第二章+新药研究的基本原理与方法
药物化学考试重点

2019药物化学第二章新药研究的基本原理与方法一、先导化合物的发现(选择)1.天然产物:青蒿素、β内酰胺酶抑制剂克拉维酸、HMG-COA还原酶抑制剂他汀类、猪胰岛素2.现有药物:(1)副作用:氯丙嗪由抗组胺药异丙嗪镇静副作用发展而来;磺胺类降糖和利尿由抗菌药发展而来(2)代谢:羟布宗是保泰松的活性代谢物;奥沙西泮是地西泮的活性代谢物(3)现有突破性药物:me too ,兰索拉唑由奥美拉唑发展而来3.活性内源性物质:避孕药的先导化合物是甾体激素黄体酮;抗炎药吲哚美辛先导化合物是炎性介质5-羟色胺4.组合化学和高通量筛选5.计算机靶向筛选二、先导化合物的优化(简答)在新药研究过程中:发现的先导化合物可能存在某些缺陷如活性不够高,化学结构不稳定,毒性较大,选择性不高,药代动力学性质不合理等,需要对先导化合物进行结构修饰或改造,使之成为理想的药物,这一过程称为先导化合物的优化。
先导化合物的优化方法:传统的药物化学方法和现代的方法。
1.传统的药物化学方法1)利用生物电子等排体原理优化先导化合物生物电子等排体是具有相似的分子形状和体积、相似的电荷分布并由此表现出相似的物理性质(如疏水性),对同一靶标产生相似或拮抗的生物活性的分子或基团。
分为经典和非经典的生物电子等排体。
经典的生物电子等排包括外层价电子相同的原子或基团,元素周期表中同主族的元素,以及环等价体。
非经典的生物电子等排体是具有相似的空间排列、电性或其他性质的分子或基团,相互替换会产生相似或相反生物活性的分子或基团。
利用生物电子等排体对先导化合物中的某一个基团逐个进行替换得到一系列的新化合物,是药物化学家设计研究药物的经典方法,有许多成功例子。
例如将H2受体拮抗剂西味替丁 (aimetidine)结构中的咪唑环用呋喃环和噻唑环替换得到雷尼替丁( rnitidine )和法莫替丁 ( famotidine) ,它们的H2受体拮抗作用均比西咪替丁强。
2)通过前药设计优化先导化合物。
药学中的新药研究与开发

药学中的新药研究与开发第一章绪论随着科技的不断进步和发展,药学研究与开发取得了显著的进展。
新药的开发对于临床医学的发展和临床治疗的改进非常重要。
本文将介绍药学中的新药研究与开发的相关知识。
第二章新药发现新药的发现是药学研究的首要任务之一。
在新药的发现过程中,药理学、生物学、化学等学科都发挥了重要作用。
药物研究人员需要首先确定研究的靶点,然后进行大量候选物筛选,再根据筛选结果进行优化和改进。
目前,新药发现主要有以下几种方法:1.化合物筛选:通过对化合物进行筛选,以寻找具有治疗作用的化合物。
2.生物大分子筛选:主要针对蛋白质、DNA等生物大分子进行筛选。
3.计算机模拟筛选:通过计算机进行分子模拟,以寻找具有治疗作用的化合物。
第三章新药研发流程新药的研发是一个复杂而又漫长的过程,整个研发周期通常需要数年的时间。
新药研发主要分为以下几个阶段:1.药物研究:在该阶段,研究人员需要对候选物进行深入研究,以确定其生物学和化学性质,并确定其可能的药理作用。
2.临床前研究:在该阶段,研究人员需要进行大量的实验研究、动物试验和毒理研究等,以确定该药物是否符合质量标准和安全标准。
3.临床试验:在该阶段,研究人员需要在人体上进行研究,以确定该药物在人体内的药效和安全性。
4.新药上市:在该阶段,研究人员需要向国家药监局提交申请,经过审批后才能上市销售。
第四章新药研发中的关键技术新药研发是药学研究的重要领域,研究人员需要掌握一些关键技术才能提高开发新药的效率和成功率。
