非线性时间序列模型

合集下载

非线性趋势的时间序列

非线性趋势的时间序列

非线性趋势的时间序列
非线性趋势的时间序列通常具有曲线或曲折的形状,而不是直线或指数型的趋势。

这种时间序列可能表现出各种形式的非线性关系,如凸型、凹型、波动性等。

例如,一个非线性趋势的时间序列可能是一条波动上升的曲线,其中波峰和波谷交替出现,而不是沿着直线或指数型增长。

另一个例子是一条S 型曲线,表现为一段缓慢增长,随后加速上升,最终趋于饱和。

非线性趋势的时间序列具有更加复杂的关系,因此需要更高级的数据分析方法来识别和预测。

常见的方法包括多项式拟合、非参数回归、神经网络模型等。

通过这些方法,可以更好地理解和利用非线性趋势的时间序列数据。

2020版金融计量学:时间序列分析视角(第三版)教学课件第14章第1节

2020版金融计量学:时间序列分析视角(第三版)教学课件第14章第1节

(14.20)
这样,可以把模型(14.19)重新写成
VAR(1)模型的形式,即:
St PSt1 Vt (14.21)
在一阶MS模型中,我们还可以得到比 模型(14.23)更一般的结论,即:
E(Vt Sti ) 0,i 0
无条件期望对应的是其中一个状 态的期数占总共状态期数的比重。我 们知道,对于只有两个状态的MS模型 来说,在每一个时刻点,只有一个状 态,也只有一个扰动项。从模型 (14.16)和(14.21),我们得到:
可以写成如下形式
Yt Yt
X t0 X t1
t0 t1
t0
iid
(0,
2 0
),
st
0
t1 iid (0,12 ), st 1
其中:Yt、Xt 和 分别表示因变量、自变 量矩阵以及系数矩阵。
14.2.4 状态变量的属性
MS模型中不同区制(状态)持续 的时间、区制的期望、区制的向量表 示形式以及利用向量形式的区制形式 预测未来的状态,是状态变量属性中 最重要的几个方面,我们下面分别进 行介绍。
s10
p f1( y1) (1 p) f0 ( y1)
当我们考虑更一般的情况时,则 可以把模型(14.34)拓展为:
Pr| It1]
f ( yt | t1
其中: 1 Pr[s1 1| It1] Pr[st , st1 | It1] st1 0
(1 p){1 p p2
p p2
p2 }
(1
p)
1
1
p
p 1 p
p2 1 p
1 p p2
(14.12)
1 1 p
同理,如果假设
st1 st2 st j 0, st j 1

非线性时间序列分析STAR模型及其在经济学中的应用

非线性时间序列分析STAR模型及其在经济学中的应用

非线性时间序列分析的基本概念 和理论
时间序列是指按照时间顺序排列的一组数据。在经济学中,时间序列数据通 常反映了某一经济现象的历史演变过程,如股票价格、消费支出、生产产量等。 非线性时间序列是指时间序列数据之间存在非线性关系,这种关系往往比线性关 系更为复杂和真实。
STAR模型是一种非线性时间序列分析方法,它可以捕捉时间序列中的非线性 结构和变化。STAR模型基于自回归模型,通过引入平滑转换函数,允许模型在不 同时间点之间平滑转换,以适应时间序列数据的非线性特征。
3、数据预处理
在应用STAR模型之前,需要对时间序列数据进行预处理,如去噪、季节调整 等。这些预处理步骤可以帮助STAR模型更好地识别时间序列的非线性结构。
4、模型应用
一旦STAR模型被估计和识别后,可以将其应用于预测时间序列的未来走势。 此外,STAR模型还可以用于时间序列的分解,将时间序列分解为线性部分和非线 性部分,以便更深入地理解时间序列数据的特征。
非线性动力系统基础
非线性动力系统是指由非线性微分方程或动态方程描述的系统。这些系统具 有丰富的动态行为和复杂的相互作用,无法简单地通过线性系统进行描述。李雅 可夫斯基定理是非线性动力系统理论中的重要成果之一,它揭示了系统中混沌现 象的存在和重要性。此外,同步也是非线性动力系统中的一个重要概念,它描述 了两个或多个系统在某种条件下以相同的方式运动的现象。
非线性时间序列分析STAR模型及其 在经济学中的应用
目录
01 引言
03
非线性时间序列分析 STAR模型
02 非线性时间序列分析 的基本概念和理论
04 参考内容
引言
在经济学中,时间序列数据的应用越来越广泛,例如金融市场价格波动、消 费者行为模式、生产活动变化等。为了更好地理解和预测这些时间序列数据,非 线性时间序列分析方法逐渐受到重视。其中,STAR(Smooth Transition Autoregressive)模型是一种被广泛应用于非线性时间序列分析的方法。本次演 示将详细介绍非线性时间序列分析STAR模型及其在经济学中的应用。

