高效液相色谱(HPLC)法测定邻苯二甲酸酯
高效液相色谱法测定农田土壤中的邻苯二甲酸酯含量探讨

高效液相色谱法测定农田土壤中的邻苯二甲酸酯含量探讨随着农田土壤中化学农药的使用日益广泛,农田土壤中的污染物也成为了一个备受关注的问题。
邻苯二甲酸酯是一类常见的农田土壤污染物,它们广泛存在于食品包装、玩具、家具等日常用品中,由于其在生产和使用过程中易溶于水和有机溶剂,因此极易进入农田土壤中,对土壤生态系统和人体健康带来潜在威胁。
对农田土壤中邻苯二甲酸酯含量进行准确测定尤为重要。
高效液相色谱法是一种常用的分析技术,具有分离效率高、操作简便、准确度高等特点,已经广泛应用于农田土壤中有机污染物的测定。
本文旨在探讨高效液相色谱法在测定农田土壤中邻苯二甲酸酯含量方面的应用及相关问题,为农田土壤环境质量的监测提供参考。
一、高效液相色谱法测定原理高效液相色谱法是一种通过色谱柱分离混合物中各组分的方法,它利用样品中各组分在不同的条件下与色谱柱固定相互作用强弱不同,从而实现各组分的分离和测定。
在测定邻苯二甲酸酯含量时,通常采用反相色谱柱作为分离柱,选择合适的流动相和检测器进行分析。
通常情况下,首先将待测样品中的邻苯二甲酸酯提取到有机溶剂中,再将有机溶剂蒸发浓缩,得到待测物溶液。
然后将溶液注入色谱仪中,经过色谱柱分离后,利用检测器对各组分进行定量分析,从而得到邻苯二甲酸酯的含量。
1. 样品制备:取农田土壤样品,经过干燥和颗粒度分析后,加入适量提取剂,振荡提取,获得待测物溶液。
2. 色谱条件设置:选择合适的反相色谱柱和流动相,设置流动相温度和流速等参数,进行色谱条件的优化。
3. 样品分析:将待测物溶液注入色谱仪中,根据色谱条件进行分析。
4. 数据处理:利用色谱软件处理得到的数据,进行定量分析,获得邻苯二甲酸酯的含量。
5. 方法验证:对测定方法进行准确性、精密度、重复性等方面的验证,确保测定结果的准确性和可靠性。
1. 样品制备问题:样品制备是高效液相色谱法测定中的重要环节,对土壤样品进行有效的提取和净化是关键。
农田土壤中的有机物和杂质较多,提取方法的选择和提取效率对测定结果影响较大。
高效液相色谱法测定邻苯二甲酸酯实验报告

高效液相色谱法测定邻苯二甲酸酯实验报告实验目的:1.学习掌握高效液相色谱法(HPLC)的基本原理和操作方法;2.通过测定邻苯二甲酸酯的含量,了解其在环境中的污染状况。
实验原理:高效液相色谱法是一种常用的分析技术,具有高分辨率、高灵敏度和高重复性的特点。
此实验中使用的HPLC仪器由进样系统、流动相系统、色谱柱和检测器组成。
样品进样后,通过流动相在色谱柱中分离,不同组分按照特定的时间顺序通过,再通过检测器检测并计算得到定量结果。
实验步骤:1.仪器和色谱柱的准备:打开和保持HPLC仪器的电源,并预热至工作温度。
选择合适的色谱柱,并平衡至稳定状态。
2.样品的制备和进样:取一定质量的待测样品,加入适量的提取液,并充分混合。
用适当的过滤器进行过滤,将过滤后的样品进样到色谱柱中。
3.进样和流动相参数的设置:根据样品的性质和分析要求,设置进样量和流动相组成。
常用的流动相为二氯甲烷和甲醇的混合物。
4.色谱柱运行:开启HPLC仪器,并调整流动相的流速和温度。
根据不同的物质特性,选择合适的梯度程序进行分离。
在分离过程中,对流动相温度和流速进行实时监测和调整。
5.检测器的设置和数据处理:选择合适的检测器,并设置检测参数。
在检测过程中,记录不同时间点的信号强度,并输入到计算机软件中进行峰面积和浓度的计算。
实验结果:根据上述实验步骤,测定了待测样品中邻苯二甲酸酯的含量。
根据HPLC测定结果,经过数据处理和计算,得到待测样品中邻苯二甲酸酯的浓度为x mg/L。
结论:通过本实验,成功地应用高效液相色谱法测定了待测样品中邻苯二甲酸酯的含量,得到了可信的分析结果。
该方法操作简便、准确可靠,可用于环境监测和化学分析中对邻苯二甲酸酯的定量测定。
反相高效液相色谱法测定水体中邻苯二甲酸酯

关键词:邻苯二甲酸酯; 液萃取; 液. 反相高效液相色谱; 水体
中图分类号: 6 7 0 5. 7
d i 1.9 9 .s.0 32 8 . 1. .5 o: 03 60i n10 -4 32 0 2 s 019
文 献标识t :A i  ̄ -
用洗净的玻璃瓶采样, 采集后立即密封样品, 采集的水样用 0 5m微孔滤膜过滤后置于冰箱 4 条件保存. . ̄ 4t " C 2 . 水样的预处理 .2 3
取 5 0 L水样于 l0m 0m O0 L分液漏斗中, 10 L二氯 甲烷分三次萃取 (0 L 0 L 0 L 分别震荡 用 0m 4m +3 m +3 m ), 萃取 1 0分钟, 萃取液过无水硫酸钠, 收集于浓缩瓶中, 用少量二氯 甲烷洗涤漏斗并将其转移至浓缩瓶 中. 将浓 缩 瓶置 于 旋转 蒸 发浓 缩仪 中浓 缩至 约 1mL 0 ,待 净化 . 将 浓缩 的萃取液通过氧化铝层析柱 净化, 以正 己烷为淋洗液, 将收集的淋洗液浓缩至干, 最后用甲醇定容 至 1. ,待测 . 00 mL 2 . 水样的色谱测定条件 .3 3 色谱柱 :p eo eeO S (5 x 4 m hn m nx D 柱 2 0 4 . m); 6 检测器 :二极管矩阵检测器; 流动相 :甲醇一 (55 柱 水 9 :); 温 :3 ℃;进 样体 积 :2 ;压力 范 围 :10 pi 60s 5 0 30 s 10pi .
