整式的加减讲义
初一上数学-整式的加减-培优讲义

初一数学(上册)讲义整式的加减培优能力提高 1 :用字母表示数能力提高 2 :图形关系的代数表示有些数目关系表现为图形中的数目关系,假如能将这些关系表示为代数式,这样就初步地实现了数与形相联合,抽象与直观相联合,对培育数学能力是特别重要的。
能力提高 3 :由代数式睁开的推理能力提高 4 :求代数式的值用详细的数取代代数式里的字母进行计算,求出代数式的值,是一个由一般到特别的过程.详细求解代数式值的问题时,关于较简单的问题,代入直接计算其实不困难,但关于较复杂的代数式,常常是先化简,而后再求值.下边联合例题初步看一看代数式求值的常用技巧.【例 1】求以下代数式的值:(1)5ab 4 1 a3b2 2 1ab1a3b2 23ab a2b 5 ,此中 a 1,b2 ;2 4 2 4(2)3x2y { xyz (2 xyz x2 z) 4x2 z [3 x2 y (4 xyz 5x2 z 3xyz)]} ,此中 x 1, y 2, z 3 .剖析上边两题均可直接代入求值,但会很麻烦,简单犯错.我们能够利用已经学过的相关观点、法例,如归并同类项,添、去括号等,先将代数式化简,而后再求值,这样会大大提高运算的速度和结果的正确性.=0-4a3b2-a2b-5=-4× 13× (- 2)2- 12 × (-2)-5 =-16+2-5=-19 .(2) 原式 =3x 2y-xyz+(2xyz-x 2 z)+4x 2z[3x2y-(xyz-5x 2z)]=3x 2y-xyz+2xyz-x 2 z+4x 2z-3x 2y+(xyz-5x 2z)=(3x 2y-3x 2y)+(-xyz+2xyz+xyz)+(-x 2z+4x 2z-5x2z) =2xyz-2x 2z=2× (-1) × 2× (-3)-2× (-1)2 ×(-3) =12+6=18 .说明 本例中 (1)的化简是添括号,将同类项归并后,再代入求值; (2)是先去括号,而后再添括号,归并化简后,再代入求值.去、添括号时,必定要注意各项符号的变化.【例 2】已知 ab 1 ,求 a 33ab b 3 的值.剖析 由已知条件 a-b=-1,我们没法求出 a , b 确实定值,所以本题不可以像例 1 那样,代入 a , b 的值求代数式的值.下边给出本题的五种解法.解法 1 由 a-b=-1 得 a=b-1,代入所求代数式化简a 3+3ab-b 3=(b-1) 3+3(b-1)b-b 3=b 3-3b 2+3b-1+3b 2-3b-b 3=-1 .说明 这是用代入消元法消去 a 化简求值的.解法 2 由于 a-b=-1,所以原式 =(a 3-b 3)+3ab=(a-b)(a 2+ab+b 2)+3ab=-1× (a 2+ab+b2)+3ab=-a 2-ab-b 2+3ab =-(a 2-2ab+b 2)=-(a-b) 2 =-(-1)2=-1 .说明 这类解法是利用了乘法公式,将原式化简求值的.解法 3 由于 a-b=-1,所以原式 =a 3-3ab(-1)-b 3=a 3-3ab(a-b)-b 3=a 3-3a 2b+3ab 2-b 3=(a-b) 3=(-1) 3=-1 .说明 这类解法奇妙地利用了-1=a-b ,并将 3ab 化为 -3ab(-1)=-3ab(a-b) ,进而凑成了(a-b)3.解法 4 由于 a-b=-1,所以 (a-b) 3=(-1) 3 =1,即 a3+3ab2-3a2b-b3=-1, a3-b3 -3ab(a-b)=-1,所以 a3-b3-3ab(-1)=-1 ,即 a3-b3+3ab=-1 .说明这类解法是由a-b=-1,演绎推理出所求代数式的值.解法 5a3+3ab-b 3=a3+3ab2-3a2b-b3-3ab2+3a2b+3ab=(a-b) 3+3ab(a-b)+3ab=(-1) 3+3ab(-1)+3ab=-1 .说明这类解法是添项,凑出(a-b)3,而后化简求值.经过这个例题能够看出,求代数式的值的方法是很灵巧的,需要仔细思虑,才能找到简易的算法.在本例的各样解法中,用到了几个常用的乘法公式,现总结以下:(a+b) 2=a2+2ab+b2;(a-b) 2=a2-2ab+b2;(a+b)3=a3+3a2b+3ab2+b 3;(a-b)3=a3-3a2b+3ab2-b3;a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a 2+ab+b2).