非线性时间序列.doc

非线性时间序列.doc

-------------精选文档 -----------------近代时间序列分析选讲:一. 非线性时间序列二. GARCH 模型三. 多元时间序列四. 协整模型-------------精选文档 -----------------非线性时间序列第一章 .非线性时间序列浅释1.从线性到非线性自回归模型2.线性时间序列定义的多样性第二章 . 非线性时间序列模型1.概述2.非线性自回归模型3.带条件异方差的自回归模型4.两种可逆性5.时间序列与伪随机数第三章 . 马尔可夫链与 AR 模型1.马尔可夫链2.AR 模型所确定的马尔可夫链-------------精选文档 -----------------3.若干例子第四章 . 统计建模方法1.概论2.线性性检验3.AR 模型参数估计4.AR 模型阶数估计第五章 . 实例和展望1.实例2.展望第一章 .非线性时间序列浅释1.从线性到非线性自回归模型时间序列 {x t } 是一串随机变量序列 , 它有广泛的实际背景 , 特别是在经济与金融-------------精选文档 -----------------领域中尤其显著. 关于它们的从线性与非线性概念 , 可从以下的例子入手作一浅释的说明.考查一阶线性自回归模型---LAR(1):x t = x t-1 +e t ,t=1,2,(1.1)其中 {e t } 为i.i.d.序列,且Ee t =0, Ee t = 2 <, 而且e t与 {x t-1 ,x t-1 ,} 独立 .反复使用 (1.1) 式的递推关系 , 就可得到x t =x t-1 +e t=e =e =e ttt+x t-1+{ e t-1 +x t-2 } +e t-1 + 2 x t-2== e t +e t-1 + 2 e t-2+ +n-1 e t-n+1+n x t-n.(1.2)如果当 n时,n xt-n 0, (1.3) {e t + e t-1 + 2 e t-2++n-1 e t-n+1}j=0j et-j .(1.4)虽然保证以上的收敛是有条件的, 而且要涉及到具体收敛的含义, 但是 , 对以上的简单模型 , 不难相信 , 当| |<1 时 , (1.3)(1.4) 式成立 . 于是 , 当 | |<1时,模型LAR(1)有平稳解 , 且可表达为x t =j=0j e t-j.(1.5) 通过上面叙述可见求LAR(1) 模型的解有简便之优点 , 此其一 . 还有第二点 , 容易推广到 LAR(p) 模型 . 为此考查如下的 p 阶线性自回归模型 LAR(p):x t = 1 x t-1 + 2 x t-2 +...+p x t-p +e t ,t=1,2, (1.6) 其中 {e t } 为i.i.d.序列,且Ee t =0, Ee t = 2 <, 而且 e t与{x t-1 , x t-1 ,} 独立 .虽然反复使用(1.6) 式的递推式, 仍然可得到 (1.2) 式的类似结果, 但是 ,用扩张后的一阶多元 AR 模型求解时 , 可显示出与 LAR(1) 模型求解的神奇的相似. 为此记x t 1x t 1, U= 0X t = ,x t p 1 01 2 p1 0 0(1.7)A= ,0 00于是 (1.6) 式可写成如下的等价形式:X t =A X t-1 + e t U.(1.8) 反复使用此式的递推关系, 形式上仿照 (1.2) 式可得X t =AX t-1 +e t U= e t U+ e t-1 AU+A 2 x t-2==e t U+e t-1 AU+e t-2 A 2 U++e t-n+1 A n-1 U+A n x t-n .如果矩阵 A 的谱半径 (A的特征值的最大模) (A),满足如下条件(A)<1,(1.10)由上式可猜想到 (1.8) 式有如下的解 :X t =k=0 A k Ue t-k .(1.11)其中向量X t的第一分量x t形成的序列 {x t },就是模型 (1.6) 式的解 . 由此不难看出 , 它有以下表达方式x t =k=0k e t-k .(1.11)其中系数k 由(1.6)式中的 1 ,2 , ...,p确定 , 细节从略 . 不过 , (1.11) 式给了我们重要启发 ,即考虑形如x t =k=0k e t-k ,k=0k 2,(1.12)的时间序列类( 其中系数k 能保证(1.12)式中的x t有定义 ). 在文献中 , 这样的序列-------------精选文档 -----------------{x t } 就被称为线性时间序列.虽然以上给出了线性时间序列的定义, 以下暂时不讨论什么是非线性时间序列, 代之先讨论一阶非线性自回归模型---NLAR(1),以便与LAR(1) 模型进行比较分析 . 首先写出 NLAR(1)模型如下x t = (x t-1 )+e t ,t=1,2,(1.13)其中 {e t } 为i.i.d.序列,且Ee t =0, Ee t = 2 <, 而且e t与 {x t-1 ,x t-2 ,} 独立 , 这些假定与LAR(1) 模型相同 , 但是 ,(x t-1 )不再是 x t-1的线性函数 , 代之为非线性函数,比如-------------精选文档 -----------------(x t-1 )=x t-1 /{a+bx t-1 2}.此时虽然仍可反复使用(1.13) 式进行迭代, 但是所得结果是x t =(x t-1 ) +e t= e t +(x t-1 )= e t +( e t-1 +(x t-2 ))= e t +( e t-1 +( e t-2 + (x t-3 )))==e t +( e t-1 +( e t-2 ++(x t-n )) ).(1.14)根据此式 , 我们既不能轻易判断(x t-1 ) 函-------------精选文档 -----------------数满足怎样的条件时, 上式会有极限 , 也不能猜测其极限有怎样的形式.