预测编码
预测编码的基本原理

预测编码的基本原理
预测编码是一种数据压缩技术,通过利用数据中的统计规律和先验知识,来减少数据的冗余信息,从而实现数据的高效压缩和传输。
预测编码的基本原理是利用已知的数据来预测未知的数据,然后将预测误差进行编码传输,以实现数据的压缩和传输。
首先,预测编码需要建立一个预测模型,这个模型可以是简单的线性模型,也可以是复杂的非线性模型。
通过这个预测模型,我们可以根据已知的数据来预测未知的数据。
预测编码的关键在于如何选择和建立一个合适的预测模型,这个模型需要能够准确地预测未知数据,从而减少预测误差。
其次,预测编码需要对预测误差进行编码传输。
预测误差是指预测值与真实值之间的差异,通过编码传输预测误差,可以实现数据的高效压缩和传输。
常用的编码方法包括霍夫曼编码、算术编码等,这些编码方法可以根据预测误差的统计规律来实现数据的高效压缩。
预测编码的基本原理可以通过一个简单的例子来说明。
假设我们要传输一段音频数据,我们可以利用已知的音频数据来预测未知
的音频数据,然后将预测误差进行编码传输。
通过这种方式,可以实现音频数据的高效压缩和传输,从而节省传输带宽和存储空间。
总之,预测编码是一种利用数据的统计规律和先验知识来实现数据压缩和传输的技术。
通过建立预测模型和对预测误差进行编码传输,可以实现数据的高效压缩和传输。
预测编码在图像、音频、视频等领域有着广泛的应用,是一种非常重要的数据压缩技术。
预测编码的基本原理

预测编码的基本原理随着数字化的快速发展,我们已经进入了数字时代。
数字内容广泛应用于各种场景,包括图片、视频、音频等。
当我们需要在不同设备之间传输这些文件时,文件的大小和质量成为非常重要的问题。
这就促使了预测编码技术的出现。
本文将介绍预测编码的基本原理。
1. 数字信号模型:在数字信号模型中,信号在时间或空间维度上是一段离散数据的序列。
例如,当我们在拍摄一段视频时,视频中的每一帧都是由像素点组成的一个离散数据序列。
而这些像素值就组成一个数字信号模型。
2. 基于预测的压缩:基于预测的压缩是一种常见的压缩技术,可以有效地压缩数字信号。
在预测编码过程中,我们需要选取一个预测器来预估下一个值。
这个预测器可以是简单的线性预测器,也可以是更复杂的模型。
3. 线性预测:在应用线性预测的时候,我们首先需要找到一个理想的预测器,使得预测残差的值最小。
在具体实现中,预测器的系数需要通过最小二乘法进行估计。
4. 预测比特:预测编码是基于预测残差的差异进行编码的。
预测残差表示实际值和预测值之间的差异。
对于一个离散的数字信号模型,预测得到的残差一般是一个整数值。
在进行编码的时候,我们需要将残差转换成二进制码流进行传输。
5. 自适应编码:为了更有效地进行编码,我们还需要了解每种编码方式的效率。
这就是自适应编码,它是根据每个符号出现的概率来调整码长的编码方法。
6. 预测编码的应用:预测编码被广泛应用于数字媒体的压缩和传输中。
例如,在视频压缩领域,有很多基于预测编码的压缩标准,比如MPEG-2、H.264等。
本文简单介绍了预测编码的基本原理。
预测编码是数字媒体领域中非常重要的技术,它可以有效地实现数字媒体的压缩和传输。
随着数字媒体技术的不断发展,预测编码将会发挥更加重要的作用。
预测编码

4.4预测编码1.预测编码的基本原理预测编码(Prediction Coding)是根据某一种模型,利用以前的(已收到)一个或几个样值,对当前的(正在接收的)样本值进行预测,将样本实际值和预测值之差进行编码。
如果模型足够好,图像样本时间上相关性很强,一定可以获得较高的压缩比。
具体来说,从相邻像素之间有很强的相关性特点考虑,比如当前像素的灰度或颜色信号,数值上与其相邻像素总是比较接近,除非处于边界状态。
那么,当前像素的灰度或颜色信号的数值,可用前面已出现的像素的值,进行预测(估计),得到一个预测值(估计值),将实际值与预测值求差,对这个差值信号进行编码、传送,这种编码方法称为预测编码方法。