旋 转 蒸 发仪试剂 .1 2 邻苯二 甲酸二 甲酯 邻苯二 甲酸二丁酯 邻苯二甲酸二正辛酯 AR 成都市科龙化工试剂厂;甲醇 A. . R Dima eh oo i ;二氯 甲烷 正 己烷 中性 氧化 铝 (0 -0 k cn lge T s 102 0目) 无水 硫 酸钠 A. R 222 标 准储 备 液 .. 以甲醇作溶剂分别配制浓度 10 gL的 D 、D P O 00 / m MP B 、D P单标液. 再用甲醇稀释至浓度均为 10 / 0 .mg 0 L 的标准储备液.
高效液相色谱-二级管阵列检测器法测定化妆品中邻苯二甲酸酯

保持 1 n; 样 口温度 :8  ̄ 色 谱 一质谱 接 口 0mi 进 2 0C;
超 纯水 仪 : l. Mii lQ型 , 国密理博 公 司 ; 美
有 机性 样 品滤 膜 : . m ; 0 5u 4
甲醇 、 乙腈 : 色谱纯 ; B P D P、 H B 、 B DE P标 准品 : 纯度 为 9 . 上 海 98 %,
MS 型 , 国安捷 伦公 司 ; D 美
() 2 气相色谱 一 质谱条件
色谱柱 : mL5 MS柱 (0m × . u ,. m) 3 02 r n 0 5u , 5/ 2
高效液相色谱仪测定邻苯4P作业指导书 - 亿鑫仪器

高效液相色谱仪测定邻苯4P作业指导书一、范围本指导书适用于Rohs2.0中管控的四种邻苯二甲酸酯含量的测定。
四种邻苯二甲酸酯:邻苯二甲酸丁苄酯(BBP)、邻苯二甲酸二异丁酯(DIBP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二(2-乙基己基)酯(DEHP)。
本指导书适用于Rohs2.0中管控的四种邻苯二甲酸酯的高效液相色谱测定方法。
二、规范性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅所注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T6682分析实验室用水规格和实验方法GB/T26792-2011高效液相色谱仪SJ/T11692电子电气产品中有害物质检测样品拆分指南三、术语和定义四种邻苯二甲酸酯Four Phthalates(PAEs)四种邻苯二甲酸酯是指表1中四种碳氢化合物。
四、原理将分析试样破碎后,用乙腈提取,经可控温超声波清洗器超声,过滤洗涤后定容,用高效液相色谱仪(HPLC)测定,采用目标分析物的保留时间定性,外标法定量。
五、试剂与材料5.1乙腈:色谱纯。
5.2甲醇:色谱纯。
5.3水:符合GB/T6682中一级水。
5.4滤膜和滤器:有机相针筒过滤膜,0.22um或相当者。
5.5四种邻苯二甲酸酯标准物质:邻苯二甲酸二(2-乙基己基)酯(DEHP)纯度>98.0%;邻苯二甲酸丁苄酯(BBP)纯度>98.0%;邻苯二甲酸二丁酯(DBP)纯度>98.0%;邻苯二甲酸二异丁酯(DIBP)纯度98.0%。
六、仪器和装置6.1高效液相色谱仪:配置紫外检测器。
6.2色谱柱:C18柱,250mm×4.6mm×5.0um或相当者。
6.3粉碎机或等效设备:转速高于2700r/min。
6.4分析天平:精度0.1mg。
6.5可控温超声波清洗器:频率(400±100)Hz,功率(120±10)W,水浴温控范围:(25±5)℃至(80±5)℃。
液相色谱-质谱法测定化妆品中10种邻苯二甲酸酯

液相色谱-质谱法测定化妆品中10种邻苯二甲酸酯白亚敏;杨小珊;毛庆;江生;秦剑【期刊名称】《日用化学工业》【年(卷),期】2014(44)8【摘要】采用液相色谱-质谱(LC-MS)法检测化妆品中10种邻苯二甲酸酯类化合物的残留量.化妆品样品溶解后超声振荡提取,采用多反应监测模式进行检测,外标法定量.结果表明,添加浓度为10倍检出限时,邻苯二甲酸酯类化合物的回收率为76.2%~95.2%,相对标准偏差为4.4%~8.9%.可用于化妆品中10种邻苯二甲酸酯类化合物的同时测定.【总页数】4页(P472-475)【作者】白亚敏;杨小珊;毛庆;江生;秦剑【作者单位】重庆市食品药品检验所,重庆 401121;重庆市药物过程与质量控制工程技术研究中心,重庆 401121;重庆市食品药品检验所,重庆 401121;重庆市药物过程与质量控制工程技术研究中心,重庆 401121;重庆市食品药品检验所,重庆401121;重庆市药物过程与质量控制工程技术研究中心,重庆 401121;重庆市食品药品检验所,重庆 401121;重庆市药物过程与质量控制工程技术研究中心,重庆401121;重庆市食品药品检验所,重庆 401121;重庆市药物过程与质量控制工程技术研究中心,重庆 401121【正文语种】中文【中图分类】TQ658【相关文献】1.高效液相色谱-质谱串联法测定化妆品中的邻苯二甲酸酯 [J], 丁世环2.超高效液相色谱-串联质谱法测定化妆品中23种邻苯二甲酸酯类化合物 [J], 于建;许勇;郑荣;刘畅;王柯3.高效液相色谱-串联质谱法测定水溶性化妆品中的1O种邻苯二甲酸酯 [J], 黄琦君;王传现;张睿;吴娇琦;郭德华;4.高效液相色谱-串联质谱法测定水溶性化妆品中的10种邻苯二甲酸酯 [J], 黄琦君;王传现;张睿;吴娇琦;郭德华5.基于精确质量数筛选的超高效液相色谱-线性离子阱/静电场轨道阱质谱法快速鉴别化妆品中的邻苯二甲酸酯 [J], 李兆永;王凤美;牛增元;罗忻;陈军辉;王小如因版权原因,仅展示原文概要,查看原文内容请购买。
邻苯二甲酸液相色谱检测方法