1.基因工程技术:目前,基因工程技术已经成为新药研发的重要手段之一。
基因工程技术可以通过分子生物学手段改造生物体内的基因,从而产生具有特定药理作用的蛋白质。
2.高通量筛选技术:高通量技术可以同时测试大量不同的化合物,以寻找具有治疗作用的化合物。
3.单克隆抗体技术:单克隆抗体技术是一种基于细胞克隆的技术,可以制备出具有特定亲和力的单一克隆抗体。
第五章结语新药研发是药学研究的一个重要领域,其所涉及的知识和技术非常广泛。
2-2,3 先导化合物

常用的生物电子等排体
• 组胺H2受体拮抗剂中环内等价电子等排体的应用较为成功, 例如以呋喃和噻唑置换咪唑环得雷尼替丁和法莫替丁,它们 的H2受体拮抗作用均比西米替丁强。
2、前药设计
• 药物经过化学结构修饰后得到的化合物,在体外没有或很少有 活性,但在生物体或人体内通过酶的作用又转化为原来的药物 而发挥药效时,则称原来的药物为母体药物(Parent Drug),修 饰后得到的化合物为前体药物,简称前药(Prodrug)。 • 概括起来前药设计的目的主要有以下四个方面:
H H N
O
S
NH2
O 硫霉素
OH
克拉维酸 Clavulanic Acid
2、以现有的药物作为先导物
• 已有的药物中有些可被选作先导物,进一步优化得到新药。 这可有以下的几种类型。
– (1)由药物副作用发现先导化合物:在某些情况下,一药物的 毒副作用可能对另一种疾病有治疗作用。例如吩噻嗪类抗精神 失常药氯丙嗪及其类似物,是由结构类似的抗组胺药异丙嗪的 镇静副作用发展而来的。
• 于是内源性的神经递质,内源性的受体激动剂就顺理成章的 成了药物研究的先导化合物。 • 例如氟脲嘧啶的研究以DNA或RNA合成的核苷酸尿嘧啶作 为先导化合物,将5位的氢换成氟,使之成为生物体的正常 代谢物的代谢拮抗剂,用做抗肿瘤药。
O HN O N H 氟尿嘧啶 F HN O N H 尿嘧啶 O H
4、改善药物水溶性、稳定性、克服不良气味或 理化性质以适应制剂的需要
• 如羧苄青霉素口服时对胃酸不稳定,易被分解失效。将其侧链 上的羧基酯化为茚满酯则对酸稳定,可供口服,吸收得以改善。
O NH COOH O S N COOH O
O NH O N O 茚满酯 S COOH
药物化学第二章-药物设计的基本原理和方法

§ 2. 先导化合物的优化
Lead Optimization
先导化合物的优化
Izant等人于1984年首次提出反义寡核苷酸技术,该技术是根据
核酸间碱基互补原理,利用一小段外源性的人工或生物合成的特
异互补RNA或DNA片断,与靶细胞中的mRNA或DNA通过碱基
互补结合,通过这种寡核苷酸键抑制或封闭其基因的表达。与反
义寡核苷酸相似的是反义DNA,是用一小段人工会成的约8~23
碱基组成的脱氧核苷酸单链,与靶mRNA形成碱基配对的DNA-
S
可旋转键的数量不超过10个。(删去)
ADMET
ADMET (药物的吸收、分配、代谢、排泄 和毒性)药物动力学方法是当代药物设计和 药物筛选中十分重要的方法。
A:吸收 Absorption D:分配 Distribution M:代谢 Metabolism E :排泄 Excretion T: 毒性 Toxcity
3.综合技术平台
目前最快速的发现先导化合物的途径是被各国称为综合技术平台的方法, 简单说就是用液相串联质谱( LC MS/MS)作为化合物的分离和分析结构 的工具,与药理学、组合化学的高通量筛选、计算机辅助设计、分子生物学、 受体(酶)学,及化学基因组学等学科结合起来,可迅速而大量地确定具有 不同活性药物的基本母核(scaffold),作为先导化合物。