对于 p 阶非线性自回归模型x t = (x t-1 ,x t-2 ,,x t-p )+e t ,t=1,2, (1.15) 仿照 (1.6) 至 (1.9) 式的扩张的方法, 我们引入如下记号(x t 1 , x t 2 ,...,x t px t 1( x t-1 ,x t-2 , ,x t-p ),x t p 1(1.16)我们得到与 (1.15) 式等价的模型X t = (X t-1 ) +e t U, t=1,2,(1.17)但是 , 我们再也得不出(1.9) 至 (1.14) 式的结果 ,至此我们已将看出 , 从线性到非线性自回归模型有实质性差异 , 要说清楚它们 , 并不是很简单的事情 . 从数学角度而言 , 讨论线性自回归模型可借用泛函分析方法 , 然而, 讨论非线性自回归模型, 则要借用马尔可夫链的理论和方法 . 这也正是本讲座要介绍的主要内容 .2.线性时间序列定义的多样性现在简单叙述一下非线性时间序列定义的复杂性 , 它与线性时间序列的定义有关.前一小节中(1.12) 式所显示的线性时间序列 , 只是一种定义方式. 如果改变对系数k 的限制条件, 就会给出不同的定义. 更为重要的是 , 在近代研究中 , 将 (1.12) 式中的 i.i.d. 序列 {e t } 放宽为平稳鞅差序列, 这在预报理论中很有意义.无论引用哪一种线性时间序列定义, 都对相应的序列的性质有所研究, 因为其研究成果可用于有关的线性时间序列模型解的特性研究 . 事实上 , 已经有丰富的成果被载入文献史册 .依上所述可知 , 由于线性时间序列定义的多样性 , 必然带来非线性时间序列定义的复杂性 . 这里需要强调指的是 , 对于非线性时间序列 , 几乎没有文章研究它们的一般性质, 这与线性时间序列情况不同 . 于是人们要问 , 我们用哪些工具来研究非线性时间序列模型解的特性呢 ? 这正是本次演讲要回答的问题 . 确切地说 , 我们将介绍马尔可夫链 , 并借助于此来讨论非线性自回归模型解的问题 .第二章 . 非线性时间序列模型1.概论从(1.12) 式可见,一个线性时间序列 {x t }, 被 {e t } 的分布和全部系数i 所决定. 在此有无穷多个自由参数,这对统计不方便,因此人们更关心只依赖有限个自由参数的线性时间序列,这就是线性时间序列的参数模型. 其中最常用的如 ARMA 模型 . 对于非线性时间序列而言 , 使用参数模型方法几乎是唯一的选择 . 由于非线性函数的多样性 ,带来了非线性时间序列模型的多样性 . 但是 , 迄今为止被研究得较多 , 又有应用价值的非线性时序模型 , 为数极少 , 而且主要是针对非线性自回归模型 . 在介绍此类模型之前 , 我们先对非线性时序模型的分类作一概述 .通用假定 : {t }为i.i.d.序列,且E t =0, 而且t 与{x t-1 , x t-2 ,}独立 .可加噪声模型 :x t = (x t-1 ,x t-2 , )+t ,t=1,2, (2.1)其中( ) 是自回归函数. 当它仅依赖于有限个未知参数时 , 记此参数向量为 , 其相应的(2.1) 模型常写成x t = (x t-1 ,x t-2 , ; )+t ,t=1,2, (2.2)否则 , 称(2.1) 式称为非参数模型.关于 (2.1)(2.2)的模型的平稳性,要在下一章讨论 , 但是 , 它有类似于线性A R 模型的几个简单性质, 是重要的而且容易获得的, 它们是 :E(x t |x t-1 ,x t-2 , )=E{ (x t-1 ,x t-2 , )+t |x t-1 ,x t-2 ,}= (x=(xt-1t-1 ,x,xt-2t-2 ,⋯)+E(t |x t-1 ,x t-2 ,⋯),⋯)(2.3)var{x t |x t-1 , x t-2 , ⋯}E{[x t - (x t-1 ,⋯)] 2|x t-1 , x t-2 , ⋯}= E{t 2|x t-1 , x t-2, ⋯}= E t 2=2.(2.4)P{x t <x|x t-1 ,x t-2 , ⋯}= P{(x t-1 ,⋯)+t <x|x t -1 ,x t-2 , ⋯}= P{t <x-(x t-1 ,⋯)|x t-1 ,x t-2 , ⋯}=F (x-(x t-1 ,⋯)).(2.5)其中 F 是t 的分布函数.带条件异方差的模型:x t = (x t-1 ,x t-2 , )+S(x t-1 ,x t-2 , )t ,t=1,2, (2.6)其中( ) 和 S() 也有限参数与非参数型之分 , 这都是不言自明的 . 另外 , (2.6) 式显然不属于可加噪声模型. 但是 , 它比下面的更一般的非可加噪声模型要简单得多. 这可通过推广 (2.3)(2.4)(2.5)式看出,即有,E(x t |x t-1 ,x t-2 , )-------------精选文档 -----------------=E{ (x t-1 ,x t-2 ,⋯)+S(x t-1 ,x t-2 ,⋯)t |x t-1 ,x t-2 ,⋯}=(x t-1 ,x t-2 ,⋯)+S(x t-1 ,x t-2 ,⋯)E{t |x t-1 ,x t-2 ,⋯}= (x t-1 ,x t-2 ,⋯).(2.3) ’var{x t |x t-1 , x t-2 , ⋯}E{[x t - (x t-1 ,⋯)] 2 |x t-1 , x t-2 , ⋯}=E{S 2 (x t-1 ,x t-2 ,⋯)t 2|x t-1 , x t-2, ⋯}=S 2 (x t-1 ,x t-2 ,⋯)E{t 2|x t-1 , x t-2, ⋯}=S 2 (x t-1 ,x t-2 ,⋯) 2 .(2.4) ’P{x t <x|x t-1 ,x t-2 , ⋯}=P{(x t-1 ,⋯)+S(x t-1 ,⋯)t <x|x t-1 , x t-2, ⋯} = P{t <[x-(x t-1 ,⋯)]/S(x t-1 ,⋯)}=F ([x-(x t-1 ,⋯)]/S(x t-1 ,⋯)).(2.5) ’一般非性序模型:x t = (x t-1 ,x t-2 ,⋯;t ,t-1 ,⋯)t=1,2, ⋯(2.7) 其中( ⋯) 也有参数与非参数型之区, 也是不言自明的 . 然 , (2.7) 式既不是可加噪声模型 , 也不属于 (2.6) 式的条件异方差的模型 . 然 , 它可能具有条件异方差性. 相反 , 后两者都是(2.7) 式的特殊型 .