邻苯二甲酸液相色谱检测方法邻苯二甲酸是一种广泛使用于工业生产中的有机化合物,在塑料制造、涂料、酯类等领域有着广泛的应用。
然而,如果大量的邻苯二甲酸被释放到环境中,可能会对生态环境带来不利的影响。
因此,对邻苯二甲酸的检测方法的研究变得非常重要。
本文就邻苯二甲酸的液相色谱检测方法进行系统的介绍。
一、液相色谱技术。
液相色谱(Liquid Chromatography, LC)是一种将待测物质通过柱上填充物(色谱柱)与移动相进行分离和纯化的分析技术。
因为液相色谱系统具有分离和分析效果好,灵敏度高,样品的准确性和重现性强等特点,因此在各种化学分析、制药、食品和环境分析领域都有着广泛的应用。
二、邻苯二甲酸检测方法的研究。
1.液相色谱-紫外检测法。
液相色谱-紫外检测法(Liquid chromatography – Ultraviolet detection, LC-UV)是常见的邻苯二甲酸检测方法之一、该方法的原理基于邻苯二甲酸对紫外光的吸收,在液相色谱分离后,用紫外光检测器检测邻苯二甲酸吸收的光谱强度,计算浓度。
然而,由于邻苯二甲酸的结构中不含有芳香环,其在紫外光的吸收较弱,检测灵敏度较低,因此该方法并不是最理想的检测方法。
2.液相色谱-质谱检测法。
液相色谱-质谱检测法(Liquid chromatography – Mass spectrometry, LC-MS)通过将邻苯二甲酸离子化,利用其分子结构特征通过质量分析对其进行检测。
该方法具有高效、高灵敏度、高选择性、精确度高等优点,但该方法仪器的设备和维护成本较高。
3.液相色谱-荧光检测法。
液相色谱-荧光检测法(Liquid chromatography – Fluorescence detection, LC-FL)可以通过邻苯二甲酸荧光检测器检测邻苯二甲酸分子不同的荧光特征。
该方法的检测灵敏度较高,而且有很好的选择性和准确性。
适合邻苯二甲酸水准较低的检测。
QuEChERS-高效液相色谱法测定土壤中邻苯二甲酸酯

h FQ E AQ e L !高效液相色谱法测定土壤中邻苯二甲酸酯!魏丽琼$呼世斌$刘书慧$王娇娇$柴琴琴$刘晋波!西北农林科技大学"陕西杨凌*"#"’’$摘要!邻苯二甲酸酯&6B Q 4’类物质是一种人工合成的环境激素类化合物"建立了一种h FQ E AQ e L !高效液相色谱法联合测定土壤中,种6B Q 4"土壤样品经h FQ E AQ e L 法提取后进行了高效液相色谱分析测定"选取乙腈#乙酸乙酯#甲醇作为萃取剂!对萃取剂进行选择!对影响萃取效率的萃取剂体积#超纯水体积#盐量等条件进行优化"方法的加标回收率为)&%*+b "’#%3+!检出限为’%&)b "%#)"01Z0!相对标准偏差&/p *’为"%(+b &%;+"该方法前处理简单!萃取剂用量少!分析时间短!适用于土壤中6B Q 4的大批量测定分析"关键词!土壤%邻苯二甲酸酯%hFQ E AQ e L %高效液相色谱法<=>%"’%";#’,1?@A?0:@#’"(’,’;#2"&"%,’)$&’()(*#V &V $+’0$0’2"!&"%!’)!(’+./_L "0Q "%!5V ’W V#"%*(%,$)0"+’_3’20V %(,$&(W %$#V /-Q >28G f8M 90"J VLA8G [89"2>VLAFG AF8"-B C Dd 87M G ?87M "E J B >h 89G f89"2>Vd 89G [M!C M R U AY P 4U B 0R 8:FN U FR P 79.]M R P 4U R H V 98W P R 48U H "a 790N 890*"#"’’"E A897$$6789:;8%6AU A7N 8:7:8.P 4U P R 4!6B Q 4$Y P R P4H 9U AP U 8:P 9W 8R M 9/P 9U 7N P 9.M :R 89P.84R FXU M R 4@B h FQ E AQ e LG A80A XP R O M R /79:P N 8fF8.:AR M /7U M 0R 7XAH !J 62E $/P U AM .Y P R P P 4U 7[N 84AP .O M R .P U P R /897U 8M 9M O O 8W P 6B Q 4894M 8N @S AP 47/XN P 4Y P R P P \U R 7:U P .[H h FQ E AQ e L /P U AM ."79.U AP 9.P U P R /89P .[H J 62E @B :P U M 98U R 8N P "P U AH N 7:P U 7U P79./P U A79M N Y P R P4P N P :U P .74U APP \U R 7:U 8M 94M N W P 9U "79.U AP P \XP R 8/P 9U 7N :M 9.8U 8M 94Y P R PM XU 8/8K P ."4F:A 74P \U R 7:U 8M 94M N W P 9U "W M N F/PM O FN U R 7XFR PY 7U P R "79.47N U @S AP 7W P R 70P R P :M W P R H Y P R P 89U APR 790PM O )&%*+b "’#%3+"U APN 8/8U 4M O .P U P :U 8M 9R 790P .O R M /’%&)U M"%#)"01Z0"79.U AP R P N 7U 8W P 4U 79.7R .R 790P .O R M /"%(+U M &%;+!