药物进入体内后发生的代谢过程实质上是药物在体内 发生的化学转化过程。 代谢失活:体内代谢的结果主要是产物降低或失去 活性,排出体外 代谢活化:有些药物却发生代谢产物活化或产生其 它新的作用,转化为保留活性、毒副作用小的代谢 物,这样的代谢产物可成为新的先导化合物。
药物化学第2章 新药研究的基本原理与方法题库

第2章新药研究的基本原理与方法选择题每题1分
第2章新药研究的基本原理与方法填空题1每空1分
填空题2 每空1分
填空题3每空1分
第2章新药研究的基本原理与方法概念题每题2分
第2章新药研究的基本原理与方法问答与讨论题每题6分
前列腺素E2(PGE2)为结晶固体,但室温稳定期短,几个月内可迅速分解,不稳定因素是C-11位羟基易在酸性条件下,发生消除反应生成前列腺素A2(PGA 2) 这也是其口服无效的主因。
请设计两种较为稳定的衍生物。
举例说明根据受体结构进行药物分子设计
HIV蛋白水解酶催化机理
根据催化机理设计的HIV蛋白水解酶抑制剂
第2章新药研究的基本原理与方法合成/代谢/反应/设计题每题6分。
新药研发的思路与方法研究

新药研发的思路与方法研究第一章引言新药的研发是医药行业最重要的一项工作之一,其意义不仅在于解决医疗难题,还在于推动医学的进步。
为了能够更好地开发新药,科学家们在思路和方法上进行了不断地探索和研究。
本文就着重介绍新药研发的思路和方法。
第二章新药研发的思路2.1 研究疾病和药物相互作用的机理在新药研发过程中,首要的任务就是研究疾病和药物相互作用的机理。
只有了解了疾病的生理、病理机制,以及药物对疾病产生作用的机理,才有可能为新药的研究提供科学依据。
2.2 挖掘药物活性靶点药物活性靶点是药物与生物体内分子作用的关键蛋白,是药物研发的关键环节之一。
为了能够挖掘到药物活性靶点,研究人员需要使用生物信息学等技术手段,快速筛选和鉴定出合适的药物靶点。
2.3 避免药物毒副作用在新药研发过程中,避免药物毒副作用也是一个至关重要的问题。
为了防止药物对其他正常组织和器官产生伤害,研究人员需要通过药物的合理设计和严密的安全性评价,尽可能地降低药物毒副作用的产生。
第三章新药研发的方法3.1 分子设计分子设计是一种全新的药物研发方法,该方法可以帮助研究人员在计算机上模拟药物与分子相互作用的情况,从而快速筛选出一系列具有潜在活性的化合物。
3.2 高通量筛选高通量筛选是另外一种重要的新药研发方法。
该方法使用自动化设备实现对大量潜在化合物的筛选,从而加速新药开发的进程。
高通量筛选的优点在于提高了筛选效率和可靠性,还能够快速筛选出大量适合临床治疗的潜在化合物。
3.3 临床试验临床试验是新药研发最后的关键环节,旨在评估新药的疗效和安全性。
临床试验一般分为三个阶段:初期试验、中期试验和大规模III期试验。
这些临床试验不仅需要严格的安全保障,还需要科学的研究方案和精密的实验操作,以确保新药在临床上的有效性和安全性。
第四章结论新药研发过程中需要采用科学的思路和方法,同时还需要有严谨的数据支持和严密的实验管理。
未来,随着科技进步,新药的研发将会更加精准和个性化,并且对于药物靶点、毒副作用等问题描述的更加复杂。
药物化学第二章药物设计的基本原理和方法

代谢产物可成为新的先导物化合物 甚至直接得到比原来药物更好的药物 选择其活化形式,避免代谢失活或毒化的结构 研究药物代谢过程和发现活性代谢物是寻找先导化合物的 途径之一。