虽说 (2.7) 式是更广的模型形式, 在文献中却很少被研究 . 只有双线性模型作为它的一种特殊情况 , 在文献中有些应用和研究结果出现 . 现写出其模型于后, 可供理解其双线性模型的含义x t =j=1 p j x t-j +j=1 q j t-j+i=1 P j=1 Q ij t-i x t-j .2.非线性自回归模型在前一小节中的 (2.1) 和 (2.2) 式就是非线性自回归模型 , 而且属于可加噪声模型类 . 在这一小节里 , 我们将介绍几种 (2.2) 式的常见的模型 .函数后的线性自回归模型:-------------精选文档 -----------------f(x t )= 1 f(x t-1 )+2f(x t-2 )+...+p f(x t- p )+t ,t=1,2, (2.8) 其中 f(.) 是一元函数 , 它有已知和未知的不同情况 , 不过总考虑单调增函数的情况, =( 1 , 2 ,,p )是未知参数. 在实际应用中 , {x t } 是可获得量测的序列.当 f(.) 是已知函数时 , {f(x t )} 也是可获得量测的序列 , 于是只需考虑 y t =f(x t ) 所满足的线性 AR 模型y t = 1 y t-1 + 2 y t-2 +...+p y t-p +t ,t=1,2, (2.9)-------------精选文档 -----------------此时可不涉及非线性自回归模型概念 . 在宏观计量经济分析中 , 常常对原始数据先取对数后 , 再作线性自回归模型统计分析 , 就属于此种情况 . 这种先取对数的方法 , 不仅简单 , 而且有经济背景的合理解释 ,它反应了经济增长幅度的量化规律 . 虽然在统计学中还有更多的变换可使用 , 比如 Box-Cox 变换 , 但是 , 由于缺少经济背景的合理解释,很少被使用 . 由此看来 , 当 f(.) 有实际背景依据时 , 可以考虑使用 (2.7) 式的模型 .当 f(.) 是未知函数时 , {f(x t )} 不是可量测的序列 , 于是只能考虑 (2.8) 模型 . 注意 f(.)是单调函数 , 可记它的逆变换函数为 f -1 (.), 于是由 (2.8) 模型可得-------------精选文档 -----------------x t = f -1 ( 1 f(x t-1 )+ 2 f(x t-2 )+...+p f(x t-p )+t ),t=1,2, (2.9) ’此式属于 (2.7) 式的特殊情况, 此类模型很少被使用 . 取而代之是考虑如下的模型x t = 1 f(x t-1 )+ 2 f(x t-2 )+...+p f(x t-p )+t ,t=1,2, (2.10) 其中 f(.) 是一元函数 , 也有已知和未知之分, 可不限于单调增函数. 此式属于 (2.1) 式的特殊情况 , 有一定的使用价值.当 (2.10) 式中的 f(.) 函数是已知时 , 此式还有更进一步的推广模型 ,-------------精选文档 -----------------x t = 1 f 1 (x t-1 ,⋯,x t-s )+ 2 f 2 (x t-1 ,⋯,x t-s )+...+p f p (x t-1 ,⋯,x t-s )+t ,t=1,2, ⋯(2.11) 其中 f k (⋯)(k=1,2,⋯,p)是已知的s元函数.例如 , 以后将要多次提到的如下的模型:x t = 1 I(x t-1 <0)x t-1 + 2 I(x t-10)x t-1 +t,t=1,2, ⋯(2.12) 其中 I(.) 是示性函数 . 此模型是分段性的, 是著名的TAR模型的特殊情况. 了有助于理解它 , 我写出它的分段形式:-------------精选文档 -----------------1 x1 t , x1 0,x t =, x t 1 t=1,2,2 x t 1 t0.请注意 , (2.8)(2.10) 和(2.11) 式具有一个共同的特征 , 就是未知参数都以线性形式出现在模型中 . 这一特点在统计建模时带来极大的方便 . 此类模型便于实际应用 . 但是 , 对于 {x t } 而言不具有线性特性 , 所以 , 讨论它们的平稳解的问题 , 讨论它们的建模理论依据问题 ,都需要借助于马尔可夫链的工具 .已知非线性自回归函数的模型:x t = (x t-1 ,x t-2 , ,x t-p ; )+t ,t=1,2,(2.13)-------------精选文档 -----------------其中( ) 是 p 元已知函数 , 但是其中含有未知参数=( 1 , 2 ,,p ). 一般说来, 在一定范围内取值.例如 ,x t = 1 x t 1t , t=1,2,1 2 x t2 1其中=( 1 , 2 )是未知参数, 它们的取值范围是:- < < ,0< .这里需要指出 , 使用上式的模型, 不仅要借助于马尔可夫链的工具, 而且在统计建模时遇到两种麻烦, 其一是参数估计的计算麻烦 , 二是确定( ) 函数的麻烦 . 一般来说 , 只有根据应用背景能确定() 函数时, 才会考虑使用此类模型.-------------精选文档 -----------------广义线性模型 (神经网络模型 ):x t = ( 1 x t-1 + 2 x t-2 ++p x t-p )+ t,t=1,2, (2.14)其中 (.) 是一元已知或未知函数, 参数=( 1 , 2 ,,p )总是未知的. 为保证模型的唯一确定性, 或者说是可识别性, 要对作些约定,其一,|| ||=1,其二,=( 1 , 2 ,,p )中第一个非零分量为正的 . 不难理解 , 若不加这两条约定,模型(2.14) 不能被唯一确定 .当 (.) 是一元已知函数时 , 与神经网络模型相通 .-------------精选文档 -----------------当 (.) 是一元未知函数时 , 与回归模型中的 PP 方法相通 .除了以上两类模型外, 还有 (2.1) 式的非参数自回归模型, 以及从统计学中引入的半参数自回归模型. 对它们的统计建模更困难 . 本讲座主旨在于介绍如何用马尔可夫链的工具, 描述非线性自回归模型的基本特性问题 , 对这类模型不再仔细讨论 .。