/p *$@S AP /P U AM .XR M W 8.P .U AP 7.W 79U 70P 4M O 48/XN P M XP R 7U 8M 9"A80A P O O 8:8P 9:H O M R 47/XN P 4XR P U R P 7U /P 9U "4AM R U U 8/PO M R 797N H 484"79.Y 744F8U 7[N PO M R U AP.P U P R /897U 8M 9M O XAU A7N 8:7:8.P 4U P R 4897N 7R 0P 9F/[P R M O 4M 8N 4@<=>?@9A 7%4M 8N #XAU A7N 8:7:8.P 4U P R 4#h FQ E AQ e L #A80A XP R O M R /79:P N 8fF8.:AR M /7U M 0R 7XAH$$$$$$$$!科技部,3(;-子课题,污灌区重金属!有机物复合污染土壤修复技术研究-!#’"#BB "’"&’&$&收稿日期%#’",!’)!"*BC 引C 言邻苯二甲酸酯!又名酞酸酯"简称6B Q 4$是一种能够起到软化作用的人工合成的有机化合物"多用作塑料增塑剂"以增大塑料产品的可塑性和柔韧度"在塑料中的含量达#’+b ,’+(")&由于6B Q 4在塑料中呈游离态"与塑料基质之间以范德华力和氢键联结(#)"极易进入周围的环境介质中"随着时间的推移富集下来&目前"在大气’水体’土壤和植物体等环境介质中都已检测到6B Q 4的存在&6B Q 4作为一种普遍存在的环境污染物"在环境中性质较稳定"可持久存在"有较强的生物蓄积效应"可通过食物链进入人体"危及人体健康(;G &)&国内外大量研究表明"6B Q 4是一种环境激素类物质"部分具有致癌’致畸’致突变的危害"多数还具有内分泌干扰性"可改变人体血液中雌激素的正常水平"产生慢性危害(,G *)&美国环保局已将邻苯二甲酸二甲酯!<56$’邻苯二甲酸二乙酯!<Q 6$’邻苯二甲酸二丁酯!<_6$’邻苯二甲酸丁基苄基酯!__6$’邻苯二甲酸二!#G 乙基己基$酯!<Q J 6$’邻苯二甲酸二辛酯!<=6$(种3&"环$境$工$程Q 9W 8R M 9/P 9U 7N Q 9089P P R 890酞酸酯列为优先控制污染物"我国也将<Q6’<=6’<56;种列入优控有毒污染物黑名单&目前"对土壤中6B Q4的提取有加速溶剂萃取(3)’索式提取())’超声提取("’)’微波辅助萃取("")等方法"这些方法虽能取得较好的提取效果"但存在耗时长"萃取剂用量大"需要专用仪器等缺点& h FQ E AQ e L法读作,:7U:AP R4-"为快速!fF8:Z$’简便!P74H$’经济!:AP7X$’高效!P O O P:U8W P$’耐用!R F00P.$和安全!47O P$的英文缩写"于#’’;年诞生于美国"广泛用于检测水果和蔬菜中的药物残留("#)&它的基本过程是基于盐析辅助水溶性有机溶剂!如乙腈’丙酮’乙酸乙酯等$的液液萃取(";)"萃取后加入6LB等吸附剂除杂"上清液进行D E G5L或J62E检测&由于土壤样品基体复杂"污染物较多"土样中6B Q4的前处理技术在其监测中起重要作用& h FQ E AQ e L法提取土壤中的6B Q4目前还没有研究涉及"本研究采用改进的h FQ E AQ e L联合高效液相色谱法测定土壤中,种6B Q4"建立了一种前处理简便"溶剂用量少"分析时间短的检测方法&DC实验部分DE DC主要仪器和试剂-7U P R4(’’高效液相色谱仪"带紫外检测器!美国-7U P R4公司$#_8M O F0P LU R7U M4台式高速冷冻离心机!德国J P R7P F4公司$#B V a##’分析天平!日本LA8/7.K F公司$##,’"2平头微量注射器!上海高鸽$#‘M R U P\G D P98P#涡旋振荡器!美国L:8P9U8O8: >9.F4U R8P4公司$#"’/2玻璃离心管&为降低6B Q4的污染"实验中避免使用任何塑料制品"所有玻璃仪器使用前用超纯水’丙酮多次清洗"置于马弗炉中&,’c烘烤#b&A&乙腈!J62E级$"乙酸乙酯!分析纯$"甲醇!优级纯$"丙酮!J62E级$均购自国药化学试剂有限公司"纯度均在))%,+以上&无水50L=&和C7E N于&,’c烘烤#b&A"放在玻璃器皿中冷却后置于干燥器中备用&邻苯二甲酸二甲酯!<56$’邻苯二甲酸二乙酯!<Q6$’邻苯二甲酸二丁酯!<_6$’邻苯二甲酸丁基苄基酯!__6$’邻苯二甲酸二!#G乙基己基$酯!<Q J6$标准溶液!溶解于甲醇溶剂$"质量浓度均为#’’’"01/2"购自美国L80/7G B N.R8:A公司&用甲醇稀释"’倍为#’’"01/2作储备液"存放于&c的冰箱中备用&DE FC样品前处理DE FE D$土样制备将采集的土壤样品自然风干"磨碎后过(’目!’%;//$筛"放在玻璃容器中保存&选择不含6B Q4的空白土样!经高效液相色谱仪扫描未发现6B Q4物质$进行回收率试验&准确称取#%’’’’0空白土样于"’/2玻璃离心管中"加入所需添加量的邻苯二甲酸酯混合标准溶液"加标后"再加入足量的萃取剂完全浸没土样"使6B Q4在土样中彻底混匀&将加标土样置于通风厨内晾干"备用&DE FE F$实验方法称取#%’’’’0土样于"’/2玻璃离心管中"先加入#/2的超纯水"涡旋"/89!为了避免接触离心管的塑料盖子"用铝箔纸将盖子与样品分离开来$"然后加入,/2的萃取剂"涡旋振荡器大力涡旋"/89"之后再加入#0无水50L=&和’%,0C7E N"立即涡旋"/89!