基本不等式—最值—对勾函数耐克函数(学案 附答案)

合集下载

基本不等式精讲+对勾函数暴力讲解

基本不等式精讲+对勾函数暴力讲解

第2讲 基本不等式精讲+对勾函数暴力讲解【学习目标】1.了解基本不等式的证明过程.2.会用对勾函数的性质求特定函数的最值3.会用基本不等式解决简单的最大(小)值问题.【要点梳理】要点1 对勾函数()0,0by ax a b x=+>>的图像与性质 (1) 定义域:()(),00,-∞+∞;(2) 值域:(),2,ab ⎡-∞-+∞⎣; (3) 奇偶性:奇函数,函数图像整体呈两个“对勾”的形状,且函数图像关于原点呈中心对称;(4) 图像在一、三象限,当0x >时,by ax x=+≥x =等号),即()f x 在x =0x <时,()f x 在x =-;(5) 单调性:增区间⎫+∞⎪⎪⎭,,⎛-∞ ⎝,减区间是⎛ ⎝,⎛⎫⎪ ⎪⎝⎭要点2 基本不等式 基本不等式:ab ≤a +b 2(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号. 要点3 几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +ab ≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ). 以上不等式等号成立的条件均为a =b . 要点4 利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p .(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值p 24.(简记:和定积最大) 【经典例题】 题型1 基本公式套用例1 【★】已知a ,b ,0c >,且222412a ab ac bc +++=,则a b c ++的最小值为________.例2 【★•2019秋•徐汇区校级期中】设0x >,0y >,下列不等式中等号能成立的有( ). ①114x yx y ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭;②()114x y x y ⎛⎫++ ⎪⎝⎭;24;④4x y ++;A .1个B .2个C .3个D .4个例3 【★•2019秋•历下区校级月考】设,a b +∈R ,则下列各式中不一定成立的是( ). A .2a b ab + B .2b aa b+C 222abD .2ab ab a b+例4 【★•2019秋•迎泽区校级月考】已知实数1x >,则91x x +-的最小值为( ). A .4B .6C .7D .10例5 【★★】设a ,0b >,5a b +=+________.例6 【★★•2019秋•梅河口市校级期末】已知a ,b 为正数,2247a b +=,则大值为( ).A B C .D .2题型2 对勾函数例1【★★•2019秋•淮安期末】函数22(1)1y x x x =+>-的最小值是( ) A .2B .4C .6D .8例2【★★•2020春•龙华区校级月考】若1x >,则1411x x ++-的最小值等于( ) A .6B .9C .4D .1例3【★★•2019春•河北月考】若1x <,则2471x x x -+-的( )A .最小值为2B .最大值为2C .最小值为6-D .最大值为6-例4【★★•2019春•东湖区校级月考】函数24(0)1x x y x x ++=>+的最小值是( )A .3B .4C .103D .6例5【★★•2019秋•常熟市期中】若2x >,则函数42y x x =+-的最小值为( ) A .3B .4C .5D .6题型3 “1”的代换例1.【★★•2020•韶关二模】已知0x >,0y >,且121x y+=,则2x y +的最小值是( ) A .7B .8C .9D .10例2.【★★•2020•辽阳二模】已知0a >,0b >,32a b ab +=,则23a b +的最小值为()A .20B .24C .25D .28例3.【★★•2020春•九龙坡区校级期中】若x ,y R +∈,且315x y+=,则34x y +的最小值是( )A .5B .245C D .195例4.【★★•2020春•昌吉市期中】若0a >,0b >,23a b +=,则36a b+的最小值为( ) A .5 B .6C .8D .9题型4 x ,y ,xy 型例1【★★•2019春•江岸区校级期末】已知223a b ab ++=,0a >,0b >,则2a b +的取值范围是( )A .(0,3)B .[33)C .[2,)+∞D .[2,3)例2【★★•2020春•浙江期中】已知0x >,0y >,3236x y xy ++=,则3x y +的最小值为 .例3【★★•2020春•定海区校级月考】已知实数a ,b 满足1a >,0b >且2220a b ab +--=,那么2a b +的最小值是 .例4【★★•2020•红桥区模拟】已知0x >,0y >,35x y xy +=,则2x y +的最小值是 . 例5【★★•2020•河西区二模】已知x ,y 为正实数,且2441xy x y ++=,则x y +的最小值为例6【★★•2020•锡山区校级模拟】已知01a <<,01b <<,且44430ab a b --+=,则12a b+的最小值是 .题型5 2x ,2y ,xy 型例1【★★•2020•浙江模拟】对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c-+的最小值为( ) A .12-B .12C .2-D .2例2【★★•2019秋•聊城期末】若实数x ,y 满足221x y xy ++=,则x y +的最大值是()A .6B .4C D .23例3【★★•2020春•浙江期中】若正数x ,y 满足2249330x y xy ++=,则xy 的最大值是() A .43B .53C .2D .54例4【★★•2020•南通模拟】(2020•南通模拟)已知实数x ,y 满足22210x xy y ---=,则222522x yx xy y +++的最大值为 .【课后练习】1.【★2020春•福州期中】以下结论,正确的是( ) A .y =x +≥4 B .e x +>2C .x (1﹣x )≤()2=D .sin x +(0<x <π)的最小值是22.【★★2020•湖北模拟】直线2ax +by ﹣2=0(a >0,b >0)过函数图象的对称中心,则的最小值为( ) A .9B .4C .8D .103.【★★2020•滨海新区模拟】已知正实数a ,b 满足a +b =1,则的最小值为( ) A .13B .11C .10D .94.【★★2020•河东区一模】已知实数a 、b ,ab >0,则的最大值为( )A.B.C.D.6。