非线性经济时间序列数据分析

非线性经济时间序列数据分析

非线性经济时间序列数据分析随着技术的发展,数据分析已经成为了现代经济发展的重要手段。

经济时间序列数据分析,作为数据分析的一种重要方法,已经得到了广泛的应用。

而非线性经济时间序列数据分析,更是在近几年得到了越来越多的关注。

非线性经济时间序列数据分析是指,对于经济时间序列数据进行非线性分析,从而揭示其中的非线性关系。

这种分析方法不仅可以帮助我们更好地了解经济现象,还可以为经济政策的制定提供一定的参考。

为什么需要进行非线性经济时间序列数据分析呢?这是因为经济现象具有一定的不确定性和复杂性,而且受到多种因素的影响。

传统的线性分析方法可能无法很好地识别这些非线性因素,因此需要进行非线性经济时间序列数据分析。

非线性分析方法主要包括非线性统计建模、混沌理论、复杂网络分析等。

其中,非线性统计建模是最常用的分析方法。

该方法可以根据数据的特征,选择适合的非线性模型,从而识别出数据中的非线性因素。

非线性模型可以是神经网络模型、有限自回归模型、时滞自回归模型等。

混沌理论是一种基于非线性动力系统的分析方法,可以研究系统的演化过程和未来趋势。

在经济领域,混沌理论主要用于研究经济波动和预测股市走势等问题。

复杂网络分析是一种将系统中的元素和它们之间的关系表示为网络的分析方法。

在经济领域,复杂网络分析可以用于研究公司之间的关系、股市的网络结构等问题。

非线性经济时间序列数据分析的应用非常广泛。

例如,可以用于股票价格的预测、宏观经济指标的预测、货币市场的交易规律分析等。

同时,非线性经济时间序列数据分析也可以用于分析环境污染和气候变化等大数据领域。

需要注意的是,非线性经济时间序列数据分析在实践中也存在一些问题。

首先,非线性模型的选择比较困难,需要根据数据的特征进行合理选择。

其次,非线性分析方法对数据的要求比较高,需要满足数据的充分条件。

最后,非线性分析结果的解释比较困难,需要结合实际情况进行评估。

总之,非线性经济时间序列数据分析是当前经济数据分析领域的一个热门话题。

非线性模型-TAR

非线性模型-TAR

8.
9.
10.
根据第4步的检验结果,定出d的取值; 确定门限的可能取值; 对第6步中每个可能的门限值,做门限自回归模型 的估计; 选取使得AIC获得最小的门限值; 对所估计的模型进行检验、评价,看看模型是否是 充分的。所用的方法是对残差进行分析,看一下残 差是否是独立同分布的或者是不相关的。对残差分 析,我们可以借助于残差的自相关、偏向关函数, 或者是L-B-P统计量; 如果必要的话,用AIC或SC准则对估计好的模型进 行改进,得出最符合实际的AR的阶数、延迟参数、 门限变量。
i 1 j 1 i 1 j 1
上式比ARMA( p, q)模型多了一个双线性项,因此可以 看作ARMA模型的推广。当x(.)固定时,变成关于a(.) 的线性模型;当a (.)固定时,变成x(.)的线性模型,因 此称之为双线性模型。由于它是非线性模型,模型的 定阶、判别准则、稳定性等远比ARMA模型复杂和困 难得多。
其中Z t d 为门限变量,在Ft 1上可测,参数d被称为延迟变量, 为正整数;初始值( x0 , x1 ,..., x p j 1 )已知, j , j 1, 2,..., k}为门限 {r 值,满足- r0 r1 ... rk 1 rk , k 取正整数,为TAR模型 的段数, jt }是独立同分布随机白噪声序列。满足上述条件的 { 模型通常记为:TAR (d,k,p1 , p2 ,..., pk )。当p1 p2 ... pk p时, 即模型满足在各段阶数相等时记为:TAR (d,k,p )。
双线性模型

双线性模型是由Granger和Anderson(1978) 提出,并得到广泛研究。Subba Rao和 Gabr(1984)讨论了这个模型的一些性质和 应用,Liu和Brockwell(1988)研究了一般的 双线性模型。