立即涡旋是为了避免无水50L=&吸水时形成结块$&随后离心管在&’’’R1/89离心,/89"最后取上清液过’%##"/的滤膜"J62E待测& DE GC色谱条件色谱分离柱%-7U P R4LH//P U R HEN3柱!#,’//^ &@(//","/$&流动相%甲醇!B$***水!_$&柱温% #,c#进样量%#’"2#检测波长%##,9/#流速% "%’/21/89&梯度洗脱程序%’b;/89"3,+B"",+ _#;b*/89"3,+B线性变化至"’’+B#*b"’/89" "’’+B&FC结果与讨论FE DC空白实验由于邻苯二甲酸酯是一种塑料增塑剂"实验操作中很难完全避免塑料制品的使用"整个实验过程较容易受到外界6B Q4的干扰"因此对溶剂’器皿’操作过程中的6B Q4污染要进行严格的控制&FE DE D$试剂空白对于实验中所使用的试剂进行高效液相色谱测定",种6B Q4均未检出&FE DE F$全过程空白取空白土样作全过程空白实验"依据上述实验方法进行样品处理"经高效液相色谱检测"结果表明" ,种6B Q4均未检出"低于最低检测的浓度"满足分析要求&FE FC不同萃取剂对回收率的影响通常"由于乙腈和乙酸乙酯在h FQ E AQ e L法萃)&"监$测$与$评$价Q9W8R M9/P9U7N5M98U M R890l B44P44/P9U取水果和蔬菜中农药残留的高效率("#)而被作为该方法的萃取剂#另外"6B Q4在甲醇和乙腈中有较好的溶解性"这两种溶剂都与水互溶"加盐离心后均可以与水相分离"皆可作为h FQ E AQ e L前处理的萃取溶剂&因此实验选择了乙腈’乙酸乙酯和甲醇作为萃取剂"考察了不同萃取剂对6B Q4回收率的影响"每组做;个平行实验且做空白对照&结果如表"所示&表DC萃取剂对回收率的影响&:6J=DC"P P=;8@P=O89:;8M@N7@J Z=N8@N9=;@Z=9>9:8=7@P:N:J>8=7+化合物回收率乙腈乙酸乙酯甲醇<563#%"3’%,,(%;<Q6*)%;*&%)("%*__63’%&*3%;*&%#<_63&%)3"%#**%,<Q J6)*%3);%;*)%"由表"可以看出%;种萃取剂相比"乙腈作为萃取剂对,种6B Q4都有较好的回收率&乙腈是h FQ E AQ e L法中常用的萃取剂"它能在盐!无水硫酸镁和氯化钠$加入时较好地从水相中分离开来"实现了较高的回收率&而萃取过程中发现乙酸乙酯较易黏在器壁上"不利于6B Q4与土样的分离"导致萃取效率低于乙腈&甲醇对6B Q4的萃取回收率较低"因此本实验选用乙腈作为萃取剂&FE GC h FQ E AQ e L萃取6B Q4的条件优化FE GE D$超纯水体积h FQ E AQ e L方法最初是用于检测水果和蔬菜等含水率较高的环境基质"对于土壤等含水率较低的基质来说"通常要在萃取剂萃取之前加水润湿样品"可使样品的气孔增大"萃取剂更易进入样品&研究了土样中加入不同体积的水对目标分析物的回收率的影响%在#0加标土样中分别加入#/2和;/2超纯水"混合物涡旋"/89"随后进行萃取过程"加入一定数量和成比例的乙腈及盐"按h FQ E AQ e L步骤实验&结果表明%<56的加标回收率分别为*)+和3"+" <Q6的加标回收率分别为(*+和(,+"__6的加标回收率分别为*#+和*’+"<_6的加标回收率分别为3#+和3&+"<Q J6的加标回收率分别为3)+和)"+"通过比较"不同体积的水对回收率影响差别不大"因此选择加入#/2超纯水"足以完全浸透土样"为涡旋部分适当的提供了土样适合的均质化&FE GE F$萃取剂体积通常理想的分析方法就是用最小的量以求达到统计上可靠的结果&实验中使用较多的样本量就要使用大量的萃取剂"导致更多的浪费和较大的安全隐患&由于玻璃离心管容积的限制"萃取剂体积也受到限制"因此土样量选择#0"萃取剂体积分别为;", /2"水的体积和盐的质量根据萃取剂体积成比例加入&结果表明%萃取剂为,/2时对土样中,种6B Q4的回收率较高"均可达3*+以上&FE GE G$加盐量土样经萃取溶剂萃取后"盐的加入是为了实现有机相与水相的分离"在它们的分离过程中目标分析物将从样品中分离出来进入萃取溶剂中"完成目标分析物的提取过程&C7E N的加入引起的盐析效应通常会导致极性化合物回收率的增加"能够控制有机相中水的百分比&加入过饱和的无水50L=&是因为它可以大量吸水"从而显著地减少水相"促进分析物从有机相中分离&表#中给出了不同组合的无水50L=&和C7E N及其相应的结果"可以看出%,/2的萃取剂提取后加入#0无水50L=&和’%,0C7E N时"回收率最高"该组合在其他文献中也有体现&表FC不同组合的盐对目标分析物回收率的影响&:6J=FC’N P J L=N;=@P A M P P=9=N8;@R6M N:8M@N7@P7:J87@N8Q= 9=;@Z=9>9:8=7@P8Q=8:9S=8;@RU@L N A7盐量10回收率1+50L=&C7E N<56<Q6__6<_6<Q J6 "#’*#%"*’%;**%*3;%;3(%,’%#,3’%"*(%(3"%’3#%"3,%(’%,()%#(;%**#%"*)%#3&%’’*)%,(*%#*)%;3#%’3,%,’%#,((%;*"%"*’%#3"%;3)%(’%,),%#3)%))3%3"’#%&"’;%*FE HC方法的线性关系用甲醇将,种邻苯二甲酸酯混合标准储备液稀释"配置成校正曲线工作液"其质量浓度分别为’%""’%,""%’"#%’",%’""’%’"01/2&以各组分的峰面积为纵坐标"质量浓度为横坐标绘制标准曲线"由线性相关系数I#观察方法的线性关系&线性方程和相关系数见表;"该方法的线性相关系数I#为’%))#)b’%))3#"线性关系良好&FE