高考数学复习专题系列学案:基本不等式对勾函数

高考数学复习专题系列学案:基本不等式对勾函数

基本不等式与对勾函数b、对勾函数y = ax • b (a . 0,b .0)的图像与性质x性质: 1.定义 '*_f(x) =aj+ —>C.A A 0) 当孟a 0*. == 3 + —2石瓦f 当 且仅当站=—)」AX当孟= —(iix + —}台 2-Jab,X所臥得到血点坐标A (£.2加)』,_2石咬一41 I I 1*iI I i i| I I5-—_—M —— —三 <_ — ■. ■■ ■■ ■ ■“ ■ ■■ tM' — —' "W— ■* ~ — 1(-=,0) (0,二)2. 值域:(-::,-2 . ab) (2、ab,::)3. 奇偶性:奇函数,函数图像整体呈两个“对勾”的形状,且函数图像关于原点呈中心对称,即 f(x) f(-x) =0 4. 图像在一、三象限当x =0时,由基本不等式知 yuax + PzzJab (当且仅当x = J 匕取等号),xV a由奇函数性质知: 当x<0时,f (x)在x= — 时,取最大值 -^ab\ a一、对勾函数的变形形式 类型一:函数y =ax • b (a ::: 0, b ::: 0)的图像与性质 x此函数与对勾函数 y =(-a)x • J?关于原点对称,故函数图像为x即f (x)在x=—时,取最小值a2 . ab5.单调性:增区间为( 减区间是(0,性质: 类型二:斜勾函数y = ax • b (ab ::: 0)xf(x)二2ax bx c(ac 0)此类函数可变形为cc f(x)二ax b ,贝y f(x)可由对勾函数 y 二ax上下平移得到xx性质: ②a 0,b . 0作图 如下: 类型三:函数例1作函数f (x) x2 x 1的草图解:f(x)二匚x1f(x)=x 1作图如下:x类型四:函数f(x)=x・a(a 0,k") x k此类函数可变形为a t af(x)=(x,k )-k ,则f (x)可由对勾函数y = x 左右平移,x上下平移得到例2作函数f (x)的草图x -2解:f (x) 例3作函数f(x)=x-2 12作图如下:x — 2=xx -2x 3x 2x 3x「f(x)二x的作图:x 2 1 1 1 f (x) x=1 x=x 2 1 x+2 x+2 x+21 练习:1.求函数f(x) =x 在(2/ ::)上的最低点坐标2x —4 解:f (x)X2.求函数f(X )= X的单调区间及对称中心X —1a.若a • 0 ,则f (x)的单调性和对勾函数 y = x •巴的单调性相反,图像如下: x1 .定义域:(一匚片•::)由奇函数性质知: 当x<0时,f (x)在x= - b 时,取最小值-—a _2Jb5.单调性:减区间为( Jb, +30 ), (一00,-Jb )增区间是[- b, b]类型五: ax函数 f (X )二 2(a = 0,b . 0)f (x)二x 2 b3.奇偶性:奇函数,函数图像整体呈两个倒着的“对勾”的形状,且函数图像关于原点呈 中心对称,即f(x) f (-x) =04.图像在一、三象限 当x 0时,由基本不等式知f (x) V ——a 二a (当且仅当X 二• b 取等号2": 2"即f (x)在x - b 时,取最大值a2“b此类函数定义域为R ,且可变形为性质:3当 x=1 时,f(x)二X-12(x —1)23(xT) 4 (X-1)3(xT) 4 x 〔4x — 1问:若区间改为[4,则f (x)的最大值为2x 7x 10类型七:函数f(x)2x max +bx+cx 1x例4作函数f(x)二—X x 解:f(x)二: x +1 11 x - xb.若acO ,作出函数图像: 2x r 的草图 x 2 4 例5作函数f (x)二类型六:函数 f (x)二 ax bx c(a = 0) x 十m 2 此类函数可变形为f(xH a(X m) S(X m)=a(x m) —t — s(at 0)x+ m则f (x)可由对勾函数 y 二ax •丄左右平移,上下平移得到 xx 2+x +1 1 例6说明函数f(x) 由对勾函数y=x 如何变换而来 ■ x 解:f(x)= (x 1)2 -(x 1) ^x . 1 1 X 十1 故 此函数f (x)可由对勾函数 (填“上”、“下”)平移*1宀 y = x 向 __________ x单位.草图如下:(填 “左”、“右”)平移 单位,2.已知x 1 ,求函数f (X )口x 2 9x -10x-1的最大值练习:1.已知x ^ -1,求函数f(x)=的最小值例7求函数f ( X )工 在区间(1, •二)上的最大值解:当x =1时,f (1)=0x + b 类型八:函数f (x)=Jx + a此类函数可变形为标准形式:f(x^x a ^^./xb-a (b_a.O) v x + ax + 3例8求函数f(x)的最小值 <x 解:f(x) =x "4Jx —1x + 5 •求函数f(x)的值域J x +1函数 f(x)=—— v'x 十此类函数可变形为标准形式:解: y =x…x 2 aa2xf (x )= ( X 2 * * a)2 b-ax 2 a二 x 2 a 「Tag °〉工的最小值4x 2 5 =解:f(x) = x 2 4x 2 4 1 f (x)' = lx 2 +4 十 1 Jx 2 +4 lx 2+4练习:1.求函数f (X )例10已知a 0,求函数y= X 2 1、—2 的值域X 2 17x 2a 1 .X 2—a 的最小值。

高中数学专题7-1 基本不等式和对钩函数(解析版)

高中数学专题7-1 基本不等式和对钩函数(解析版)

4
4
无法直接使用基本不等式,需要凑配位和定:
f (x) 4x(3 2x) 22x(3 2x) 2( 2x 3 2x)2 9 ;
2
2
再如:f (x) 4x 2 1 直接使用基本不等式,则 f (x) 4x 2 1 2 (4x 2) 1 ,
4x 5
4x 5
4x 5
发现积不定,则需要凑配为积定:
【答案】1
【详解】因为 a 1,所以 a 2 a 1 2 1 2 a 1 2 1 2 2 1,
a 1
a 1
a 1
当且仅当 a 1 2 时取等号.故 m 2 2 1, n 2 1,所以, 2n m 1. 故答案为:1. 2.(2022·云南·屏边苗族自治县第一中学高一阶段练习)( 若 x 2 ,求: x 2 的最小值.
【答案】(1) 9
【详解】(1)由题得 y 4x 1 1 4(x 1) 1 5,
x 1
x 1
因为 x 1,所以 x 1 0 ,
所以 4(x 1) 1 5 2 4(x 1) 1 5 9 ,
x 1
x 1
当且仅当 4(x 1) 1 ,即 x 3 时取得等号,
x 1
2
所以 y 4x 1 1 的最小值为 9 . x 1
y
4x2
9 x2
2
4x2
9 x2
12 ,
当且仅当 4x2
9 x2
,即 x
6 时取等号,
2
所以 ymin 12 , 故选:C.
2.(2022·黑龙江·哈尔滨工业大学附属中学校高二学业考试)若 x 0 ,则 x 1 1的最小 x
值是( )
A.0 【答案】B
B.1
C. 3 2