【例 3】已知xy 2 ,求代数式3x5xy3y的值 .x y x 3xy y解由已知, xy=2(x+y) ,代入所求代数式中,消去xy,而后化简.所以【例 4】已知a3b, c 5a ,求a b c的值.a b c解由于 a=3b,所以 c=5a=5× (3b)=15b .将 a, c 代入所求代数式,化简得【例 5】已知m, x, y知足条件:( 1)2 ( x 5)2 5| m | 0;(2)2a2b y 1与 3a2b3是同类项.37 1 3求代数式{ x2 y [ xy2 ( x2 y 3.475xy2 )] 6.2752 } 的值.16 4 16解由于 (x-5)2 ,| m|都是非负数,所以由(1)有由 (2)得 y+1=3 ,所以 y=2 .下边先化简所求代数式,而后再代入求值.=x2y+5m2x+10xy2=52× 2+0+10× 5× 22=250【例 6】假如4a 3b 7 ,而且 3a 2b 19 ,求 14a 2b 的值.剖析本题能够用方程组求出a, b 的值,再分别代入14a-2b 求值.下边介绍一种不用求出a,b 的值的解法.解 14a-2b=2(7a-b)=2[(4a+3a)+(-3b+2b)]=2[(4a-3b)+(3a+2b)]=2(7+19)=52 .【例 7】当x 2 17时,求代数式| x| +|x-1| +| x-2 |+| x-3| +|x-4 | +| x-5|的值.310, 1, 2,剖析所求代数式中六个绝对值的分界点,分别为:据绝对值的意义去掉绝对值的符号,将有 3 个 x 和 3 个 -x,这样将抵消掉x,使求值变得简单.原式 =x+(x-1)+(x-2)-(x-3)-(x-4)-(x-5)=-1-2+3+4+5=9 .说明实质上,本题只需x 的值在 2 与 3 之间,那么这个代数式的值就是9,即它与x 详细的取值没关.【例 8】若 x:y:z=3:4:7 ,且 2x-y+z=18 ,那么 x+2y-z 的值是多少?剖析x:y:z=3:4:7 能够写成的形式,关于等比,我们往常能够设它们的比值为常数k,这样能够给问题的解决带来便利.x=3k ,y=4k , z=7k .由于 2x-y+z=18 ,所以2×3k-4k+7k=18,所以 k=2,所以 x=6 , y=8, z=14,所以 x+2y-z=6+16-14=8 .【例 9】已知 x=y=11 ,求 (xy-1)2+(x+y-2)(x+y-2xy)的值.剖析本题是可直接代入求值的.下边采纳换元法,先将式子改写得较简短,而后再求值.解设 x+y=m , xy=n .原式 =(n-1)2+(m-2)(m-2n)=(n-1)2+m2-2m-2mn+4n=n2-2n+1+4n-2m-2mn+m2=(n+1)2-2m(n+1)+m2=(n+1-m)2=(11 × 11+1-22)2=(121+1-22)2=1002=10000 .说明换元法是办理较复杂的代数式的常用手法,经过换元,能够使代数式的特点更为突出,进而简化了题目的表述形式.。
08-整式的加减法-七年级寒假讲义

第八讲 整式的加减【学习目标】1.掌握同类项及合并同类项的概念,并能熟练进行合并; 2.掌握去括号与添括号法则,充分注意变号法则的应用;3. 会用整式的加减运算法则,熟练进行整式的化简及求值.【知识梳理】知识点一、同类项定义:所含 相同,并且相同 的 也分别相等的项叫做同类项.几个常数项也是同类项. 知识点二、合并同类项 1. 概念:把多项式中的 合并成一项,叫做合并同类项. 2.法则:合并同类项后,所得项的系数是合并前各 的系数的和,且 部分不变. 知识点三、去括号法则如果括号外的因数是 ,去括号后原括号内各项的符号与原来的符号 ; 如果括号外的因数是 ,去括号后原括号内各项的符号与原来的符号 . 知识点四、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都 ;添括号后,括号前面是“-”号,括到括号里的各项都要 .知识点五、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.