预测编码的基本思想建立一个数学模型利用以往的样本数据对新样本值进行预测将预测值与实际值相减对其差值进行编码,这时差值很少,可以减少编码码位。
2.预测编码的分类最佳预测编码:在均方误差最小的准则下,使其误差最小的方法。
线性预测:利用线性方程计算预测值的编码方法。
非线性预测:利用非线性方程计算预测值的编码方法。
线性预测编码方法,也称差值脉冲编码调制法(Differention Pulse Code Modulation,DPCM)。
如果根据同一帧样本进行预测的编码方法叫帧内预测编码。
根据不同帧样本进行预测的编码方法叫帧间预测编码。
如果预测器和量化器参数按图像局部特性进行调整,称为自适应预测编码(ADPCM)在帧间预测编码中,若帧间对应像素样本值超过某一阈值就保留,否则不传或不存,恢复时就用上一帧对应像素样本值来代替,称为条件补充帧间预测编码。
在活动图像预测编码中,根据画面运动情况,对图像加以补偿再进行帧间预测的方法称为运动补偿预测编码方法。
3.DPCM编码算法一幅二维静止图像,设空间坐标(i,j)像素点的实际样本为f(i,j),是预测器根据传输的相邻的样本值对该点估算得到的预测(估计)值。
编码时不是对每个样本值进行量化,而是预测下一个样本值后,量化实际值与预测值之间的差。
预测编码的基本原理及应用

预测编码的基本原理及应用1. 什么是预测编码预测编码是一种数据压缩技术,通过对数据的统计分析和模型预测,减少数据的冗余信息,从而实现数据的高效存储和传输。
预测编码的基本原理是根据已有的数据序列,通过数学模型对下一个数据进行预测,然后记录预测结果和真实数据之间的差异,将差异进行编码存储。
在解码时,利用相同的模型对预测结果进行逆向计算,还原出原始数据序列。
2. 预测编码的基本原理预测编码的基本原理可以概括为以下几个步骤:2.1 数据建模在预测编码中,需要建立一个合适的数据模型来对数据进行预测。
常用的数据模型包括线性模型、非线性模型等。
模型的选择根据具体的应用场景和数据特点来确定。
2.2 数据预测根据建立的数据模型,对已知的数据序列进行预测,得到下一个数据的预测值。
预测过程可以使用各种预测算法,如线性回归、逻辑回归、支持向量机等。
预测算法的选择依赖于建立的数据模型和数据的特征。
2.3 误差计算将预测值与真实值进行比较,计算它们之间的误差。
误差可以使用各种度量方法来评估,如平均绝对误差、均方误差等。
误差的计算结果用于后续的编码过程。
2.4 差值编码将误差值进行编码,通常使用无损编码方法,如霍夫曼编码、算术编码等。
编码的目的是通过消除冗余信息,实现数据的压缩存储。
2.5 编码存储对编码后的数据进行存储,可以选择不同的存储格式,如二进制、文本等。
在存储时,需要注意数据的还原问题,以便在解码时能够正确还原原始数据。
3. 预测编码的应用预测编码技术在各个领域都有广泛的应用,以下是一些典型的应用场景:3.1 音频和视频压缩预测编码技术在音频和视频压缩中起到重要作用。
通过对音频和视频数据进行预测和编码,可以实现高效的压缩存储和传输,提高系统的性能和效率。
3.2 无线通信在无线通信系统中,预测编码技术可以减少数据传输量,提高数据传输速率。
预测编码技术可以应用于语音通信、图像传输等领域,以实现更稳定和高速的无线通信。
3.3 数据传输在数据传输过程中,通过使用预测编码技术,可以减少传输数据的大小,降低传输成本。
预测编码理论

一、预测编码原理
预测编码是数据压缩三大经典技术(统计编 码、预测编码、变换编码)之一。预测编码 是建立在信号数据的相关性之上,较早用于 信源编码的一种技术。它根据某一模型,利 用以往的样本值对新样本值进行预测,以减 少数据在时间和空间上的相关性,达到压缩 数据的目的。
一、预测编码原理
对于有记忆信源,信源输出的各个分量之间是 有统计关联的,这种统计关联性可以加以充分利用, 预测编码就是基于这一思想。它不是直接对信源输 出的信号进行编码,而是将信源输出信号通过预测 变换后再对预测值与实际值的差值进行编码,其原 理图见下图。