公开课教案3——耐克函数的最值

公开课教案3——耐克函数的最值

形如
()(0)a f x x a x
=+>的最值 一、教学目标: 掌握利用基本不等式求最值须满足的条件;利用单调性求函数的最值。

二、教学重点和难点:
①分类讨论能力,使学生掌握分类的依据,当含有字母时应对其对应区间特别是区间两
端点的位置关系进行讨论。

②数形结合能力,利用函数的单调性求最值。

三、教学过程:
1、复习提问: 复习()(0)a f x x a x
=+>的图像与性质: (1)图像:(通过几何画板演示得出)
(2)性质:
①定义域:()(),00,-∞+∞;
②值域: ()
,2,a ⎡-∞-+∞⎣; ③奇偶性:奇函数;
④单调性:当()f x 在(,-∞及)
+∞上是增函数;
当()f x 在)⎡⎣及(上是减函数; 2、新课讲解:
例1、设4()f x x x
=+,试求()f x 的最小值。

(1)(]0,1x ∈;(2)(]0,3x ∈;
思考1、(3)当(]()0,0x n n ∈>,
例2、设函数(),0a f x x a x =+
>,[]1,2x ∈;试求()f x 的最小值。

(1)14
a =;(2)5a =;(3)2a =;
思考2:设函数()a f x x x =+,0a >,[]1,2x ∈,试求()f x 的最小值。

课堂小结:
思考3:设函数(),0a f x x a x =+
>,[]1,2x ∈;试求()f x 的最大值。

(1)14
a =
;(2)5a =;(3)2a =;
3、作业:练习册37页。

耐克函数

耐克函数

我的名字叫对勾函数,因为长得像“NIKE”,所以大家给我一个亲切的名字,“耐克”函数。

我的解析式是y=ax+b/x(a>0,b>0),我的图像可不像一般的函数哦~它是这样的~(告诉你个秘密,它是无限接近与纵坐标的哦~)
大家看到我的图像应该有点想法的吧,没错,我是个奇函数哦~还有哦~我也是有单调性的!!!想知道怎么求吗?!你猜呀,猜对就告诉你。

好吧,不傲娇了,看到那两个钩子的最低点了不,一个是x=√b/a,另一个就是x=-√b/a。

令k=√(b/a),那么,增区间:{x|x≤-k}和{x|x≥k};减区间:{x|-k≤x<0}和{x|0<x≤k} 变化趋势:在y轴左边,增减,在y轴右边,减增,是两个勾。

那大家现在应该知道怎么求最值问题了吧~ 对了哦~知道怎么求出来这两个点的横坐标的不?!用基本不等式啊!!!!!!
高一(二)江悦健7。

对勾函数讲解与例题解析

对勾函数讲解与例题解析

对勾函数对勾函数:数学中一种常见而又特殊的函数。

如图一、对勾函数f(x)=ax+错误!未找到引用源。

的图象与性质对勾函数是数学中一种常见而又特殊的函数。

它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。

(一) 对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+错误!未找到引用源。

(接下来写作f(x)=ax+b/x )。

当a ≠0,b ≠0时,f(x)=ax+b/x 是正比例函数f(x)=ax 与反比例函数f(x)= b/x “叠加”而成的函数。

这个观点,对于理解它的性质,绘制它的图象,非常重要。

当a ,b 同号时,f(x)=ax+b/x 的图象是由直线y =ax 与双曲线y= b/x 构成,形状酷似双勾。

故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。

如下图所示:当a ,b 异号时,f(x)=ax+b/x 的图象发生了质的变化。

但是,我们依然可以看作是两个函数“叠加”而成。

(请自己在图上完成:他是如何叠加而成的。

)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。

a>0 b>0 a<0 b<0 对勾函数的图像(ab 同号)对勾函数的图像(ab 异号)接下来,为了研究方便,我们规定a>0,b>0。

之后当a<0,b<0时,根据对称就很容易得出结论了。

(二) 对勾函数的顶点对勾函数性质的研究离不开均值不等式。

利用均值不等式可以得到:当x>0时,错误!未找到引用源。

当x<0时,错误!未找到引用源。

即对勾函数的定点坐标:(三) 对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。

(四) 对勾函数的单调性(五) 对勾函数的渐进线 由图像我们不难得到: (六) 对勾函数的奇偶性 :对勾函数在定义域内是奇函数,二、均值不等式(基本不等式) 对勾函数性质的研究离不开均值不等式。

对勾函数

对勾函数

对勾函数是一种类似于反比例函数的一般函数,又被称为“双勾函数”、"勾函数"等。

也被形象称为“耐克函数”或“耐克曲线”所谓的对勾函数(双曲线函数),是形如f(x)=ax+b/x(a>0)的函数。

由图像得名。

图像对勾函数:图像,性质,单调性第三行为f(x)=-(ax+b/y)大于等于2√ab对勾函数是数学中一种常见而又特殊的函数,见图示,在作图时最好画出渐近线,y=ax。

奇偶性与单调性当x>0时,f(x)=ax+b/x有最小值(这里为了研究方便,规定a>0,b>0),也就是当x=sqrt(b/a)的时候(sqrt表示求二次方根)奇函数。

令k=sqrt(b/a),那么:增区间:{x|x≤-k}和{x|x≥k};减区间:{x|-k≤x<0}和{x|0<x≤k} 变化趋势:在y轴左边,增减,在y轴右边,减增,是两个勾。

