25元的收入,用2017年的统计数据,分别估计该企业在两种方案下新设备产生的日利润.(日利润=日收入−日维护费用).19.某地级市共有200000中小学生,其中有7%学生在2017年享受了“国家精准扶贫”政策,在享受“国家精准扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为5:3:2,为进一步帮助这些学生,当地市政府设立“专项教育基金”,对这三个等次的困难学生每年每人分别补助1000元、1500元、2000元。

经济学家调查发现,当地人均可支配年收入较上一年每增加%n ,一般困难的学生中有3%n 会脱贫,脱贫后将不再享受“精准扶贫”政策,很困难的学生中有2%n 转为一般困难,特别困难的学生中有%n 转为很困难。

现统计了该地级市2013年到2017年共5年的人均可支配年收入,对数据初步处理后得到了如图所示的散点图和表中统计量的值,其中年份x 取13时代表2013年,X 与y (万元)近似满足关系式21.2c x y C =,其中12,C C 为常数。

(2013年至2019年该市中学生人数大致保持不变)其中2log i i k y =,5115i i k k ==∑ (Ⅰ)估计该市2018年人均可支配年收入;(Ⅱ)求该市2018年的“专项教育基金”的财政预算大约为多少?附:对于一组具有线性相关关系的数据1122,),(,)...(,)n n u v u v u v (,其回归直线方程 v u βα=+的斜率和截距的最小二乘估计分别为121()()()n ii i nii u u v v u u β==--=-∑∑=v u αβ-20.某大学为了更好提升学校文化品位,发挥校园文化的教育功能特举办了校园文化建设方案征集大赛,经评委会初评,有两个优秀方案入选.为了更好充分体现师生的主人翁意识,组委会邀请了100名师生代表对这两个方案进行登记评价(登记从高到低依次为A,B,C,D,E),评价结果对应的人数统计如下表:(Ⅰ)若按分层抽样从对1号方案进行评价的100名师生中抽取样本进行调查,其中C等级层抽取3人,D等级层抽取1人,求a,b,c的值;(Ⅱ)在(Ⅰ)的条件下,若从对2个方案的评价为C,D的评价表中各抽取10%进行数据分析,再从中选取2份进行详细研究,求选出的2份评价表中至少有1份评价为D的概率.21.中国海军,正在以不可阻挡的气魄向深蓝进军。

在中国海军加快建设的大背景下,国产水面舰艇吨位不断增大、技术日益现代化,特别是国产航空母舰下水,航母需要大量高素质航母舰载机飞行员。

为此中国海军在全国9省9所优质普通高中进行海航班建设试点培育航母舰载机飞行员。

2017年4月我省首届海军航空实验班开始面向全省遴选学员,有10000名初中毕业生踊跃报名投身国防,经过文化考试、体格测试、政治考核、心理选拔等过程筛选,最终招收50名学员。

培养学校在关注学员的文化素养同时注重学员的身体素质,要求每月至少参加一次野营拉练活动(下面简称“活动”)并记录成绩.10月某次活动中海航班学员成绩统计如图所示:(Ⅰ)根据图表,试估算学员在活动中取得成绩的中位数(精确到0.1);[50,60) ,[90,100)两组学员中任意选出两人为一组,若选出成绩分差(Ⅱ)根据成绩从大于10,则称该组为“帮扶组”,试求选出两人为“帮扶组”的概率.。

相关文档
最新文档