前提:信源ui是平稳随机过程———最优线性预测
3.2自适应预测方法
对于非平稳或非概率性的信源,无法获得确 切和恒定的相关函数,不能构成线性预测函数, 可采用自适应预测方法。所谓自适应预测就 是预测器的预测系数不固定,随信源特性而 有所变化。如果充分利用信源的统计特性及 其变化,重新调整预测系数, 这样就使得预 测器随着输入数据的变化而变化,从而得到 较为理想的输出。
预测误差门限型:(非线性预测器) ei ui ui 1 仅与前一样值作预测 若
ei K 则不传送 u i ; ei
K
则传送
ui
K为最大误差的门限值,即信宿可接收的最大误差
信号相关性越强,则此时传送的数据越少。
谢谢大家!
3.3利用预测值的编码方法
一类是用实际值与预测值之差进行编码,也叫 差值编码。 另一类方法是根据差值的大小决定是否需要 传送该信源符号。例如规定某一可容许值N, 当差值小于N时可不传送。
四、预测编码的应用(了解)
4.1差分脉冲编码调制DPCM
4.2
实验七、预测编码

实验七、预测编码一,目的掌握预测编码的基本原理与方法了解图像预测编码的基本原理与方法二,实验条件1)微型计算机:INTEL 奔腾及更高2)MATLAB3)典型的灰度、彩色图像文件三,原理利用图像的空间或时间的冗余度进行四,实验内容1.以一阶预测为例,编程实现给定的图像的预测编码值2.绘制相应预测编码值的直方图MATLAB具体的实现代码:clear;cd d:init=imread('test.jpg');two_=rgb2gray(init);two=double(two_); [m,n]=size(two);%保留下第二行数组,用以之后计算第一行的预测值second_lie=zeros(1,n);for p=1:1:mfor q=2second_lie(p,q)=two(p,q);endend%计算预测值,从第二列开始计算one=zeros(m,n);for x=1:1:mfor y=2:1:none(x,y)=two(x,y+1)-two(x,y);%用前一行的像素值减去后一行的像素值endend%添加上第一行的预测值for i=1:1:mfor j=2one(i,1)=second_lie(i,j)-two(i,j-1);endend% 统计概率分布zhifangtu=zeros(1,511);%定义-255—255范围的一维空间for i=1:1:mfor j=1:1:nzhifangtu(one(i,j)+256)=(zhifangtu(one(i,j)+256)+1);%将统计值多添加256,以此来避免负数灰度值的出现,最后统计灰度值,并计算概率endend%定义了重新描述直方图的横坐标lie=zeros(1,511);for qq=1:1:511lie(qq)=qq-256;end%绘制统计直方图plot(lie,zhifangtu);title('概率统计');-300-200-1000100200300024681012x 104概率统计%计算图像压缩比for aa=1:1:mfor bb=1:1:nsum_init=sum_init + two(aa,bb);sum_final=sum_final+abs(one(aa,bb));endendcc=sum_final/sum_init;yasuobi=double(cc)*100;%图像恢复部分recover=zeros(m,n);%恢复出第一行像素值for mm=1:1:mrecover(mm,1)=second_lie(mm,2)-one(mm,1);end%完全恢复图像for ii=1:1:mfor jj=2:1:n-1recover(ii,jj)=recover(ii,jj-1)+one(ii,jj-1);endend初始的二维图像矩阵恢复后的二维图像矩阵五,讨论与分析进行预测编码后统计直方图呈现形似高斯分布图,其中差值大部分集中于0左右,最后,图像的恢复只需根据保留的第二行原始数据与求得的预测值的第一行相减即可恢复出第一行,之后在用恢复出的像素值依次恢复接下来的像素值即可完整的恢复图像。