TC加标回收率和精密度准确称取*个#%’’’’0的空白土样"分别加入,"0,种6B Q4的混合标准溶液"按照本研究的最佳实验方案对*个加标土样进行加标回收率的测定" ,种6B Q4的平均加标回收率为)&%*+b"’#%3+"根据Q6B方法计算得到相对标准偏为"%(+b&%;+"’,"环$境$工$程Q9W8R M9/P9U7N Q9089P P R890$$表GC#$"7的线性方程和线性相关系数&:6J=GC&Q=J M N=:99=S9=77M@N=K L:8M@N7:N A;@99=J:8M@N;@=P P M;M=N8@P#$"7化合物线性方程相关系数I#<56K p(;);(H j&’"(%#’%))3#<Q6K p(###’H!)33"%(’%)),(__6K p),#)’H j""’’’’’%))#)<_6K p;;)(#H!;*3*%"’%)),*<Q J6K p;#)&)H!&;3#%(’%))#)方法检出限和精密度为’%&)b"%#)"01Z0!见表&$&表HC该方法的回收率%精密度和检出限&:6J=HC%=;@Z=9M=7$U9=;M7M@N7:N AA=8=;8M@NJ M RM87@P8Q=R=8Q@A化合物加标回收率1+相对标准偏差1+检出限1!"0+Z0!"$<56)(%;#%*’%3’<Q6)&%*&%;"%#)__6)3%&;%*"%""<_6"’"%""%(’%&)<Q J6"’#%3#%"’%(#GC实际样品分析采用本研究建立的实验方法对部分北京污灌区和河南污灌区的土壤进行了测定分析"从表,中可以看出土壤中<_6和<Q J6含量较高"这与大部分地区土壤中6B Q4的污染情况相似&从不同地区土壤中6B Q4的污染物组分来看"<_6和<Q J6是土壤中最主要的污染物"浓度’检出率和超标率均较高("&G"3)&表TC实际样品的测定分析&:6J=TC$N:J>8M;:J9=7L J87@P#$"7M N9=:J7@M J7:RU J=7化合物样品1!"0+0!"$"#;&,<56’%";’%"#’%"’’%;3’%’3<Q6’%’)’%#"’%’&’%#)’%")__6’%##’%’3’%&;’%’*’%’(<_6"%(*,%3’#%*##%)&’%*) <Q J6&%#(;%)"&%’&"%&##%*"HC结C语传统的h FQ E AQ e L法在乙腈提取污染物以后通常加入6LB等吸附剂除杂"为使实验过程更加简便"除杂这一步可省略"也能取得较好的效果&因此本研究将传统的h FQ E AQ e L法进行了改进"在乙腈萃取后省去了吸附剂除杂这一步"也得到了较好的效果&本研究通过对萃取条件进行优化选择"建立了h FQ E AQ e LG高效液相色谱法测定土壤中邻苯二甲酸酯的方法"方法回收率为)&%*+b"’#%3+"检出限为’%&)b"%#)"01Z0"相对标准偏差为"%(+b&%;+&该方法具有操作快速简便’周期短’溶剂用量少’萃取效率高’精密度和检出限较好的特点"可作为一种新型的检测土壤中6B Q4的分析方法"对实际土壤样品中6B Q4的监测具有实用性&参考文献(")$陈永山"骆永明"章海波"等@设施菜地土壤酞酸酯污染的初步研究(d)@土壤学报"#’"""&3!;$%,"(%(#)$高军"于小彬"张裕"等@酞酸酯对土壤污染及其生态毒理效应研究进展(d)@淮阴工学院学报"#’";"##!;$%&;%(;)$刘庆"杨红军"史衍玺"等@环境中邻苯二甲酸酯类6B Q4污染物研究进展(d)@中国生态农业学报"#’"#"#’!3$%)()% (&)$黄慧娟"蔡全英"吕辉雄"等@土壤!蔬菜系统中邻苯二甲酸酯的研究进展(d)@广东农业科学"#’""!)$%,’%(,)$张海光"孙国帅"孙磊"等@典型覆膜作物土壤中邻苯二甲酸酯污染的初步研究(d)@中国环境监测"#’";"#)!&$%(’G("% (()$邱东茹"吴振斌"贺锋@内分泌扰乱化学品对动物的影响和作用机制(d)@环境科学研究"#’’’"";!($%,#G,&%(*)$林兴桃"王小逸"任仁@环境内分泌干扰物!邻苯二甲酸酯的研究(d)@环境污染与防治"#’’;"#,!,$%#3(G#3*%(3)$廖平德"滕云梅"白海强"等@加速溶剂萃取!气相色谱!质谱法测定土壤中酞酸酯类有机物(d)@广州化学"#’""";(!;$%3G""%())$曹攽"马军"李云木子"等@索氏提取!液相色谱法测定土壤中邻苯二甲酸酯类物质(d)@地质学刊"#’""";,!"$%*&G*,% ("’)$曹攽"李云木子"马军"等@超声波萃取!高效液相色谱法测定土壤中邻苯二甲酸酯(d)@岩矿测试"#’""";’!#$%"*)G"3"% ("")$李娟"赵永刚@微波萃取!高效液相色谱法测定土壤中的酞酸酯类化合物(d)@科技资讯"#’"’";"%#"’%("#)$B974U74487.P45"2P AM U7H L d"LU7?9[7AP R<"P U7N@]74U79.P74H /FN U8R P48.FP/P U AM.P/XN M H8907:P U M98U R8N PP\U R7:U8M91X7R U R U8M989079..84XP R48W P4M N8.G XA74P P\U R7:U8M9O M R U AP.P U P R/897U8M9M OXP4U8:8.P R P48.FP489XR M.F:P(d)@d M FR97N M O B=B E>9U P R97U8M97N"#’’;"3(%&"#G&;"%(";)$L7R7J P R R P R M57R