能够与DNA 或信使RNA 发生特异性结合,分别阻 断核酸的转录或翻译功能, 阻止与病理过程相关的核 酸或蛋白质的生物合成。
第三十三页,共75页。
反义寡核苷酸(Antisense oligonucleotides)
反义寡核苷酸的分子大小是设计的重要环节。
12-25个碱基范围,15-20较佳,超过25难以通过细胞膜
His
吡咯环与S2′结合
O
N NH
O
Zn2+
H
HS
N
NH
O Glu
O Ser
S1' S2'
Ty r
CH3
HO
N
O H O 羧基阳离子对结合酶起重要作用
O
NH2
OH
H2N
NH
Arg
酰胺的羰基则可和受体形成氢键
第十八页,共75页。
三、通过随机机遇发现先导化合物
1929年青霉素的发现
异丙肾上腺素:β-受体激动剂,结构改造,发现β -受 体阻断剂-普萘洛尔,第一个心血管药物。
虚 拟 库
类
药 原 则
药 代 性
潜 在 毒
质性
专 利 指 导
受 体 结
设 计
构库
第二十七页,共75页。
类药性
Lipinski归纳的“类药5规则”(Rule of Five),
药物化学第二章思维导图

第二章新药研究的基本原理与方法概论新药上市临床前药学研究药效学药代动力学安全性等临床Ⅰ:健康志愿者Ⅱ:患者Ⅲ:大规模、多中心的临床实验新药发现治疗靶分子的确定和选择靶分子的优化先导化合物的发现先导化合物的优化药物的化学结构与生物活性的关系理化性质与生物活性脂水分配系数与生物活性酸碱性与生物活性解离度药物-受体相互作用化学键的作用化学键离子键氢键疏水键范德华力离子-偶极键及偶极-偶极键电荷转移复合物金属配合物立体化学的作用几何异构光学异构构象异构官能团的作用烷基卤素羟基与巯基磺酸基和羧基氨基和酰胺基醚键药物产生药效的两个主要决定因素:药物的理化性质以及药物和受体的相互作用先导化合物的发现从天然产物得到先导化合物植物微生物海洋动植物爬行类两栖类动物例:从植物黄花蒿中分离出含有过氧桥的倍半萜内酯化合物以现有药物作为先导化合物由药物副作用发现先导化合物通过药物的代谢研究发现先导化合物以现有突破性药物作为先导化合物用活性内源性物质作为先导化合物内源性物质神经递质受体酶利用组合化学和高通量筛选得到先导化合物先导化合物的优化现代的方法传统的药物化学方法生物电子等排体经典非经典前药设计分类载体前药生物前药目的和应用提高生物利用度和生物膜通透性提高前药的靶向性设计一个前药(部位指向性药物运输)设计一种前药(部位特异性药物释放)改善药物的水溶性、稳定性、克服不良气味或理化性质以适应制剂的需要软药设计定量构效关系计算机辅助设计自学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
* 早期寻找新药的方法多是基于经验和尝 试,通过大量化合物的筛选与偶然发现。
* 随着生命科学的相关学科在上世纪后半 期的迅速发展,定量构效关系、合理药物 设计、计算机辅助药物设计、组合化学、 高通量筛选等新技术、新方法不断涌现, 新药设计学也应运而生。
•上•0午7:74时6 46分21秒
•23
第三种情况是只有特异性的优势构象才产生最大活性
第四种情况是等效构象(Conformational equivalence),又称 构象的等效性,是指药物没有相同的骨架,但有相同的药效团, 并有相同的药理作用和最广义的相似构象
•上•0午7:74时6 46分21秒
药物与受体以共价键结合时,形成不可逆复合物 在大多数情况下,药物与受体的结合是可逆的
•上•0午7:74时6 46分21秒