非线性时间序列

非线性时间序列

近代时间序列分析选讲:一. 非线性时间序列二. GARCH模型三. 多元时间序列四. 协整模型非线性时间序列第一章.非线性时间序列浅释1.从线性到非线性自回归模型2.线性时间序列定义的多样性第二章. 非线性时间序列模型1. 概述2. 非线性自回归模型3.带条件异方差的自回归模型4.两种可逆性5.时间序列与伪随机数第三章.马尔可夫链与AR模型1. 马尔可夫链2. AR模型所确定的马尔可夫链3. 若干例子第四章. 统计建模方法1. 概论2. 线性性检验3.AR模型参数估计4.AR模型阶数估计第五章. 实例和展望1. 实例2.展望第一章.非线性时间序列浅释1. 从线性到非线性自回归模型时间序列{x t}是一串随机变量序列, 它有广泛的实际背景, 特别是在经济与金融领域中尤其显著. 关于它们的从线性与非线性概念, 可从以下的例子入手作一浅释的说明.考查一阶线性自回归模型---LAR(1):x t=αx t-1+e t, t=1,2,…(1.1)其中{e t}为i.i.d.序列,且Ee t=0, Ee t=2<, 而且e t与{x t-1,x t-1,…}独立. 反复使用(1.1)式的递推关系, 就可得到x t=αx t-1+e t= e t + αx t-1= e t + α{ e t-1 + αx t-2}= e t + αe t-1 + α2 x t-2=…= e t + αe t-1 + α2e t-2+…+ αn-1e t-n+1 +αn x t-n. (1.2)如果当n时,αn x t-n0, (1.3){e t+αe t-1+α2e t-2+…+αn-1e t-n+1}αj e t-j . (1.4)虽然保证以上的收敛是有条件的, 而且要涉及到具体收敛的含义, 但是, 对以上的简单模型, 不难相信, 当|α|<1时, (1.3)(1.4)式成立. 于是, 当|α|<1时, 模型LAR(1)有平稳解, 且可表达为x t=j=0αj e t-j . (1.5)通过上面叙述可见求LAR(1)模型的解有简便之优点, 此其一. 还有第二点, 容易推广到LAR(p)模型. 为此考查如下的p阶线性自回归模型LAR(p):x t =α1x t-1+α2x t-2+...+αp x t-p +e t ,t=1,2,… (1.6)其中{e t }为i.i.d.序列,且Ee t =0, Ee t =2<, 而且e t 与{x t-1, x t-1,…}独立.虽然反复使用(1.6)式的递推式, 仍然可得到(1.2)式的类似结果, 但是,用扩张后的一阶多元AR 模型求解时, 可显示出与LAR(1)模型求解的神奇的相似. 为此记X t =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+--11p t t t x x x , U=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛001 , A=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00000121 pααα, (1.7)于是(1.6)式可写成如下的等价形式:X t=A X t-1+ e t U. (1.8)反复使用此式的递推关系, 形式上仿照(1.2)式可得X t=AX t-1+e t U= e t U+e t-1AU+A2x t-2==e t U+e t-1AU+e t-2A2U+…+e t-n+1A n-1U+A n x t-n.如果矩阵A的谱半径(A的特征值的最大模) (A), 满足如下条件(A)<1, (1.10)由上式可猜想到(1.8)式有如下的解:X t=k=0A k Ue t-k. (1.11)其中向量X t的第一分量x t形成的序列{x t}, 就是模型(1.6)式的解. 由此不难看出, 它有以下表达方式x t=k=0k e t-k. (1.11)其中系数k由(1.6)式中的α1,α2, ... ,αp确定, 细节从略. 不过, (1.11)式给了我们重要启发, 即考虑形如=k=0k e t-k, k=0k2,x(1.12)的时间序列类(其中系数k能保证(1.12)式中的x t有定义). 在文献中, 这样的序列{x t}就被称为线性时间序列.虽然以上给出了线性时间序列的定义, 以下暂时不讨论什么是非线性时间序列, 代之先讨论一阶非线性自回归模型---NLAR(1), 以便与LAR(1)模型进行比较分析. 首先写出NLAR(1)模型如下x t=(x t-1)+e t,t=1,2,…(1.13)其中{e t}为i.i.d.序列,且Ee t=0, Ee t=2<, 而且e t与{x t-1,x t-2,…}独立, 这些假定与LAR(1)模型相同, 但是, (x t-1)不再是x t-1的线性函数, 代之为非线性函数, 比如(x t-1)=x t-1/{a+bx t-12}.此时虽然仍可反复使用(1.13)式进行迭代, 但是所得结果是x t=(x t-1) +e t= e t+ (x t-1)= e t+ ( e t-1+ (x t-2))= e t+ ( e t-1+ ( e t-2+ (x t-3)))=…=e t+( e t-1+ ( e t-2+ …+(x t-n))…).(1.14)根据此式, 我们既不能轻易判断(x t-1)函数满足怎样的条件时, 上式会有极限, 也不能猜测其极限有怎样的形式.对于p 阶非线性自回归模型x t =(x t-1,x t-2,…,x t-p )+e t ,t=1,2,… (1.15)仿照(1.6)至(1.9)式的扩张的方法, 我们引入如下记号( x t-1,x t-2,…,x t-p )⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+-----1121,...,,(p t t p t t t x x x x x ϕ, (1.16)我们得到与(1.15)式等价的模型X t =(X t-1) +e t U, t=1,2,… (1.17)但是, 我们再也得不出(1.9)至(1.14)式的结果,至此我们已将看出, 从线性到非线性自回归模型有实质性差异, 要说清楚它们,并不是很简单的事情. 从数学角度而言, 讨论线性自回归模型可借用泛函分析方法, 然而, 讨论非线性自回归模型, 则要借用马尔可夫链的理论和方法. 这也正是本讲座要介绍的主要内容.2. 线性时间序列定义的多样性现在简单叙述一下非线性时间序列定义的复杂性, 它与线性时间序列的定义有关. 前一小节中(1.12)式所显示的线性时间序列, 只是一种定义方式. 如果改变对系数k的限制条件, 就会给出不同的定义. 更为重要的是, 在近代研究中, 将(1.12)式中的i.i.d.序列{e t}放宽为平稳鞅差序列, 这在预报理论中很有意义.无论引用哪一种线性时间序列定义, 都对相应的序列的性质有所研究, 因为其研究成果可用于有关的线性时间序列模型解的特性研究. 事实上, 已经有丰富的成果被载入文献史册.依上所述可知, 由于线性时间序列定义的多样性, 必然带来非线性时间序列定义的复杂性. 这里需要强调指的是, 对于非线性时间序列, 几乎没有文章研究它们的一般性质, 这与线性时间序列情况不同. 于是人们要问, 我们用哪些工具来研究非线性时间序列模型解的特性呢? 这正是本次演讲要回答的问题. 确切地说, 我们将介绍马尔可夫链, 并借助于此来讨论非线性自回归模型解的问题.第二章. 非线性时间序列模型1. 概论从(1.12)式可见,一个线性时间序列{x t}, 被{e t}的分布和全部系数i 所决定. 在此有无穷多个自由参数,这对统计不方便,因此人们更关心只依赖有限个自由参数的线性时间序列,这就是线性时间序列的参数模型. 其中最常用的如ARMA模型. 对于非线性时间序列而言, 使用参数模型方法几乎是唯一的选择. 由于非线性函数的多样性, 带来了非线性时间序列模型的多样性. 但是,迄今为止被研究得较多, 又有应用价值的非线性时序模型, 为数极少, 而且主要是针对非线性自回归模型. 在介绍此类模型之前, 我们先对非线性时序模型的分类作一概述.通用假定: {t}为i.i.d.序列,且E t=0, 而且t与{x t-1, x t-2,…}独立.