渐近线对勾函数的图像是分别以y轴和y=ax为渐近线的两支双曲线。

均值不等式(基本不等式)对勾函数性质的研究离不开均值不等式。

说到均值不等式,其实也是根据二次函数得来的。

我们都知道,(a-b)^2≥0,展开就是a^2-2ab+b^2≥0,有a^2+b^2≥2ab,两边同时加上2ab,整理得到(a+b)^2≥4ab,同时开根号,就得到了平均值定理的公式:a+b≥2 sqrt(ab)。

把ax+b/x套用这个公式,得到ax+b/x≥2sqrt(axb/x)=2sqrt(ab),这里有个规定:当且仅当ax=b/x时取到最小值,解出x=sqrt(b/a),对应的f(x)=2sqrt(ab)。

我们再来看看均值不等式,它也可以写成这样:(a+b)/2≥sqrt(ab),前式大家都知道,是求平均数的公式。

那么后面的式子呢?也是平均数的公式,但不同的是,前面的称为算术平均数,而后面的则称为几何平均数,总结一下就是算术平均数绝对不会小于几何平均数。

这些知识点也是非常重要的。

必修二对数函数对勾函数教案及训练题

必修二对数函数对勾函数教案及训练题

专题:对数教学目标理解对数的概念;能够说明对数与指数的关系;掌握对数式与指数式的相互转化,并能运用指对互化关系研究一些问题.知识梳理1. 定义:一般地,如果x a N =(0,1)a a >≠,那么数 x 叫做以a 为底 N 的对数(logarithm ).记作 log a x N =,其中a 叫做对数的底数,N 叫做真数2. 我们通常将以10为底的对数叫做常用对数(common logarithm ),并把常用对数10log N 简记为lg N 在科学技术中常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,并把自然对数log e N 简记作ln N3. 根据对数的定义,得到对数与指数间的互化关系:当0,1a a >≠时,log b a N b a N =⇔=.4. 负数与零没有对数;log 10a =, log 1a a =典例精讲【例1】将下列指数式化为对数式,对数式化为指数式: (1)712128-=; (2)327a =; (3)1100.1-=;(4)12log 325=-; (5)lg 0.0013=-; (6)ln100=4.606.解:(1)21log 7128=-; (2)3log 27a =; (3)lg 0.11=-;(4)51()322-=; (5)3100.001-=; (6) 4.606100e =.【例2】计算下列各式的值:(1)lg 0.001; (2)4log 8; (3)ln e .解:(1)设lg 0.001x =,则100.001x =,即31010x -=,解得3x =-. 所以,lg 0.0013=-. (2)设4log 8x =,则48x =,即2322x =,解得32x =. 所以,43log 82=. (3)设ln e x =,则xe e =,即12xe e =,解得12x =. 所以,1ln 2e =.【例3】求证:(1)log n a a n =; (2)log log log a a a M M N N-=.证明:(1)设log n a a x =,则n x a a =,解得x n =. 所以log n a a n =.(2)设log a M p =,log a N q =,则p a M =,q a N =. 因为p p qqM a aN a-==,则log log log aa a M p q M N N=-=-.所以,log log log a a aM M N N-=.点评:对数运算性质是对数运算的灵魂,其推导以对数定义得到的指对互化关系为桥梁,结合指数运算的性质而得到. 我们需熟知各种运算性质的推导.【例4】试推导出换底公式:log log log c a c b b a=(0a >,且1a ≠;0c >,且1c ≠;0b >).证明:设log c b m =,log c a n =,log a b p =,则m c b =,n c a =,pa b =.从而()n p m c b c ==,即np m =. 由于log log 10c c n a =≠=,则m p n=.所以,log log log c a c b b a=.点评:换底公式是解决对数运算中底数不相同时的核心工具. 其推导也密切联系指数运算性质,牢牢扣住指对互化关系.巩固练习1.log (0,1,0)b N a b b N =>≠>对应的指数式是( ). A. b a N = B. a b N = C. N a b = D. N b a = 2.下列指数式与对数式互化不正确的一组是( ). A. 01ln10e ==与 B. 1()381118log 223-==-与C. 123log 9293==与 D. 17log 7177==与 3.设lg 525x =,则x 的值等于( ).A. 10B. 0.01C. 100D. 1000 4.设13log 82x=,则底数x 的值等于( ).A. 2B. 12C. 4D.145.已知432log [log (log )]0x =,那么12x -等于( ).A.13B.123C.122D.1336.若21log 3x =,则x = ; 若log 32x =-,则x = .7.计算:3log 81= ; 6lg 0.1= .※能力提高8.求下列各式的值:(1)22log8; (2)9log 3.9.求下列各式中x 的取值范围:(1)1log (3)x x -+; (2)12log (32)x x -+.※探究创新10.(1)设log 2a m =,log 3a n =,求2m n a +的值.(2)设{0,1,2}A =,{log 1,log 2,}a a B a =,且A B =,求a 的值.回顾总结专题:对数函数的性质教学目标通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图像,探索并了解对数函数的单调性与特殊点.掌握对数函数的性质,并能应用对数函数解决实际中的问题. 知道指数函数y =a x 与对数函数y =log a x 互为反函数. (a > 0, a ≠1)知识梳理1. 定义:一般地,当a >0且a ≠1时,函数a y=log x 叫做对数函数(logarithmic function). 自变量是x ; 函数的定义域是(0,+∞).2. 由2log y x =与12log y x =的图象,可以归纳出对数函数的性质:定义域为(0,)+∞,值域为R ;当1x =时,0y =,即图象过定点(1,0);当01a <<时,在(0,)+∞上递减,当1a >时,在(0,)+∞上递增.3.