【例1】下列各组中的两项,是同类项的组数为( )①3m 2n 2与-n 3m 2;②12xy 与22yx ;③53与a 3;④23与32 A 、1组 B 、2组 C 、3组 D 、4组【例2】已知34x 2与5n x n是同类项,则n 等于( )A 、5B 、3C 、2或4D 、2【例3】如果一个代数式的两项是同类项,那么下列说法中不正确的是( )A 、这两项的系数相同B 、这两项所含字母的个数相同C 、这两项中的相同字母的指数相同D 、这两项的数字因数可以不同【例4】下列各式中,正确的是( )A 、-5m 2n +5nm 2=0B 、5xy -x =5yC 、3+2ab =5abD 、x 3-x =x 2【例5】下列去括号中正确的是( )A 、a -(3b -2c)=a -3b -2cB 、x 3-(2x 2+x -1)=x 3-2x 2-x -1C 、a 3+(-2a +3)=a 3+2a +3D 、2x 2-2(x -1)=2x 2-2x +2【例6】当k =________时,代数式x 6-5kx 4y 3-4x 6+15x 4y 3+10中不含x 4y 3项.【例7】化简5(2x -3)+4(3-2x)的结果为( )A 、2x -3B 、2x +9C 、8x -3D 、18x -3一、选择题:1、若2a 2m -5b 4与mab 3n -2是同类项,则( )A 、m =2,n =3B 、m =3,n =2C 、m =-3,n =2D 、m =3,n =-22、已知代数式mx +nx 合并同类项后,结果为零,则下列说法一定正确的是( )A 、m =n =0B 、m =nC 、m -n =0D 、m +n =03、化简-{-[-(5x -4y)]}的结果是( )A 、5x -4yB 、4y -5xC 、5x +4yD 、-5x -4y4、下列各式中,去括号正确的是( )A 、a +(2b -3c +d)=a -2b +3c -dB 、a -(2b -3c +d)=a -2b -3c +dC 、a -(2b -3c +d)=a -2b +3c -dD 、a -(2b -3c +d)=a -2b +3c +d5、化简9x -{4x -[5x -(8x -2)]}的结果是( )A 、2x -2B 、8x +2C 、16x +2D 、2x +26、下列各题去括号错误的是( )A 、213)213(+-=--y x y x B 、b a n m b a n m -+-=-+-+)( C 、332)364(21++-=+--y x y x D 、723121)7231()21(-++=+--+c b a c b a 7、下列说法正确的是( )A 、xyz 32与xy 32是同类项B 、x 1和x 21是同类项 C 、235.0y x 与327y x 是同类项 D 、n m 25与24nm -是同类项8、下面计算正确的是( )A 、3322=-x xB 、532523a a a =+C 、x x 33=+D 、04125.0=+-ba ab 9、化简的结果为( )A 、B 、C 、D 、10、下列说法正确的是( )A 、231x π的系数是31 B 、221xy 的系数为x 21 C 、25x -的系数是5 D 、23x 的系数是3 11、计算:3562+-a a 与1252-+a a 的差,结果正确的是( )A 、432+-a aB 、232+-a aC 、272+-a aD 、472+-a a二、填空题:1、-57πx 2y 3的系数是 . 2、-3a 22+3ab -43b 2是 项的和,分别是 . 3、若-3x m -1y 4与13x 2y n +2是同类项,则m =______;n =________. 4、已知2a x b n -1与3a 2b 2m (m 为正整数)是同类项,那么(2m -n)x =________.5、在多项式x 3-x +4-2x 3-2+3x 2+2x 中,______与_______,_______与_______,_______与_______是同类项,合并结果为________.6、a 3+3a 2-2a =a 3+(________),a -4-ab -c =(a -2b)-(________).7、计算:6a 2-4ab -4(2a 2+12ab)=________. 8、代数式2a +3b 与代数式-6a -8b +7a 的和是________.9、若多项式11x 5+16x 2-1与多项式3x 3+4mx 2-15x +13的和不含二次项,则m 等于________.10、已知代数式(a 2+a +2b)-(a 2+3a +mb)的值与b 的值无关,则m 的值为________.11、62m x y -与3235n x y 是同类项,则n m =_______________。