可加噪声模型:x t=(x t-1,x t-2,…)+t,t=1,2,…(2.1)其中(…)是自回归函数. 当它仅依赖于有限个未知参数时, 记此参数向量为, 其相应的(2.1)模型常写成x t=(x t-1,x t-2,…;)+t,t=1,2,…(2.2)否则, 称(2.1)式称为非参数模型.关于(2.1)(2.2)的模型的平稳性, 要在下一章讨论, 但是, 它有类似于线性AR模型的几个简单性质, 是重要的而且容易获得的, 它们是:E(x t|x t-1,x t-2,…)=E{(x t-1,x t-2,…)+t|x t-1,x t-2,…}=(x t-1,x t-2,…)+E(t|x t-1,x t-2,…)=(x t-1,x t-2,…) (2.3)var{x t|x t-1, x t-2 , …}E{[x t-(x t-1,…)]2|x t-1, x t-2 , …} = E{t2|x t-1, x t-2 , …}= E t2=2. (2.4)P{x t<x|x t-1,x t-2, …}= P{(x t-1,…)+t<x|x t-1,x t-2, …}= P{t<x-(x t-1,…)|x t-1,x t-2, …}=F(x-(x t-1,…)). (2.5)其中F是t的分布函数.带条件异方差的模型:x t=(x t-1,x t-2,…)+S(x t-1,x t-2,…)t,t=1,2,…(2.6)其中(…)和S(…)也有限参数与非参数型之分, 这都是不言自明的. 另外, (2.6)式显然不属于可加噪声模型. 但是, 它比下面的更一般的非可加噪声模型要简单得多. 这可通过推广(2.3)(2.4)(2.5)式看出, 即有,E(x t|x t-1,x t-2,…)=E{(x t-1,x t-2,…)+S(x t-1,x t-2,…)t|x t-1,x t-2,…}=(x t-1,x t-2,…)+S(x t-1,x t-2,…)E{t|x t-1,x t-2,…}=(x t-1,x t-2,…) . (2.3)’var{x t|x t-1, x t-2 , …}E{[x t-(x t-1,…)]2|x t-1, x t-2 , …} =E{S2(x t-1,x t-2,…)t2|x t-1, x t-2 , …}=S2(x t-1,x t-2,…)E{t2|x t-1, x t-2 , …}=S2(x t-1,x t-2,…)2. (2.4)’P{x t<x|x t-1,x t-2, …}=P{(x t-1,…)+S(x t-1,…)t<x|x t-1, x t-2 , …}= P{t<[x-(x t-1,…)]/S(x t-1,…)}=F([x-(x t-1,…)]/S(x t-1,…)).(2.5)’一般非线性时序模型:x t=(x t-1,x t-2,…; t, t-1,…)t=1,2,…(2.7)其中(…)也有参数与非参数型之区别, 这也是不言自明的. 显然, (2.7)式既不是可加噪声模型, 也不属于(2.6)式的带条件异方差的模型. 虽然, 它可能具有条件异方差性质. 相反, 后两者都是(2.7)式的特殊类型. 虽说(2.7)式是更广的模型形式, 在文献中却很少被研究. 只有双线性模型作为它的一种特殊情况, 在文献中有些应用和研究结果出现. 现写出其模型于后, 可供理解其双线性模型的含义x t=j=1p j x t-j+j=1q j t-j+i=1P j=1Q ij t-i x t-j.2. 非线性自回归模型在前一小节中的(2.1)和(2.2)式就是非线性自回归模型, 而且属于可加噪声模型类. 在这一小节里, 我们将介绍几种(2.2)式的常见的模型.函数后的线性自回归模型:f(x t)=α1f(x t-1)+α2f(x t-2)+...+αp f(x t-p)+εt,t=1,2,…(2.8)其中f(.)是一元函数, 它有已知和未知的不同情况, 不过总考虑单调增函数的情况, α=(α1,α2,…,αp)是未知参数. 在实际应用中, {x t}是可获得量测的序列.当f(.)是已知函数时, {f(x t)}也是可获得量测的序列, 于是只需考虑y t=f(x t)所满足的线性AR模型y t=α1y t-1+α2y t-2+...+αp y t-p+εt,t=1,2,…(2.9)此时可不涉及非线性自回归模型概念. 在宏观计量经济分析中, 常常对原始数据先取对数后, 再作线性自回归模型统计分析, 就属于此种情况. 这种先取对数的方法, 不仅简单, 而且有经济背景的合理解释,它反应了经济增长幅度的量化规律. 虽然在统计学中还有更多的变换可使用, 比如Box-Cox变换, 但是, 由于缺少经济背景的合理解释, 很少被使用. 由此看来, 当f(.)有实际背景依据时, 可以考虑使用(2.7)式的模型.当f(.)是未知函数时, {f(x t)}不是可量测的序列, 于是只能考虑(2.8)模型. 注意f(.)是单调函数, 可记它的逆变换函数为f-1(.), 于是由(2.8)模型可得x t= f-1(α1f(x t-1)+α2f(x t-2)+...+αp f(x t-p)+εt),t=1,2,…(2.9)’此式属于(2.7)式的特殊情况, 此类模型很少被使用. 取而代之是考虑如下的模型x t=α1f(x t-1)+α2f(x t-2)+...+αp f(x t-p)+εt,t=1,2,…(2.10)其中f(.)是一元函数, 也有已知和未知之分, 可不限于单调增函数. 此式属于(2.1)式的特殊情况, 有一定的使用价值.当(2.10)式中的f(.)函数是已知时, 此式还有更进一步的推广模型,x t=α1f1(x t-1,…,x t-s)+α2f2(x t-1,…,x t-s)+...+αp f p(x t-1,…,x t-s)+εt,t=1,2,…(2.11)其中f k(…)(k=1,2,…,p)是已知的s元函数. 例如, 以后将要多次提到的如下的模型:x t =α1I(x t-1<0)x t-1+α2I(x t-1≥0)x t-1+εt ,t=1,2,… (2.12)其中I(.)是示性函数. 此模型是分段线性的, 是著名的TAR 模型的特殊情况. 为了有助于理解它, 我们写出它的分段形式:x t =.0,0,,111211≥<⎩⎨⎧++--t t t t x x x x εαεα t=1,2,…请注意, (2.8)(2.10)和(2.11)式具有一个共同的特征, 就是未知参数都以线性形式出现在模型中. 这一特点在统计建模时带来极大的方便. 此类模型便于实际应用. 但是, 对于{x t }而言不具有线性特性, 所以, 讨论它们的平稳解的问题, 讨论它们的建模理论依据问题,都需要借助于马尔可夫链的工具.已知非线性自回归函数的模型:x t =(x t-1,x t-2,…,x t-p ;)+t ,t=1,2,… (2.13)其中(…)是p 元已知函数, 但是其中含有未知参数=(1,2,…,p ).一般说来, 在一定范围内取值.例如,x t =tt t x x εαα++--212111, t=1,2,… 其中=(1,2)是未知参数, 它们的取值范围是: -<<, 0<.这里需要指出, 使用上式的模型, 不仅要借助于马尔可夫链的工具, 而且在统计建模时遇到两种麻烦, 其一是参数估计的计算麻烦, 二是确定(…)函数的麻烦. 一般来说, 只有根据应用背景能确定(…)函数时, 才会考虑使用此类模型.广义线性模型(神经网络模型):x t=(1x t-1+2x t-2+…+p x t-p)+t,t=1,2,…(2.14)其中(.)是一元已知或未知函数, 参数=(1,2,…,p)总是未知的. 为保证模型的唯一确定性, 或者说是可识别性, 要对作些约定, 其一, ||||=1, 其二, =(,,…,p)中第一个非零分量为正的. 不难2理解, 若不加这两条约定, 模型(2.14)不能被唯一确定.当(.)是一元已知函数时, 与神经网络模型相通.当(.)是一元未知函数时, 与回归模型中的PP方法相通.除了以上两类模型外, 还有(2.1)式的非参数自回归模型, 以及从统计学中引入的半参数自回归模型. 对它们的统计建模更困难. 本讲座主旨在于介绍如何用马尔可夫链的工具, 描述非线性自回归模型的基本特性问题, 对这类模型不再仔细讨论.。