•14
2.药物的各功能基团对药效的影响
在基本母体上至少含有6种功能基,各功能基分 别有不同的性质,对其活性、毒性、药代动力学等可 产生不同的影响。
卤素是强的吸电子基,引入卤素,可影响药物的 电荷分布,从而增强与受体的电性结合作用
31
三、通过随机机遇发现 (From Accidentally discover )
1929年青霉素的发现
英国医生 Fleming发现已接种金黄色葡萄球菌的平面皿被霉 菌污染,污染物邻近细菌明显遭到溶菌。他联想到可能是霉菌 的代谢产物对金黄色葡萄球菌有抑制作用,因此把这种霉菌放 在培养液中培养,结果培养液有明显的抑制革兰氏阳性菌的作 用。从此揭开了青霉素研究的序幕。
又称原型物,是通过各种途径得到的具有 一定生理活性的化学物质。
4
p16
由于先导化合物存在着某些缺陷,如活性 不够高,化学结构不稳定,毒性较大,选 择性不好,药代动力学性质不合理等等, 需要对其进行化学修饰,进一步优化使之 发展为理想的药物,这一过程称为先导化 合物的优化。
5
本章主要内容
药物的结构与药效关系 先导化合物发现 先导化合物优化
•上•0午7:74时6 46分21秒
•22
构象对药物与受体作用的影响可分为:
第一种情况是药物结构类型相同, 可作用于相同受体,但由于 其构象不同,产生活性的强弱不同。
第二种情况是一种结构因其具有不同构象,可作用于不同受体, 产生不同性质的活性。 如组胺,可同时作用于组胺H1和H2受体。对H1和H2受体拮抗 剂的研究发现,组织胺是以反式构家与H1受体作用,而以扭曲 式构象与H2受体作用,故产生两种不同的作用
•上•0午7:74时6 46分21秒
•19
(3)光学异构体对活性的影响
手性药物是目前药物化学的一个热门领域,药物分子存在 手性中心时,其光学异构体的性质及体内过程会有明显的区别, 因此光学异构体的药理活性及在体内的吸收、转运、分布、代 谢和排泄等常有明显的差异
第一种情况是一种异构体有活性,而另一种异构体则没有活性。 如,甲基多巴(Methylodopa),只有(-)异构体具降压作用。
•上•0午7:74时6 46分21秒
•15
引入羟基、巯基、氨基、磺酸基和羧基可增加水溶性。
羟基取代,水溶性增加,但活性有所变化。脂肪链上有 羟基取代,可使毒性下降,但一般活性也下降。相反在芳环上 有羟基取代时,有利于药物和受体结合,使活性增强,但毒性 也相应增加。巯基有较强的亲核性,可与金属离子形成络合物
7.7
异戊巴 比妥
8.0
未解离/% 0.052 0.022
50
66.61
79.92
显效时间 -
-
/min
30 ~ 10~15 60
30~45
•上•0午7:74时6 46分21秒
•12
二、药物和受体间相互作用对药效的影响 (Actions Between Drug Molecules and Their Receptor)
6
第一节药物的结构与药效关系 ( Structure-Activity Relationships)
•上•0午7:74时6 46分21秒
•7
一、药物的理化性质对活性的影响 (Effects of Physical and Chemical Properties)
药物的药代动力学性质(吸收、转运、分布、代 谢、排泄)会对药物在受体部位的浓度产生直接影响。 而药代动力学性质是由药物理化性质决定的。
即 P=CO/Cw。
P值越大则脂溶性越高,常用logP表示。
药物分子中引入系脂性的烷基、卤素和芳环等 一般可增加药物的脂溶性。
引入什么基团可增加水溶度?