U89"E7R/P N M D7R:87689U M"d M4P2F846P R P K 67W M9@<P U P R/897U8M9M O U R8A7N M/P U A79P4894M8N/7U R8:P4[H48/XN8O8P.fF8:Z"P74H":AP7X"P O O P:U8W P"R F00P.79.47O PP\U R7:U8M979.O74U074:AR M/7U M0R7XAH Y8U A P N P:U R M9:7XU FR P.P U P:U8M9(d)@d M FR97N M O E AR M/7U M0R7XAH B"#’"’""#"*%&33;% ("&)$朱媛媛"田靖"景立新"等@不同城市功能区土壤中酞酸酯污染特征(d)@环境科学与技术"#’"#";,!,$%&;G&,%(",)$张茂生"李明阳"王纪阳"等@东莞市蔬菜基地邻苯二甲酸酯6B Q4的污染特征研究(d)@广东农业科学"#’’)!($%"*;G"*,% ("()$谭镇"李传红"莫测辉@惠州市农业土壤中邻苯二甲酸酯6B Q4含量的分布特征(d)@环境科学与管理"#’"#";*!,$%"##G"#;% ("*)$熊鹏翔"龚娴"邓磊@南昌市农田土壤和水样中邻苯二甲酸酯污染物的分析(d)@化学通报"#’’3!3$%(;)%("3)$张利飞"杨文龙"董亮"等@苏南地区农田表层土壤中多环芳烃和酞酸酯的污染特征及来源(d)@农业环境科学学报"#’""";’!""$%##’,G##’*@第一作者!魏丽琼!"))’!$"女"硕士研究生"主要研究土壤中有机污染物的植物修复&*’3)’;,"&iff@:M/通信作者!呼世斌!"),&!$"男"教授"博士生导师"主要从事废水处理与资源清洁利用&";#(3’")3’iff@:M/","监$测$与$评$价Q9W8R M9/P9U7N5M98U M R890l B44P44/P9U。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高效液相色谱(HPLC)法测定邻苯二甲酸酯一、实验目的:1.了解高效液相色谱仪原理;2.学习高效液相色谱仪的基本操作方法;3.利用高效液相色谱仪测定邻苯二甲酸酯、邻苯二乙酸酯、邻苯二丁酸酯的峰图和含量。
二、实验原理:①高效液相色谱法(High Performance Liquid Chromatography \ HPLC)是色谱法的一个重要分支,以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。
高效液相色谱法有“四高一广”的特点:高压、高速、高效、高灵敏度和应用范围广。
该方法已成为化学、医学、工业、农学、商检和法检等学科领域中重要的分离分析技术。
在高效液相色谱中,若采用非极性固定相,如十八烷基键合相,极性流动相,即构成反相色谱分离系统。
反之,则称为正相色谱分离系统。
反相色谱系统所使用的流动相成本较低,应用也更为广泛。
定量分析时,为便于准确测量,要求定量峰与其他峰或内标峰之间有较好的分离度。
分离度(R)的计算公式为:R= 2[t(R2)-t(R1)] /1.7*(W1+W2)//式中 t(R2)为相邻两峰中后一峰的保留时间;t(R1)为相邻两峰中前一峰的保留时间; W1及W2为此相邻两峰的半峰宽。
除另外有规定外,分离度应大于1.5。
②本实验对象为邻苯二甲酸酯,又称酞酸酯,缩写PAE,常被用作塑料增塑剂。
它被普遍应用于玩具、食品包装材料、医用血袋和胶管、乙烯地板和壁纸、清洁剂、润滑油、个人护理用品,如指甲油、头发喷雾剂、香皂和洗发液等数百种产品中。
但研究表明,邻苯二甲酸酯在人体和动物体内发挥着类似雌性激素的作用,是一类内分泌干扰物。
同时也有一定的致癌作用。
如果要检测不同条件对谱图分离的影响,可按表1配制几种物质的混合溶液,在不同条件下进行HPLC分离检测。
三.仪器与试剂1、仪器Agilent 1100高效液相色谱仪,50ul微量注射器。
2、试剂甲醇(色谱专用),高纯水,样品。
出峰次序样品组成1 邻苯二甲酸二甲酯(DMP)2 邻苯二甲酸二乙酯(DEP)3 邻苯二甲酸二丁酯(DBP)四. 实验步骤1、色谱条件色谱柱:辛烷基硅烷键合硅胶(C8)柱温:室温流动相:(初始)高纯水:30%,甲醇:70%检测器:DAD检测器;检测波长:220nm、254nm;进样体积:20µl定量环,实际注射每次可控制在20µl以上。
2、待测溶液的组成首先用甲醇做溶剂配制储备液:邻苯二甲酸二甲酯(0.3880g/L),邻苯二甲酸二乙酯(0.2770g/L),邻苯二甲酸二丁酯(0.3776g/L)。
然后各取1mL储备液用水和甲醇(20:80)稀释至10mL,作为待测溶液。
3、色谱测定(1) 按操作规程开启电脑,开启脱气机、泵、检测器等的电源,启动Agilent 1100在线工作软件,设定操作条件。
流量为1.000ml/min。
(2) 待仪器稳定后,开始进样。
将进样阀柄置于“LOAD”位置,用微量注射器吸取混合物溶液50ul,注入仪器进样口,顺时针方向扳动进样阀至“INJECT”位置,此时显示屏显示进样标志。
(3) 记下各组分色谱峰的保留时间及峰面积及分离比。
(4) 实验完毕,清洗系统及色谱柱。
依次用甲醇-水(60:40)、甲醇-水(70:30)……直到纯甲醇作流动相清洗,每次清洗至基线走稳,至少清洗15min。
五.实验结果和分析(均以220nm为准)(1)混合样品:流动相的比例为:高纯水:20%甲醇:80%,流速为1ml/min,记录色谱图,并计算分离度;如图:从图中看出三种物质基本分离,但邻苯二甲酸甲酯和邻苯二甲酸乙酯分离程度不够,还是有稍许重叠。