当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function ). 互为反函数的两个函数的图象关于直线y x =对称.4. 函数(0,1)x y a a a =>≠与对数函数log (0,1)a y x a a =>≠互为反函数.5. 复合函数(())y f x ϕ=的单调性研究,口诀是“同增异减”,即两个函数同增或同减,复合后结果为增函数;若两个函数一增一减,则复合后结果为减函数. 研究复合函数单调性的具体步骤是:(i )求定义域;(ii )拆分函数;(iii )分别求(),()y f u u x ϕ==的单调性;(iv )按“同增异减”得出复合函数的单调性.典例精讲【例1】比较大小:(1)0.9log 0.8,0.9log 0.7,0.8log 0.9; (2)3log 2,2log 3,41log 3.解:(1)∵ 0.9log y x =在(0,)+∞上是减函数,且0.90.80.7>>, ∴ 0.90.91log 0.8log 0.7<<. 又 0.80.8log 0.9log 0.81<=, 所以0.80.90.9log 0.9log 0.8log 0.7<<. (2)由 333log 1log 2log 3<<,得30log 21<<. 又22log 3log 21>=,441log log 103<=,所以4321log log 2log 33<<.【例2】求下列函数的定义域:(1)2log (35)y x =-;(2)0.5log (4)3y x =-.解:(1)由22log (35)0log 1x -≥=,得351x -≥,解得2x ≥.所以原函数的定义域为[2,)+∞.(2)由0.5log (4)30x -≥,即30.50.5log (4)3log 0.5x ≥=,所以3040.5x <≤,解得1032x <≤. 所以,原函数的定义域为1(0,]32.【例3】已知函数()log (3)a f x x =+的区间[2,1]--上总有|()|2f x <,求实数a 的取值范围. 解:∵ [2,1]x ∈--, ∴ 132x ≤+≤当1a >时,log 1log (3)log 2a a a x ≤+≤,即0()log 2a f x ≤≤. ∵ |()|2f x <, ∴{1log 22a a ><, 解得2a >.当01a <<时,log 2log (3)log 1a a a x ≤+≤,即log 2()0a f x ≤≤. ∵ |()|2f x <, ∴{01log 22a a <<>-, 解得202a <<.综上可得,实数a 的取值范围是2(0,)(2,)2+∞ .点评:先对底数a 分两种情况讨论,再利用函数的单调性及已知条件,列出关于参数a 的不等式组,解不等式(组)而得到参数的范围. 解决此类问题的关键是合理转化与分类讨论,不等式法求参数范围.【例4】求不等式log (27)log (41)(0,1)a a x x a a +>->≠且中x 的取值范围.解:当1a >时,原不等式化为2704102741x x x x +>⎧⎪->⎨+>-⎪⎩,解得144x <<.当01a <<时,原不等式化为 2704102741x x x x +>⎧⎪->⎨+<-⎪⎩,解得4x >.所以,当1a >时,x 的取值范围为1(,4)4;当01a <<时,x 的取值范围为(4,)+∞.点评:结合单调性,将对数不等式转化为熟悉的不等式组,注意对数式有意义时真数大于0的要求. 当底数a 不确定时,需要对底数a 分两种情况进行讨论【例1】讨论函数0.3log (32)y x =-的单调性.解:先求定义域,由320x ->, 解得32x <. 设332,(,)2t x x =-∈-∞,易知为减函数.又∵ 函数0.3log y t =是减函数,故函数0.3log (32)y x =-在3(,)2-∞上单调递增. 【例2】(05年山东卷.文2)下列大小关系正确的是( ). A. 30.440.43log 0.3<< B. 30.440.4log 0.33<< C. 30.44log 0.30.43<< D. 0.434log 0.330.4<<解:在同一坐标系中分别画出40.4,3,log x x y y y x ===的图象,分别作出当自变量x 取3,0.4,0.3时的函数值.观察图象容易得到:30.44log 0.30.43<<. 故选C.【例3】指数函数(0,1)x y a a a =>≠的图象与对数函数log (0,1)a y x a a =>≠的图象有何关系? 解:在指数函数x y a =的图象上任取一点00(,)M x y ,则00x y a =. 由指对互化关系,有00log a y x =.所以,点00'(,)M y x 在对数函数log a y x =的图象上. 因为点00(,)M x y 与点00'(,)M y x 关于直线y x =对称,所以指数函数(0,1)x y a a a =>≠的图象与对数函数log (0,1)a y x a a =>≠的图象关于直线y x =对称.点评:两个函数的对称性,由任意点的对称而推证出来. 这种对称性实质是反函数的图象特征,即函数x y a =与log (0,1)a y x a a =>≠互为反函数,而互为反函数的两个函数图象关于直线y x =对称.巩固练习1.下列各式错误的是( ).A. 0.80.733>B. 0.10.10.750.75-<C. 0..50..5log 0.4log 0.6>D. lg1.6lg1.4>.2.当01a <<时,在同一坐标系中,函数log x a y a y x -==与的图象是( ).A B C D3.下列函数中哪个与函数y =x 是同一个函数( ) A.log (0,1)a xy a a a =>≠ B. y =2xxC. log (0,1)x a y a a a =>≠D. y =2x4.函数12log (1)y x =-的定义域是( ).A. (1,)+∞B. (,2)-∞C. (2,)+∞D. (1,2]5.若log 9log 90m n <<,那么,m n 满足的条件是( ).A. 1 m n >>B. 1n m >>C. 01n m <<<D. 01m n <<< 6.函数3log y x =的定义域为 . (用区间表示)7.比较两个对数值的大小:ln 7 ln 12 ; 0.5log0.7 0.5log 0.8.※能力提高8.求下列函数的定义域:(1) ()()34log 11x f x x x -=++-; (2)21log (45)y x =--.9.已知函数2()3log ,[1,4]f x x x =+∈,22()()[()]g x f x f x =-,求: (1)()f x 的值域; (2)()g x 的最大值及相应x 的值.