•上•0午7:74时6 46分21秒
•9
对于作用于不同系统的药物,有着不同的亲脂性 要求,在药物设计中要考虑靶组织对药物的亲脂性要 求。如:中枢神经系统的药物,需要穿过血脑屏障。 易于穿过血脑屏障logP约2。
32
四、从药物代谢产物中发现 ( From Metabolites )
药物在体内经过生物转化后,有些药物代谢 产物降低或失去了活性,称为代谢失活;有 些药物的代谢产物正好相反,可能使活性升 高,称为代谢活化。代谢活化得到的药物代 谢产物,可直接作为药物使用,也可作为先 导化合物,进行进一步的结构修饰和优化。
HO
O
HO
O
O
H3C H3C
O H
H
O H CH3
O
H3C H3C
O 1H
3
H3C
O
H
CH3
7 6
美伐他汀
洛伐他汀
28
(3)动物来源
九肽替普罗肽(谷-色-脯-精-脯-谷-亮-脯脯):来源于巴西毒蛇,以此为先导物,发 现了ACE抑制剂卡托普利,开创了一类新 的影响重大的抗高血压药物。
CH3
HS
N COOH
第四种情况是光学异构体显示出相等的生物活性
•上•0午7:74时6 46分21秒
•21
(4)构象异构体对活性的影响
药物分子内由于各原子和基团空间排列的不同可形成构象异 构体。许多药物的生物活性与其分子构象密切相关。构象对药物 与受体相巨作用时的互补性影响很大,不同构象异构体的生物活 性有着较大差异。受体的特异性越大,对药物的特异性构象要求 越高。
O
卡托普利
29
(4)海洋生物来源 海葵毒素:来自于海葵,为肽类毒素,具 有强心作用,以此为先导物,得到一些重 组蛋白。
30
二、以体内内源性活性物质作为先导化合物 (From Immanent Active Substance)
体内的组胺有多种生物活性,组胺的受体有H1、H2等亚 型,可产生不同的生理活性。组胺作用于H2受体时,可刺 激胃酸分泌。通过研究H2受体的功能和组胺的结构后,以 组胺为先导物进行化学修饰,发现了H2受体拮抗剂类抗溃 疡药物,如西咪替丁(Cimetidine)等,用于溃疡病的治 疗。
受体学说认为,药物和受体形成复合物后才能产 生药理作用,结构特异性药物的活性主要与药物和受 体的相互作用有关。许多因素都能影响药物与受体间 的相互作用,如药物受体的结合方式、药物的各官能 团、药物的电荷分布及立体因素等
1.药物与受体的相互键合作用对药效的影响
药物与受体的结合的方式:包括共价键、离子键、 氢键作用、疏水作用、范德华引力、偶极偶极作用、 电荷转移复合、金属配合物等,有可逆和不可逆两种。
一般受体和酶的作用部位有高度立体专一性,受体只能与 药物多种构象中的一种结合。只有能为受体识别并与受体结构 互补的构象,才能产生特定的药理效应。
把药物分子与受体相互作用时,与受体互补并结合的药物
的构象,称为药效构象(pharmacophoric conformation)。
药效构象不一定是药物的优势构象。
理化性质包括药物的溶解度(solubility)、分配系 数(partition coefficient)、解离度(degree of ionization)等。
•上•0午7:74时6 46分21秒
•8
1.溶解度和分配系数对药效的影响
药物的溶解度用脂水分配系数P表示。P是化合物在有机相 中和水相中分配达到平衡时的量(摩尔)浓度 Co和CW之比值,
青蒿素系列
H CH3
H CH3
H CH3
H3C O
H3C O
H3C O
OO
H
H
O
H
OO
H
H
O
H
OO
H
H
O
H
O CH3
CH3 OCH3
CH3 OCOCH2CH2COOH
青蒿素
蒿甲醚
青蒿琥酯
27
(2)微生物来源 美伐他汀和洛伐他汀,来源于青霉菌属、红 曲霉菌和土曲霉菌,羟甲戊二酰辅酶A还原 酶抑制剂的Lead Compound美伐他汀。 后开发了人工合成的洛伐他汀
•上•0午7:74时6 46分21秒
•16
3.立体因素对药效地影响
药物的三维结构与受体的互补性(匹配性)对两 者之间的相互作用具有重要影响,药物与受体结合时, 在立体结构上与受体的互补性越大,三维结构越契合, 配体与受体的结合后所产生的生物作用也越强。
•上•0午7:74时6 46分21秒
•17
立体因素对药效的影响包括: 药物分子中官能团间的距离、药物构型 和构象变化
以弱酸醋酸的解离平衡为例
CH3COOH + H2O
CH3COO- + H3O+
pKa = pH - log CH3COO-
CH3COOH
•上•0午7:74时6 46分21秒
•11
表 常用的巴比妥类药物的 pKa与活性