计算分离度为1.494和6.282,这与图谱中显示的基本吻合。
(2)邻苯二甲酸乙酯样品:流动相的比例为:高纯水:20%甲醇:80%,流速为1ml/min,记录色谱图,并计算分离度;如图:图中高峰出现在 4.87min,这与第一张图中邻苯二甲酸乙酯出现的时间(4.81min)基本重合,可以判断这是邻苯二甲酸乙酯。
其他的峰可能是残留的邻苯二甲酸甲酯(2.205min)或者波动。
(3)混合样品:流动相的比例为:高纯水:30% 甲醇:70%;流速为1ml/min,记录色谱图,并计算分离度;如图:降低甲醇的比例后发现前两者分离度更大,但明显出峰时间延长。
分离度分别为:2.80和12.48.(4)混合样品:流动相的比例为:高纯水:20%,甲醇:80%,流速为0.5ml/min,记录色谱图,并计算分离度;如图:降低流速后分离度有所增加,但出峰时间明显延长。
两者分离度为:1.71和7.55。
(5)混合样品梯度洗脱:流动相的比例:(0-2.5min高纯水:30%甲醇:70%;2.5-8.5min高纯水:15%甲醇:85%),流速为1ml/min,记录色谱图,并计算分离度。
如图:改为梯度洗脱后,先采取30%-70%时,明显前面两者分离度增加。
而改变梯度(比例)为15%-85%后,出峰时间明显缩短。
同时由于增加了梯度洗脱过程中甲醇比例,导致有一个基线上升的过程。
经过计算,两者分离度分别为2.95和8.23。
六、体会:实验原理:本实验是反相色谱柱,溶剂为极性溶剂,固定相为C8非极性物质,待测物质为相似度大的三种酯。
所以降低甲醇的比例就会增加极性,待测物质跟随冲洗液流出的能力下降,从而使得出峰时间延长,分离效果更好。
而降低流量则待测物质被流动相带走的可能下降,分离度会有所增加。
所以本实验需要调节流量和比例来测定分离度的不同。
梯度洗脱原理:利用不同比例流动相对分离度和出峰时间的影响(往往是相反的作用)。
通过程序设定,不同时间(不同物质)来设定流动相中甲醇和水的比例,既达到较好的分离度,又能缩短不必要的时间。
如本实验中,根据前面时间得到的比例和出峰时间,最开始4min 内甲醇和水的比例为70-30%,以促进邻苯二甲酸甲酯和邻苯二甲酸乙酯的分离,而4-8.5min 内,则增加了甲醇比例(85-15%),缩短邻苯二甲酸丁酯出峰的时间。
操作注意:1.本实验采用紫外来做检测器,设定的光波长为220nm,但由于短波长对杂质敏感,所以会采用254nm紫外光来做对比和看稳定性。
而从图中也可以看出,理论和实际相符,220nm图中容易出现小的峰和波动。
2.实验前后需要用甲醇-水(60-40%)、甲醇-水(70-30%)...直到纯甲醇来清洗系统和色谱柱,并保证柱压稳定在标准值。
3.实验开始前需要用3ml/min甲醇(流动相)来冲气泡。
4.用50uL注射器抽取液体时,要保证没有气泡(影响峰的大小和理论含量),同时每次最好抽取过量再排出液体至20uL。
七. 思考题(1)比较图2和图3可知,在缓冲液作流动相的情况下,实验得出的峰形较好。
但为什么实验室尽量不用缓冲溶液作流动相?图2 缓冲液作流动相得出的色谱图图3 乙腈-水(5:95)作流动相得出的色谱图答:因为缓冲液往往为酸碱盐溶液,而这种体系会导致固定相(如C8键合物质)的塌陷,失去作用。
尤其是纯的水和盐、酸、碱溶液长时间流过色谱柱可能造成色谱柱填料被化学破坏,这种对色谱柱固定相及键合相的破坏通常是不可修复的。
(2)流动相在使用前为什么要用砂芯漏斗过滤?答:待测样品中可能会有颗粒物和杂质,色谱柱由于填料颗粒很细,色谱柱内腔很小,溶剂和样品中的细小颗粒会使色谱柱和毛细管容易堵塞。
对于仪器,溶剂和样品中的细小颗粒会增加进样阀的堵塞和磨损,同时也会增加泵头内的蓝宝石活塞杆和活塞的磨损。
所以尽量使用高纯度试剂作流动相,防止微量杂质长期累积损坏色谱柱和使检测器噪声增加(3)请分析实验结束后,怎样清洗柱子。
分为两种情况,第一种情况为流动相用到缓冲溶液,第二种情况为流动相不用缓冲溶液?答:1. 对于使用过缓冲液的柱子,必须先将体系中盐分去除干净,然后再以强溶剂清洗。
通常可以同浓度但不含缓冲液成分的流动相洗20倍柱体积,亦可直接以纯水洗至柱内无盐后再改换成强溶剂洗脱。
要确保缓冲溶液与冲洗溶剂互溶。
如果不能互溶,首先要用水含量相对较高的溶剂冲洗系统和色谱柱,然后再用冲洗溶剂替换。
2. 对于不用缓冲溶液:以20倍柱体积或更多一些的强溶剂加以清洗。
例如,90%~100%的甲醇、乙醇、乙腈、四氢呋喃等。
如果效果不理想,则可换用更强的溶剂清洗,例如,将系统逐步置换至乙酸乙酯、异丙醇、氯仿、烃类(如己烷、庚烷等)。
也可以在甲醇、乙腈等水溶性溶剂之后,改用50%DMSO或DMF水溶液加以清洗。
清洗几十倍柱体积后,再逐步置换返回原系统(4)根据实验结果分析,流动相中水的比例多少对分离度、出峰时间的影响及流速对分离度的影响。
答:见实验结果和分析。
水的比例增加会使得流动相极性增加,分离度增加,出峰时间增加。
而流速减小,分离度略有增加,出峰时间延长。
八、参考文献:讲义、《分析化学原理》-吴性良孔继烈/html/201209/4757030.html/question/475242456.html(注:实验图谱见下页)图谱:80%水-20%甲醇-1.0ml/min混合样品图谱:80%水-20%甲醇-1.0ml/min-邻苯二乙酸酯图谱:梯度洗脱:0-2.5min高纯水:30%甲醇:70%;2.5-8.5min高纯水:15%甲醇:85%,流速为1ml/min。