※探究创新10.若,a b 为不等于1的正数,且a b <,试比较log a b 、1log ab、1log bb.1.函数1lg1x y x+=-的图象关于( ). A. y 轴对称B. x 轴对称C. 原点对称D. 直线y =x 对称2.函数212log (617)y x x =-+的值域是( ).A. RB. [8,)+∞C. (,3]-∞-D. [3,)+∞xy1 1oxy o 1 1oy x11 oy x1 13.(07年全国卷.文理8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ).A.2B. 2C. 22D. 44.图中的曲线是log a y x =的图象,已知a 的值为2,43,310,15,则相应曲线1234,,,C C C C 的a 依次为( ).A. 2,43,15,310B.2,43,310,15 C.15,310,43,2 D. 43,2,310,155.下列函数中,在(0,2)上为增函数的是( ). A. 12log (1)y x =+ B. 22log 1y x =- C. 21log y x= D.20.2log (4)y x =-6. 函数2()lg(1)f x x x =+-是 函数. (填“奇”、“偶”或“非奇非偶”) 7.函数x y a =的反函数的图象过点(9,2),则a 的值为 . ※能力提高 8.已知6()log ,(0,1)af x a a x b=>≠-,讨论()f x 的单调性.※探究创新10. 已知函数()log (1),()log (1)a a f x x g x x =+=-其中(01)a a >≠且.(1)求函数()()f x g x -的定义域; (2)判断()()f x g x -的奇偶性,并说明理由;(3)求使()()0f x g x ->成立的x 的集合.对数与对数运算(2)教学目标通过阅读材料,了解对数的发现历史以及对简化运算的作用;理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;理解推导这些运算性质的依据和过程;能较熟练地运用运算性质解决问题知识梳理1. 对数的运算法则:log ()log log a a a M N M N =+ ,log log log aa a M M N N=-,log log na a M n M =,其中0,1a a >≠且,0,0,M N n R >>∈. 三条法则是有力的解题工具,能化简与求值复杂的对数式.2. 对数的换底公式log log log b a b N N a=. 如果令b =N ,则得到了对数的倒数公式1log log a b b a=. 同样,也可以推导出一些对数恒等式,如log log nna a N N =,log log mn a a n N N m=,log log log 1a b c b c a = 等.0 x C 1C 2C 4C 3 1y典例精讲【例1】化简与求值:(1)221(lg 2)lg 2lg 5(lg 2)lg 212++-+ ;(2)2log (4747)++-.解:(1)原式=2211(lg 2)lg 2lg 5(lg21)22++- =211lg 2lg 2lg 5(lg21)42+--=2111lg 2lg 2lg 5lg 21422+-+ =1lg 2(lg 22lg 52)14+-+=1lg 2(lg 1002)10114-+=+=.(2)原式=1222log (4747)⨯++-=221log (4747)2++-=221log (4747247)2++-+-=21log 142.【例2】若2510a b ==,则11a b+= . (教材P 83 B 组2题)解:由2510a b ==,得2log 10a =,5log 10b =. 则251111lg 2g 5lg 101log 10log 10a b +=+=+==.【例3】 (1)方程lg lg(3)1x x ++=的解x =________;(2)设12,x x 是方程2lg lg 0x a x b ++=的两个根,则12x x 的值是 . 解:(1)由lg lg(3)1x x ++=,得lg[(3)]lg10x x +=, 即(3)10x x +=,整理为23100x x +-=.解得x =-5或x =2. ∵ x >0, ∴ x =2.(2)设lg x t =,则原方程化为20t at b ++=,其两根为1122lg ,lg t x t x ==. 由121212lg lg lg()lg10b t t x x x x b +=+=== ,得到1210b x x = .点评:同底法是解简单对数方程的法宝,化同底的过程中需要结合对数的运算性质. 第2小题巧妙利用了换元思想和一元二次方程根与系数的关系.【例4】(1)化简:532111log 7log 7log 7++;(2)设23420052006log 3log 4log 5log 2006log 4m ⋅⋅⋅= ,求实数m 的值. 解:(1)原式=77777log 5log 3log 2log (532)log 30++=⨯⨯=. (2)原式左边=2222222222log 4log 5log 2006log log 3log log 3log 4log 2005log 2006mm ⋅⋅⋅=, ∴ 422log 4log 2m ==, 解得16m =.点评:换底时,一般情况下可以换为任意的底数,但习惯于化为常用对数. 换底之后,注意结合对数的运算性质完成后阶段的运算.巩固练习1.1logn n++(1n n +-)等于( ). A. 1B. -1C. 2D. -2 2.25log()(5)a -(a ≠0)化简得结果是( ). A. -aB. a 2C. |a |D. a3.化简3lg 2lg 5log 1++的结果是( ).A.12B. 1C. 2D.104.已知32()log f x x =, 则(8)f 的值等于( ). A. 1 B. 2 C. 8 D. 125.化简3458log 4log 5log 8log 9⋅⋅⋅的结果是 ( ). A .1 B.32C. 2D.36.计算2(lg 5)lg 2lg 50+⋅= . 7.若3a =2,则log 38-2log 36= . ※能力提高 8.(1)已知18log 9a =,185b =,试用a 、b 表示18log 45的值; (2)已知1414log 7log 5a b ==,,用a 、b 表示35log 28.※探究创新10.(1)设,,x y z 均为实数,且34x y =,试比较3x 与4y 的大小.