统计学中的时间序列分析及其应用研究

统计学中的时间序列分析及其应用研究

统计学中的时间序列分析及其应用研究一、时间序列分析的基本概念及内容时间序列分析是统计学中的一门重要学科,其研究对象是有时间顺序上的相关性的数据序列。

时间序列分析的主要任务是在对时间序列的内在规律进行揭示和预测的基础上,实现对历史数据的回顾、对未来发展趋势的预测以及对变量的推测等目的。

时间序列分析的研究对象主要包含以下几个方面:1.时间序列的分解时间序列的趋势、周期和随机成分可以从原序列中分离出来,从而可以更加清晰地认识时间序列的内在特征。

2.时间序列的描述通过时间序列的均值、方差、自相关系数等统计量,对时间序列的整体状态进行描述,为时间序列建立合适的模型提供基础。

3.时间序列建模基于分解和描述,在统计学的框架下,对时间序列进行建模,从而更好地预测时间序列未来的趋势。

4.时间序列的预测基于时间序列的建模结果,结合时间序列的发展趋势和规律,对未来的时间序列进行预测,这是时间序列分析的核心任务。

二、时间序列分析的方法时间序列分析的方法主要包含以下几个方面:1. 平稳性检验原始数据中存在趋势、季节性、循环性等因素,这些因素影响了时间序列的建模和预测。

因此,需要对时间序列进行平稳性检验,从而消除这些因素的影响。

平稳性检验是时间序列分析的前提和基础。

2. 自相关系数自相关系数衡量了时间序列中的各项数据之间的相关性,其大小可以反映时间序列中的趋势、季节性、循环性等特征。

自相关系数是描述时间序列的基本工具。

3. 移动平均法和指数平滑法移动平均和指数平滑是时间序列平稳化和平滑化的方法。

它们通过对时间序列的数据进行平均或加权平均,实现对时间序列的平滑处理。

这两种方法常用于预测时间较短的时间序列。

4. ARIMA模型ARIMA模型是一种经典的时间序列模型,它可以对时间序列进行建模和预测。

ARIMA模型包含自回归、差分和移动平均三个部分,可以较好地描述时间序列的特征和规律。

5. 非线性时间序列模型传统的ARIMA模型是线性模型,但是现实中的时间序列往往具有非线性和异方差性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

r分别取 , 1, 0.5,0四个数值,我们对每个模 型分别产生样本长度是500的序列。当 r 时,TAR模型退化成线性AR(1)过程。其他三种情 况,显示了明显的非线性特征。
拟线性自回归模型
拟线性自回归模型为 x f x , ,x
t 0 1 1 t 1 t p
xt j xt j k t k il xt l t i
j 1 k 0 i 1 l 1
t 是白噪声序列。 其中p,q,Q和P是非负整数, 返回
非参数时间序列模型
• 非参数自回归模型的一般形式为
t 是白噪声序 其中 是 R p到 R1 的可测函数, 列。模型(9.22)有如下两种特殊形式。 • (1)可加非线性自回归模型 (2)函数系数自回归模型
函数系数自回归模型
函数系数自回归模型为
xt c f1 xt d xt 1 f p xt d xt p t 其中c为常数, fi ( i 1, , p )为p个一元非参数
0 d p 为整数,称为滞后参 型的未知函数, 数, t 是白噪声序列,模型记为 FCAR(p),p为模型的阶数。 返回
非线性时间序列模型
• 一般非线性时间序列模型介绍 • 条件异方差模型
§9.1 一般非线性时间序列模型 介绍
• 参数非线性时间序列模型 • 非参数时பைடு நூலகம்序列模型
参数非线性时间序列模型
• SETAR (Self-exciting threshold autoregressive model)模型 • 拟线性自回归模型 • 指数自回归模型 • 双线性模型
§9.2 条件异方差模型
• ARCH模型 • GARCH 模型 • 模型推广形式
ARCH模型的定义
ARCH(q)模型定义如下:
yt xt t t 1, 2, , T 若随机过程t 的 t2平方服从AR(q) 过程,即
t2 0 1t21 2t22
q t2q t
t
其中t 独立同分布,且有E( ) 0 , D( ) ; i 0 0 0, ( i 1, 2, , q ),则称 t 服从q阶的ARCH过程,记作 t ARCH(q)。
2
t
E ( ) 存在的 • 定理9.1 对于ARCH(1)模型, 充要条件是 r r
t 1
T
ARCH模型的极大似然估计
• yt xt t , t 1,2,, T 的对数似然函数为 T L( ) log f ( y x , Y ; ) log(2 ) l ( ) 2 • 对数似然函数关于参数的一阶偏导数为
T
T
t 1
t
t
t 1
t 1
j
SETAR (Self-exciting threshold autoregressive model)模型
考虑一个简单的 SETAR2;1,1 模型
-0.7xt 1 t , xt 0.7 xt 2 t , xt 1 r xt 1 r
t
N(0,0.52 )
s f s xt 1 ,
p
,xt p t
1
其中 f i (i 1,, s)
是s个已知的 R 到 R 的 i (i 1,, s)。 可测函数, t 是白噪声序列,
指数自回归模型
指数自回归模型为
xt 00 0k 1k e
k 1 p

xt21
x
t k
t
(9.17)
00 ,0k ,1k (k 1,, p) 和 0 其中 t 是白噪声序列, 为未知参数,正整数 p 为模型的阶数,模型(9.17) 记为EAR(p)。
双线性模型
• 双线性模型由Granger和Anderson(1978)提出, 并得到进一步研究和发展,Subba Rao和Gabr (1984)讨论了这个模型的一些性质和应用,Liu 和Brockwell(1988)推广到一般的双线性模型 • 双线性模型形式 p q Q P
t
L( ) ˆ 0 • 参数向量 的极大似然估计 为方程
lt ( ) L( ) T lt ( ) lt ( ) t 1
xt xt 1 , ,xt p t
(9.22)
可加非线性自回归模型
可加非线性自回归模型为
xt c f1 xt 1 f p xt p t
其中c为常数,fi ( i 1, , p ) 为p个一元非参数 型的未知函数, t 是白噪声序列,模型记 为ANLAR(p),p为模型的阶数。
2r t
1 (2 j 1) 1
j 1
• 定理9.2 ARCH(q)二阶平稳的充要条件是 相应的特征方程的所有根都大于1,此时平 稳序列 t 的无条件方差为
E ( t2 ) 0
q 1 j j 1
L( ) log f ( yt xt , Yt 1; )
R x , ,x : r x r , j 1, ,l 当分割为 j 1 p j d j 1
其中 l d p 为某个整数,称此模型为Self-exciting Threshold Autoregressive Model ,其形式为 l p xt jk xt k I rj xt d rj 1 t (9.6) j 1 k 1 其中 r1 r2 rl rl 1 整数d称为滞后参数, r2 ,, rl 称为门限参数, 模型(9.6)记为SETARl; p1 ,, pl 模型
相关文档
最新文档