预测编码

4.4预测编码1.预测编码的基本原理预测编码(Prediction Coding)是根据某一种模型,利用以前的(已收到)一个或几个样值,对当前的(正在接收的)样本值进行预测,将样本实际值和预测值之差进行编码。
如果模型足够好,图像样本时间上相关性很强,一定可以获得较高的压缩比。
具体来说,从相邻像素之间有很强的相关性特点考虑,比如当前像素的灰度或颜色信号,数值上与其相邻像素总是比较接近,除非处于边界状态。
那么,当前像素的灰度或颜色信号的数值,可用前面已出现的像素的值,进行预测(估计),得到一个预测值(估计值),将实际值与预测值求差,对这个差值信号进行编码、传送,这种编码方法称为预测编码方法。
预测编码的基本思想建立一个数学模型利用以往的样本数据对新样本值进行预测将预测值与实际值相减对其差值进行编码,这时差值很少,可以减少编码码位。
2.预测编码的分类最佳预测编码:在均方误差最小的准则下,使其误差最小的方法。
线性预测:利用线性方程计算预测值的编码方法。
非线性预测:利用非线性方程计算预测值的编码方法。
线性预测编码方法,也称差值脉冲编码调制法(Differention Pulse Code Modulation,DPCM)。
如果根据同一帧样本进行预测的编码方法叫帧内预测编码。
根据不同帧样本进行预测的编码方法叫帧间预测编码。
如果预测器和量化器参数按图像局部特性进行调整,称为自适应预测编码(ADPCM)在帧间预测编码中,若帧间对应像素样本值超过某一阈值就保留,否则不传或不存,恢复时就用上一帧对应像素样本值来代替,称为条件补充帧间预测编码。
在活动图像预测编码中,根据画面运动情况,对图像加以补偿再进行帧间预测的方法称为运动补偿预测编码方法。
3.DPCM编码算法一幅二维静止图像,设空间坐标(i,j)像素点的实际样本为f(i,j),是预测器根据传输的相邻的样本值对该点估算得到的预测(估计)值。
编码时不是对每个样本值进行量化,而是预测下一个样本值后,量化实际值与预测值之间的差。
第四章 预测编码和变换编码

一、静止图像的二维预测编码
选择值 预测值
c a
b d x
0
1 2 3 4
非预测
a b c a+b-c a+(b-c)/2 b+(a-c)/2
三邻域预测法
5 6
7
(a+b)/2
这种压缩算法被应用到JPEG标准的无损压缩模式之中, 中等复杂程度的图像压缩比可达到2:1。 Lossless JPEG
发送端预测器带有存储器,把tn时刻以前的采样值x1, x2, x3,…, xk-1
^ ek为xn与Xk的差值, ek’为ek经量化器量化的值
xk’是接收端的输出信号 误差ek为
^ 存储起来并据此对xk进行预测,得到预测值 X
k
^ ek= xk- xk’= xk-( k +ek’)= (xkXk )- ek’= ek - ek’ X
自适应量化
在一定量化级数下减少量化误差或在同样的误
差条件下压缩数据,根据信号分布不均匀的特 点,希望系统具有随输入信号的变化区间足以 保持输入量化器的信号基本均匀的能力,这种 能力叫自适应量化。
示例二:
ADPCM采用与DPCM相同的预测器,但对误差量化时采用自 适应改变量化器的量化阶数的压缩结果
^
实际上就是发送端的量化器对误差ek’量化的误差 对 ek’的量化越粗糙,压缩比越高,失真越大.
为接纳量化步骤,需要改变图4-1中的无损编码器以使编码器和解 码器所产生的预测能相等。为此在图4-2中将有损编码器的预测器 放在1个反馈环中。这个环的输入是过去预测和与其对应的量化误 差的函数
’ =e ’ + ^ x k k Xk
DM编码失真示例
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生姓名:刘琨(31356013)
导师:王树彬
1
什么是预测编码?