(2)若a 、b 、c 都是正数,且至少有一个不为1,1x y z y z x z x y a b c a b c a b c ===,讨论x 、y 、z 所满足的幂函数¤学习目标:通过实例,了解幂函数的概念;结合函数y=x, y=x 2, y=x 3, y =1/x , y=x 1/2 的图像,了解它们的变化情况. 知识要点:1. 幂函数的基本形式是y x α=,其中x 是自变量,α是常数. 要求掌握y x =,2y x=,3y x =,1/2y x=,1y x -=这五个常用幂函数的图象.2. 观察出幂函数的共性,总结如下:(1)当0α>时,图象过定点(0,0),(1,1);在(0,)+∞上是增函数.(2)当0α<时,图象过定点(1,1);在(0,)+∞上是减函数;在第一象限内,图象向上及向右都与坐标轴无限趋近.3. 幂函数y x α=的图象,在第一象限内,直线1x =的右侧,图象由下至上,指数α由小到大. y 轴和直线1x =之间,图象由上至下,指数α由小到大.¤例题精讲:【例1】已知幂函数()y f x =的图象过点(27,3),试讨论其单调性.解:设y x α=,代入点(27,3),得327α=,解得13α=,所以13y x =,在R 上单调递增.【例2】已知幂函数6()m y x m Z -=∈与2()m y x m Z -=∈的图象都与x 、y 轴都没有公共点,且2()m y xm Z -=∈的图象关于y 轴对称,求m 的值.解:∵ 幂函数图象与x 、y 轴都没有公共点,∴{6020m m -<-<,解得26m <<.又 ∵ 2()m y x m Z -=∈的图象关于y 轴对称, ∴ 2m -为偶数,即得4m =. 【例3】幂函数m y x =与n y x =在第一象限内的图象如图所示,则( ). A .101n m -<<<< B .1,01n m <-<<C .10,1n m -<<>D .1,1n m <->解:由幂函数图象在第一象限内的分布规律,观察第一象限内直线1x =的右侧,图象由下至上,依次是n y x =,1y x -=,0y x =,m y x =,1y x =,所以有101n m <-<<<. 选B.点评:观察第一象限内直线1x =的右侧,结合所记忆的分布规律. 注意比较两个隐含的图象1y x =与0y x =.【例4】本市某区大力开展民心工程,近几年来对全区2a m 的老房子进行平改坡(“平改坡”是指在建筑结构许可条件下,将多层住宅平屋面改建成坡屋顶,并对外墙面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为),且每年平改坡面积的百分比相等. 若改造到面积的一半时,所用时间需10年. 已知到今年为止,平改坡剩余面积为原来的22.(1)求每年平改坡的百分比;(2)问到今年为止,该平改坡工程已进行了多少年? (3)若通过技术创新,至少保留24a m 的老房子开辟新的改造途径. 今后最多还需平改坡多少年?解:(1)设每年平改坡的百分比为(01)x x <<,则 101(1)2a x a -=,即11011()2x -=,解得11011()0.0670 6.702x =-≈=%.(2)设到今年为止,该工程已经进行了n 年,则2(1)2na x a -=,即110211()()22n =,解得n =5.所以,到今年为止,该工程已经进行了5年. (3)设今后最多还需平改坡m 年,则 51(1)4m a x a +-=,即521011()()22m +=,解得m =15. 所以,今后最多还需平改坡15年.点评:以房屋改造为背景,从中抽象出函数模型,结合两组改造数据及要求,通过三个等式求得具有实际意义的底数或指数. 体现了代入法、方程思想等数学方法的运用.第18练 §2.3 幂函数※基础达标1.如果幂函数()f x x α=的图象经过点2(2,)2,则(4)f 的值等于( ).A. 16B. 2C.116D.122.下列函数在区间(0,3)上是增函数的是( ). A. 1y x=B. 12y x = C. 1()3x y = D. 2215y x x =--3.设120.7a =,120.8b =,c 3log 0.7=,则( ). A. c <b <a B. c <a <b C. a <b <c D. b <a <c12±四个值,与曲线4.如图的曲线是幂函数ny x =在第一象限内的图象. 已知n 分别取2±,1c 、2c 、3c 、4c 相应的n 依次为( ).42510c 4c 3c 2c 1A .112,,,222-- B. 112,,2,22--C. 11,2,2,22-- D. 112,,,222--5.下列幂函数中过点(0,0),(1,1)的偶函数是( ).A.12y x = B. 4y x = C. 2y x-= D.13y x =6.幂函数()y f x =的图象过点1(4,)2,则(8)f 的值为 .7.比较下列各组数的大小: 32(2)a + 32a ; 223(5)a -+ 235-; 0.50.4 0.40.5.※能力提高8.幂函数273235()(1)t tf x t t x +-=-+是偶函数,且在(0,)+∞上为增函数,求函数解析式.一、对勾函数b y ax x=+)0,0(>>b a 的图像与性质性质:1. 定义域:),0()0,(+∞⋃-∞2. 值域:),2[]2,(+∞⋃--∞ab ab3. 奇偶性:奇函数,函数图像整体呈两个“对勾”的形状,且函数图像关于原点呈中心对称,即0)()(=-+x f x f4. 图像在一、三象限当0x >时,由基本不等式知b y ax x=+≥ab 2(当且仅当b x a=取等号),即)(x f 在x=ab 时,取最小值ab 2由奇函数性质知: 当x<0时,)(x f 在x=ab -时,取最大值ab 2-5. 单调性:增区间为(∞+,a b),(a b-∞-,)减区间是(0,a b ),(a b -,0)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本不等式——形式一:a b +≥(a>0,b>0)____a b +( )——形式二:2a b+≥ (a__0,b__0)__(a >0,b >0)2a b + ——形式三:22a b ab +⎛⎫≤ ⎪⎝⎭( )(a>0,b>0)2a b+≤2a b+? 用分析法证明:要证2a b+ (1) 只要证 a b +≥ (2)要证(2),只要证____0a b +-≥ (3) 要证(3),只 要证2(__________)0-≥ (4)显然(4)是成立的. 当且仅当a=b 时,(4)中的等号成立.探究3:使用基本不等式的三个条件:一正二定三相等思考:(1)已知y=x+x1 ( x>0 ) ,求y 的范围.(2)已知y=x+x1( x≠0 ) ,求y 的范围.例题拓展【例1 】已知0x >,则xx 432++的最小值是________。