整式的加减讲义

整式得加减讲义知识要点一、整式得有关概念 1.单项式(1)概念:注意:单项式中数与字母或字母与字母之间就是乘积关系,例如:2x 可以瞧成12x ⋅,所以2x就是单项式;而2x 表示2与x 得商,所以2x不就是单项式,凡就是分母中含有字母得就一定不就是单项式、 (2)系数:单项式中得数字因数叫做这个单项式得系数、 例如:212x y -得系数就是12-;2r π得系数就是2.π 注意:①单项式得系数包括其前面得符号;②当一个单项式得系数就是1或1-时,“1”通常省略不写,但符号不能省略、 如:23,xy a b c -等;③π就是数字,不就是字母、(3)次数:一个单项式中,所有字母指数得与叫做这个单项式得次数、注意:①计算单项式得次数时,不要漏掉字母得指数为1得情况、 如322xy z 得次数为1326++=,而不就是5;②切勿加上系数上得指数,如522xy 得次数就是3,而不就是8;322x y π-得次数就是5,而不就是6、2.多项式(1)概念:几个单项式得与叫做多项式、 其含义就是:①必须由单项式组成;②体现与得运算法则、(2)项:在多项式中,每一个单项式叫做多项式得项,其中不含字母得项叫常数项;一个多项式含有几个单项式就叫几项式、例如:2231x y --共含有有三项,分别就是22,3,1x y --,所以2231x y --就是一个三项式、注意:多项式得项包括它前面得符号,如上例中常数项就是1-,而不就是1、 (3)次数:多项式中,次数最高项得次数,就就是这个多项式得次数、注意:要防止把多项式得次数与单项式得次数相混淆,而误认为多项式得次数就是各项次数之与、 例如:多项式2242235x y x y xy -+中,222x y 得次数就是4,43x y -得次数就是5,25xy 得次数就是3,故此多项式得次数就是5,而不就是45312++=、3.整式:单项式与多项式统称做整式、4.降幂排列与升幂排列(1)降幂排列:把一个多项式按某一个字母得指数从大到小得顺序排列起来叫做把这个多项式按这个字母得降幂排列、(2)把一个多项式按某一个字母得指数从小到大得顺序排列起来叫做把这个多项式按这个字母得升幂排列、注意:①降(升)幂排列得根据就是:加法得交换律与结合律;②把一个多项式按降(升)幂重新排列,移动多项式得项时,需连同项得符号一起移动;③在进行多项式得排列时,要先确定按哪个字母得指数来排列、 例如:多项式24423332xy x y x y x y ----按x 得升幂排列为:42233432y xy x y x y x -+---;按y 得降幂排列为:42323432y x y xy x y x --+--、二、整式得加减1.同类项:所含得字母相同,并且相同字母得指数也分别相同得项叫做同类项、注意:同类项与其系数及字母得排列顺序无关、 例如:232a b 与323b a -就是同类项;而232a b 与325a b 却不就是同类项,因为相同得字母得指数不同、2.合并同类项(1)概念:把多项式中相同得项合并成一项叫做合并同类项、注意:①合并同类项时,只能把同类项合并成一项,不就是同类项得不能合并,如235a b ab +=显然不正确;②不能合并得项,在每步运算中不要漏掉、(2)法则:合并同类项就就是把同类项得系数相加,所得得结果作为系数,字母与字母得指数保持不变、 注意:①合并同类项,只就是系数上得变化,字母与字母得指数不变,不能将字母得指数相加;②合并同类项得依据就是加法交换律、结合律及乘法分配律;③两个同类项合并后得结果与原来得两个单项式仍就是同类项或者就是0、3.去括号与填括号(1)去括号法则:括号前面就是“+”,把括号与它前面得“+”去掉,括号内得各项都不变号;括号前面就是“-”,把括号与它前面得“-”去掉,括号内得各项都改变符号、注意:①去括号得依据就是乘法分配律,当括号前面有数字因数时,应先利用分配律计算,切勿漏乘;②明确法则中得“都”字,变符号时,各项都变;若不变符号,各项都不变、 例如:()();a b c a b c a b c a b c +-=+---=-+;③当出现多层括号时,一般由里向外逐层去括号,如遇特殊情况,为了简便运算也可由外向内逐层去括号、 (2)填括号法则:所添括号前面就是“+”号,添到括号内得各项都不变号;所添括号前面就是“-”号,添到括号内得各项都改变符号、注意:①添括号就是添上括号与括号前面得“+”或“-”,它不就是原来多项式得某一项得符号“移”出来得;②添括号与去括号得过程正好相反,添括号就是否正确,可用去括号来检验、 例如:()();.a b c a b c a b c a b c +-=+--+=--4.