预测编码是指从已收到的符号来提取关于 未收到的符号信息,从而预测其最可能的值作 为预测值,并对它与实际值之差进行编码。由 于差值很小,可以减少编码的码位,实现压缩。 它利用了信源的相关性来压缩码率,所以 对于独立信源,预测就没有可能。
7
Байду номын сангаас
此时的各系数as并不能对该信源发出
的所有序列都适用,随着序列的延长,各as根
据以后的r个符号值来计算,因而将随序列的
变化而变化,也就是说可以不断适应序列的
变化,适用于缓变的非平稳信源序列。
8
利用预测值的编码方法
一类是用实际值与预测值之差进行编码,也
叫差值编码。常用于相关性强的连续信源,也可
用于离散信源。在连续信源的情况下,就是对此
测。常用的差值预测就属于这类。
高阶线性预测已在话音编码,尤其在声
码器中广泛采用。
6
自适应预测
对于非平稳或非概率性的信源,无法获得确 切和恒定的相关函数,不能构成线性预测函数,可 采用自适应预测方法。 一种常用的自适应预测方法是设预测函数 是前几个符号值的线性组合,即令预测函数为 x’=∑asxt-r-1-s 再用已知信源序列来确定各系数as, 使对该序列所造成的均方误差D最小。
d (n)
s p (n)
量化 器
d q (n)
编码 器 +
sr (n)
I (n)
预测 器
S(n)是输入语音信号, (n) 是重建语音信号, 作为预测器确定下一个信号估值的输入信号。 (n)是预测语音信号,d(n)是差值信号。 DPCM实际就是对这个差值信号进行量化编码
12
DPCM编码的原理-接收端
解码 器
d q (n)
I ' ( n)
+
s (n) p
sr (n)
预测 器
13
谢谢大家
14
4
线性预测 线性预测就是预测函数为各已知信源 符号的线性函数,即 x’r+1 = f(x1,x2,…,xr)=∑asxs, 并求均方误差D = E(x’r+1-xr+1)2最小 时的各as值。两式联立,并对各as求偏导并 置零。已知信源各符号之间的相关函数的 情况下就可以计算as值了。
5
最简单的预测是令x’r+1 = xr,称为零阶预
差值量化或取一组差值进行矢量量化,由于相关
性强的信源预测值比较准确,差值的方差将远小 于原值,所以在同样失真要求下,量化级数可明显 减少,从而显著压缩码率。对于离散信源也有类 似情况。
9
另一类方法是根据差值的大小决定是 否需要传送该信源符号。例如规定某一可 容许值N,当差值小于N时可不传送。对于连 续信源或相关性很强的信源序列,常有很长 一段符号可以不传送而只需传送这串符号 的个数,这样能大量压缩码率。 这类方法一 般是按信宿要求设计的,失真应能满足信宿 要求。
2
主要理论基础
预测的理论基础主要是估计理论。估计就
是用实验数据组成一个统计量作为某一物理量
的估值或预测值。 若估值的数学期望等于原来的物理量,则 称为无偏估计;若估值与原物理量之间的均方 误差最小的,则称为最佳估计。
用来预测时,最佳估计就成为最小均方误
差的预测,所以也就认为这种预测是最佳的。
3
最佳预测函数
10
预测编码的应用 预测编码中典型的压缩方法有脉冲编码 调制(PCM)、差分脉冲编码调制(DPCM)、自 适应差分脉冲编码调制(ADPCM)等。 它们较适合于声音、图像数据的压缩,
因为这些数据由采样得到,相邻样值之间的
差相差不会很大,可以用较少位来表示。
11
DPCM编码的原理-发送端
s (n)
+
要实现最佳预测就需要找到计算预测值的 预测函数。 设有信源序列x1,x2,…,xr, xr+1,…。所谓 r阶预测就是用x1,x2,…,xr来预测xr+1。 令预测值为x’r+1 = f(x1,x2,…,xr),式中f 是待定的预测函数,要使预测具有最小均方误差, 必须确知r+1个变量(x1,x2,…,xr,xr+1)的联合概 率密度函数,这在一般情况下是困难的。因而常 用线性预测的方法来达到次最佳的结果。