【 例2 】下列不等式一定成立的是 ( )A .xy y x 2≥+B .21≥+xx C .xy y x 222≥+ D .xyxy y x 12≥+【 例3 】下列结论中,错用基本不等式做依据的是( )基础回顾1、对于____ _ ,a b ,有22____2a b ab +,当且仅当____ _ 时,等号成立.2、基本不等式:对于____ _,a b ,则2a b+___ _时,不等式取等号.注意:使用基本不等式时,应具备三个条件:____ _ ____ _【例1 】(1)已知x >0,且y = x +81x,x =_________时,y 取最小值 (2)已知0x >,则xx 432++的最小值是________。

(3)y x x=++23122的最小值是(4)a+b=2,则3a +3b 的最小值是______________(5)a+2b=4,则3a +9b 的最小值是______________【 例2】设x ,y 为正数, 求14()()x y x y++的最小值【例4 】若0,0,x y >>且211x y+=,则2x y +的最小值为________练兵场:1、函数y =31-x + x (x>3) 的最小值是_________。

2、y =xx sin 22sin +(0<x <π)的最小值是__________。

3、已知0<x ,则xx 432++的最大值是________。

4、下列函数中最小值是4的是( ) A .x x y 4+= B .xx y sin 4sin += C .xx y -++=1122 D .)0(,31122≠+++=x x x y5、已知a,b 为正实数,且ba b a 11,12+=+则的最小值为_______6、已知0,0x y >>且满足281x y+=,求x y +的最小值。

【例4】已知y x ,都是正数(1)若积xy 是定值p ,求y x +的最小值;(2)若和y x +是定值s ,求xy 的最大值。

【例5】一段长为36 m 的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?【例6】已知x >0,y >0,且3x +4y =12,求lgx +lgy 的最大值及此时x 、y 的值。

变式1、已知xy y x R y x ,则,且14,=+∈+的最大值是 。

拓展归纳:最值定理设,0,2x y x y xy >+≥由(1)若积xy 是定值p ,则当y x =时和y x +有___________ (2)若和y x +是定值s ,则当y x =时积xy 有___________变式2、设x >0,y >0且3x +2y =12,则xy 的最大值是___________。

【小秘书】分离系数法是处理参数取值范围的常用方法。

试一试:1、当x >2时,使不等式a x x ≥-+21恒成立的实数a 的取值范围是 。

2、已知0,0x y >>,且211x y+=, 若222x y m m +>+ 恒成立, 则实数m 的取值范围是_____实例思考分析思考1:反比例函数(0)ky k x=≠,x 的范围,图象特征,y 的范围?思考2:已知y=x+x4( x≠0 ) ,y 的范围,图象特征?思考3:已知y=2x+x4( x≠0 ) ,y 的范围,图象特征?归纳总结拓展应用备注:“值域”,即y 的范围,用区间或集合形式表示【例1】(1)函数xx y 4+= 1x >() 的值域为_________________(2)函数x x y 4+=,30,2x ⎛⎤∈ ⎥⎝⎦的值域为_________________(3)函数xx y 4+=,(],1x ∈-∞-的值域为_________________(4)函数xx y 4+=,[]13x ∈,的值域为_________________(5)函数xx y 4+=,04x x <>或的值域为_________________【例2】(1)函数x x x y 342++=,30,2x ⎛⎤∈ ⎥⎝⎦的值域为_________________(2)函数14++=x x y ,30,2x ⎛⎤∈ ⎥⎝⎦的值域为_________________(3)函数314+-+-=xx y ,[)-10x ∈,的值域为_________________【例3】当(1,2)x ∈,不等式240x mx ++<恒成立,求实数m 的范围.练习:已知不等式022>+⋅-x a x 对于+∞∈,21[x )恒成立,求实数a 的取值范围.补充练习(基本不等式)1.在下列函数中,最小值为2的是( ) A .y =x +1xB .y =3x +3-xC .y =lg x +1lg x (0<x <1)D .y =sin x +1sin x ⎝⎛⎭⎪⎫0<x <π22.若a +b =2,则3a +3b的最小值是( )A .18B .6C .2 3D .243 每一天都是全新的一天,每一天都是进步的一天。

从今天起步,在明天收获!3.已知x <12,则函数y =2x +12x -1的最大值是( ) A .2 B .1 C .-1 D .-24. 若a >0,b >0,a ,b 的等差中项是12,且α=a +1a ,β=b +1b,则α+β的最小值为( )A .2B .3C .4D .55.已知圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0(a >0,b >0)对称,则4a +1b的最小值是( )A .4B .6C .8D .96.已知x ,y ∈R +,且x +4y =1,则x ·y 的最大值为________.7.当a >0,a ≠1时,函数f (x )=log a (x -1)+1的图象恒过定点A ,若点A 在直线mx-y +n =0上,则4m +2n 的最小值是________.8.如下图,某药店有一架不准确的天平(其两臂长不相等)和一个10克的砝码,一个患者想要买20克的中药,售货员先将砝码放在左盘上,放置药品于右盘上,待平衡后交给患者;然后又将砝码放在右盘上,放置药品于左盘上,待平衡后再交给患者.设患者一次实际购买的药量为m(克),则m________20克.(请选择填“>”或“<”或“=”)9.(2008年高考广东卷)某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用)建筑总面积参考答案1.B 2.解析:选B.3a +3b ≥23a ·3b =23a +b =6.3.解析:选C.y =2x +12x -1=-[(1-2x )+11-2x]+1, 由x <12可得1-2x >0,根据基本不等式可得(1-2x )+11-2x ≥2,当且仅当1-2x =11-2x 即x =0时取等号,则y max =-1.正确答案为C.4. 解析:选D.因为a +b =1,所以α+β=a +1a +b +1b =1+1a +1b =1+1+b a +1+a b≥5, 故选D.5.解析:选D.由圆的对称性可得,直线2ax -by +2=0必过圆心(-1,2),所以a +b =1.所以4a +1b =4(a +b )a +a +b b =4b a +a b +5≥24b a ·a b+5=9, 当且仅当4b a =a b,即a =2b 时取等号,故选D.6.1167.解析:A (2,1),故2m +n =1. ∴4m +2n ≥24m ·2n =222m +n =2 2.当且仅当4m =2n ,即2m =n ,即n =12,m =14时取等号. ∴4m +2n 的最小值为2 2. 答案:2 28.解析:设两次售货员分别在盘中放置m 1、m 2克药品,则⎩⎪⎨⎪⎧ 10a =m 1b ,10b =m 2a ,m =m 1+m 2,前两个式子相乘,得100ab =m 1m 2·ab ,得m 1m 2=100,因为m 1≠m 2,所以m =m 1+m 2>2m 1m 2=20,所以填“>”.答案:> 9.解:设将楼房建为x 层,则每平方米的平均购地费用为2160×1042000x =10800x. ∴每平方米的平均综合费用y =560+48x +10800x =560+48(x +225x ). 当x +225x取最小值时,y 有最小值.∵x >0, ∴x +225x ≥2x ·225x=30, 当且仅当x =225x, 即x =15时,上式等号成立.所以当x =15时,y 有最小值2000元.因此该楼房建为15层时,每平方米的平均综合费用最小.。

相关文档
最新文档