整式得加减整式得加减实质上就是去括号与合并同类项,其一般步骤就是: (1)如果有括号,那么先去括号;(2)如果有同类项,再合并同类项、 注意:整式运算得结果仍就是整式、基础巩固1下列说法正确得就是( )A.单项式23x -得系数就是3-B.单项式3242π2ab -得指数就是7C.1x就是单项式 D.单项式可能不含有字母 2多项式2332320.53x y x y y x ---就是 次 项式,关于字母y 得最高次数项就是 ,关于字母x 得最高次项得系数 ,把多项式按x 得降幂排列 。
整式的加减-讲义(教师版)

整式的加减一、课堂目标1.理解同类项的概念,会合并同类项;2.掌握去括号法则和添括号法则,会进行简单的去括号运算;3.会用合并同类项、去括号等方法进行整式加减计算.【备注】【目标解读】a.关联知识:有理数章节学习了有理数相关计算,本章整式的加减进一步学习式的计算,有理数计算是后续学习中计算相关内容的基础.整式的的计算是初中阶段式相关运算的基础.除了本章的整式加减,后续还会学习整式的乘除,分式的加减与乘除、二次根式的加减与乘除等式相关的运算内容.b.本讲解读: 本讲重点内容是整式的加减运算,掌握合并同类项及去括号的方法.本讲的难点是熟练应用合并同类项及去括号进行加减计算,并且计算准确.c.能力素养:培养学生数感、符号意思和运算能力.二、知识引入在之前的学习中我们已经掌握了整式的相关概念,也掌握了如何用代数式表示实际问题,例如之前我们学过的买笔问题,一根铅笔元,小明买10根,一共需要。
那么如果小红也买铅笔,买了5根,需要.但是请问小明小红一共需要多少元呢?如果要解决这个问题,我们的学习就需要再进一步,学习如何利用整式来进行计算以及解决实际问题。
元元【备注】【教学建议】1、一共:元;2、那么能化简吗,老师可以就此向学生提问,并举几个例子引导学生找到化简这个式子的方法.如利用运算律化简可得:;利用运算律化简可得:;所以仿照上述方法可得:.那么也可以用上述方法化简即.还可以让学生在试着举出几个例子,并总结举出的例子满足什么条件时,可以利用上述方法化简.三、知识讲解1. 合并同类项同类项定义所含字母相同,并且相同字母的指数也分别相同的项,称为同类项.例如:与互为同类项.【注意】所有的常数项都是同类项.【备注】【教学建议】同类项是对两个或多个单项式进行分析判断的.同类项的特征为“两相同,两无关”.相同是指所含字母相同,相同字母的指数相同;无关是指与系数的大小无关,与字母的排列顺序无关.例如:与是同类项,与是同类项.【注意】同类项不能单独存在,至少对应两项而言.经典例题1A.与 B.与C.与 D.与(1)(2)解答:下面给出的四对单项式中,是同类项的一对是( ).如果与是同类项,则或 .【备注】【教学建议】(1)(2)【解析】【标注】【答案】(1)(2)B;同类项:所含字母相同,并且相同字母的指数也分别相同.同类项:所含字母相同,并且相同字母的指数也分别相同.【知识点】同类项的定义【知识点】由同类项求参数的值【知识点】整式的定义同类项中,相同字母的指数一定相等,根据这个规律可以处理含参问题.思路梳理知识点:1、 2、 3、题目练习11.与.( )2.与.( )3.与.( )4.与.( )5.与.( )6.与.( )7.与.( )8.与.( )9.与.( )10.与.( )1.【标注】判断下列各组式子是否是同类项,如果是同类项,在括号里填“”,不是同类项,在括号里填“”.【答案】××✓××✓✓✓××【知识点】同类项的定义1.和.2.和.3.和.4.和.5.和.6.和.2.【解析】判断下列式子是不是同类项.【答案】YNYYYN 略.【标注】【知识点】同类项的定义A.B.C.D.3.【解析】【标注】若与是同类项,那么( ).【答案】C ∵与是同类项,∴,,解得:,,∴,故选:.【知识点】由同类项求参数的值4.【解析】【标注】若与是同类项,则 .【答案】∵与是同类项,∴,,解得:,,故.故答案为:.【知识点】由同类项求参数的值合并同类项合并同类项定义:把多项式中的同类项合并成一项,叫做合并同类项.合并同类项法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.合并同类项步骤:。
专题 整式的加减(知识大串讲)(解析版)

专题07 整式的加减(知识大串讲)【知识点梳理】考点1 同类项1.定义:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
2.合并同类项:(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。
(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
(3)合并同类项步骤:a.准确的找出同类项。
b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
c.写出合并后的结果。
(4)在掌握合并同类项时注意:a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.b.不要漏掉不能合并的项。
c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
说明:合并同类项的关键是正确判断同类项。
考点2 去括号(1)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;(2)如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
考点3整式的加减几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
【典例分析】【考点1 同类项的判断】【典例1】(2022春•兰西县校级期末)下列各组两项中,是同类项的是()A.xy与﹣xy B.ac与abcC.﹣3ab与﹣2xy D.3xy2与3x2y【答案】A【解答】解:A.根据同类项的定义,xy与﹣xy是同类项,那么A符合题意.B.根据同类项的定义,与不是同类项,那么B不符合题意.C.根据同类项的定义,﹣3ab与﹣2xy不是同类项,那么C不符合题意.D.根据同类项的定义,3xy2与3x2y不是同类项,那么D不符合题意.故选:A.【变式1】(2021秋•乌当区期末)在下列各组单项式中,不是同类项的是()A.5x2y和﹣7x2y B.m2n和2mn2C.﹣3和99D.﹣abc和9abc【答案】B【解答】解:A.5x2y和﹣7x2y所含字母相同,并且相同字母的指数也相同,是同类项,故本选项不合题意;B.m2n和2mn2所含字母相同,但相同字母的指数不相同,故不是同类项,故本选项符合题意;C.﹣3和99是同类项,故本选项不合题意;D.﹣abc和9abc所含字母相同,并且相同字母的指数也相同,是同类项,故本选项不合题意.故选:B.【考点2 已知同类项求指数中字母的值】【典例2】(2021秋•北辰区期末)如果2x3n y m+1与﹣3x12y4是同类项,那么m,n的值分别是()A.m=﹣2,n=3B.m=2,n=3C.m=﹣3,n=2D.m=3,n=4【答案】D【解答】解:∵2x3n y m+1与﹣3x12y4是同类项,∴3n=12,m+1=4,解得m=3,n=4,故选:D.【变式2-1】(2022春•龙凤区期末)如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2022=()A.1B.﹣1C.52022D.﹣52022【答案】A【解答】解:∵单项式﹣xy b+1与x a﹣2y3是同类项,∴a﹣2=1,b+1=3,解得:a=3,b=2,∴(a﹣b)2022=(3﹣2)2022=12022=1.故选:A.【变式2-2】(2022春•潍坊期末)若单项式20x m﹣n y14与可以合并成一项,则m n的值是()A.B.2C.D.﹣2【答案】A【解答】解:由题意可知:m﹣n=3,3m﹣8n=14,∴m=2,n=﹣1,∴m n=.故选:A.【考点3 合并同类项】【典例3】(2022•清苑区二模)下列算式中正确的是()A.4x﹣3x=1B.2x+3y=3xyC.3x2+2x3=5x5D.x2﹣3x2=﹣2x2【答案】D【解答】解:A、原式=x,故A不符合题意.B、2x与3y不是同类项,不能合并,故B不符合题意.C、3x2与2x3不是同类项,不能合并,故C不符合题意.D、x2﹣3x2=﹣2x2,故D符合题意.故选:D.【变式3】(2022•钱塘区一模)化简:﹣5x+4x=()A.﹣1B.﹣x C.9x D.﹣9x 【答案】B【解答】解:原式=(﹣5+4)x=﹣x.故选:B【考点4 去括号或添括号】【典例4-1】(2022春•宁波期末)下列添括号正确的是()A.﹣b﹣c=﹣(b﹣c)B.﹣2x+6y=﹣2(x﹣6y)C.a﹣b=+(a﹣b)D.x﹣y﹣1=x﹣(y﹣1)【答案】C【解答】解:A.﹣b﹣c=﹣(b+c),故此选项不合题意;B.﹣2x+6y=﹣2(x﹣3y),故此选项不合题意;C.a﹣b=+(a﹣b),故此选项符合题意;D.x﹣y﹣1=x﹣(y+1),故此选项不合题意;故选:C.【典例4-2】(2021秋•望城区期末)下列各题中去括号正确的是()A.5﹣3(x+1)=5﹣3x﹣1B.2﹣4(x+)=2﹣4x+1C.2﹣4(x+1)=2﹣x﹣4D.2(x﹣2)﹣3(y﹣1)=2x﹣4﹣3y﹣3【答案】C【解答】解:A.5﹣3(x+1)=5﹣3x﹣3,故A不符合题意.B.2﹣4(x+)=2﹣4x﹣1,故B不符合题意.C.2﹣4(x+1)=2﹣x﹣4,故C符合题意.D.2(x﹣2)﹣3(y﹣1)=2x﹣4﹣3y+3,故D不符合题意.故选:C.【变式4-1】(2022•馆陶县)等号左右两边一定相等的一组是()A.﹣(a+b)=﹣a+b B.a3=a+a+aC.﹣2(a+b)=﹣2a﹣2b D.﹣(a﹣b)=﹣a﹣b【答案】C【解答】解:A、原式=﹣a﹣b,原去括号错误,故此选项不符合题意;B、a3=a•a•a,a+a+a=3a,原式左右两边不相等,故此选项不符合题意;C、原式=﹣2a﹣2b,原去括号正确,故此选项符合题意;D、原式=﹣a+b,原去括号错误,故此选项不符合题意.故选:C.【变式4-2】(2021秋•海门市期末)计算﹣(4a﹣5b),结果是()A.﹣4a﹣5b B.﹣4a+5b C.4a﹣5b D.4a+5b【答案】B【解答】解:﹣(4a﹣5b)=﹣4a+5b,故选:B【考点5 整式加减的运算】【典例5】(2022•南京模拟)先去括号,再合并同类项;(1)(3x2+4﹣5x3)﹣(x3﹣3+3x2)(2)(3x2﹣xy﹣2y2)﹣2(x2+xy﹣2y2)(3)2x﹣[2(x+3y)﹣3(x﹣2y)](4)(a+b)2﹣(a+b)﹣(a+b)2+(﹣3)2(a+b).【解答】解:(1)原式=3x2+4﹣5x3﹣x3+3﹣3x2=﹣6x3+7;(2)原式=3x2﹣xy﹣2y2﹣2x2﹣2xy+4y2=x2﹣3xy+2y2;(3)原式=2x﹣2x﹣6y+3x﹣6y=3x﹣12y;(4)原式=﹣(a+b)﹣(a+b)2+9(a+b)=﹣(a+b)2+(a+b).【变式5-1】(河南期中)先去括号,再合并同类项(1)2(2b﹣3a)+3(2a﹣3b)(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)【解答】解:(1)2(2b﹣3a)+3(2a﹣3b)=4b﹣6a+6a﹣9b=﹣5b;(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)=4a2+6ab﹣4a2﹣7ab+1=﹣ab+1.【变式5-2】(乐清市校级月考)去括号,合并同类项:(1)﹣3(2x﹣3)+7x+8;(2)3(x2﹣y2)﹣(4x2﹣3y2).【解答】解:(1)﹣3(2x﹣3)+7x+8=﹣6x+9+7x+8,=(﹣6x+7x)+(9+8),=x+17,(2)3(x2﹣y2)﹣(4x2﹣3y2)=3x2﹣y2﹣2x2+y2,=3x2﹣2x2+(﹣y2+y2),=x2.【考点6 化简求值】【典例6】(2022春•杜尔伯特县期中)代入求值.(1)已知|a﹣2|+(b+1)2=0,求代数式5ab﹣[2a2b﹣(4b2+2a2b)]的值;(2)2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=1,y=﹣1.【解答】解:(1)原式=5ab﹣(2a2b﹣4b2﹣2a2b)=5ab﹣2a2b+4b2+2a2b=5ab+4b2,由题意可知:a﹣2=0,b+1=0,∴a=2,b=﹣1,原式=5×2×(﹣1)+4×1=﹣10+4=﹣6.(2)原式=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5x2y+5xy,当x=1,y=﹣1时,原式=﹣5×1×(﹣1)+5×1×(﹣1)=5﹣5=0.【变式6-1】(2021秋•兴庆区校级期末)先化简,再求值.(1)3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2),其中(x+2)2+|y﹣1|=0;(2)(﹣a2+3ab﹣2b)﹣2(﹣a2+4ab﹣b2),其中a=3,b=﹣2.【解答】解:(1)3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)=3y2﹣x2+4x2﹣6xy﹣3x2﹣3y2=﹣6xy,∵(x+2)2+|y﹣1|=0,(x+2)2≥0,|y﹣1|≥0,∴x+2=0,y﹣1=0.∴x=﹣2,y=1.当x=﹣2,y=1时,原式=﹣6×(﹣2)×1=12.(2)(﹣a2+3ab﹣2b)﹣2(﹣a2+4ab﹣b2)=﹣a2+3ab﹣2b+a2﹣8ab+3b2=﹣5ab+3b2﹣2b,当a=3,b=﹣2时,原式=﹣5×3×(﹣2)+3×(﹣2)2﹣2×(﹣2)=30+3×4+4=30+12+4=46.【变式6-2】(2021秋•梁平区期末)先化简再求值:(1)﹣(x2﹣y2)﹣[3xy﹣(x2﹣y2)],其中x=﹣3,y=﹣4.(2),其中|2+y|+(x﹣1)2=0.【解答】解:(1)﹣(x2﹣y2)﹣[3xy﹣(x2﹣y2)]=﹣x2+y2﹣3xy+x2﹣y2=﹣3xy,当x=﹣3,y=﹣4时,原式=﹣3xy=﹣3×(﹣3)×(﹣4)=﹣36;(2)=5x2y﹣(3xy2﹣6xy2+7x2y)=5x2y﹣3xy2+6xy2﹣7x2y=﹣2x2y+3xy2,因为|2+y|+(x﹣1)2=0,所以y=﹣2,x=1,所以原式=﹣2×1×(﹣2)+3×1×4=16.【考点7 整式加减的无关型问题】【典例7】(2021秋•东港区期末)(1)先化简,再求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)﹣xy],其中x=﹣,y=2.(2)已知A=y2+3ay﹣1,B=by2+4y﹣1,且4A﹣3B的值与y的取值无关,求a,b 的值.【解答】解:(1)原式=3x2y﹣(2x2y﹣6xy+3x2y﹣xy)=3x2y﹣2x2y+6xy﹣3x2y+xy=﹣2x2y+7xy,当,y=2时,原式=.(2)4A﹣3B==3y2+12ay﹣4﹣3by2﹣12y+3=(3﹣3b)y2+(12a﹣12)y﹣1,∵4A﹣3B的值与y的取值无关,∴3﹣3b=0,12a﹣12=0,∴a=1,b=1.【变式7-1】(2022春•泰州期末)已知:A=3x2+2xy+3y﹣1,B=x2﹣xy.(1)计算:A﹣3B;(2)若A﹣3B的值与y的取值无关,求x的值.【解答】解:(1)A﹣3B=(3x2+2xy+3y﹣1)﹣3(x2﹣xy)=3x2+2xy+3y﹣1﹣3x2+3xy=5xy+3y﹣1;(2)∵A﹣3B=5xy+3y﹣1=(5x+3)y﹣1,又∵A﹣3B的值与y的取值无关,∴5x+3=0,∴x=﹣.【变式7-2】(2021秋•井研县期末)已知A=2x2+xy+3y﹣1,B=x2﹣xy.(1)当x=﹣1,y=3时,求A﹣2B的值;(2)若3A﹣6B的值与y的值无关,求x的值.【解答】解:(1)∵A=2x2+xy+3y﹣1,B=x2﹣xy,∴A﹣2B=(2x2+xy+3y﹣1)﹣2(x2﹣xy)=2x2+xy+3y﹣1﹣2x2+2xy=3xy+3y﹣1,当x=﹣1,y=3时,原式=3×(﹣1)×3+3×3﹣1=﹣9+9﹣1=﹣1;(2)∵A=2x2+xy+3y﹣1,B=x2﹣xy,∴3A﹣6B=3(2x2+xy+3y﹣1)﹣6(x2﹣xy)=6x2+3xy+9y﹣3﹣6x2+6xy=9xy+9y﹣3=(9x+9)y﹣3,∵3A﹣6B的值与y的值无关,∴9x+9=0,∴x=﹣1.【考点8 整式加减的看错问题】【典例8】(2021秋•济宁期末)已知多项式M,N,其中M=2x2﹣x﹣1,小马在计算2M ﹣N时,由于粗心把2M﹣N看成了2M+N求得结果为﹣3x2+2x﹣1,请你帮小马算出:(1)多项式N;(2)多项式2M﹣N的正确结果.求当x=﹣1时,2M﹣N的值.【解答】解:(1)根据题意得:N=﹣3x2+2x﹣1﹣2(2x2﹣x﹣1)=﹣3x2+2x﹣1﹣4x2+2x+2=﹣7x2+4x+1;(2)2M﹣N=2(2x2﹣x﹣1)﹣(﹣7x2+4x+1)=4x2﹣2x﹣2+7x2﹣4x﹣1=11x2﹣6x﹣3,当x=﹣1时,2M﹣N=11+6﹣3=14.【变式8】(2021秋•禹州市期末)某同学做一道题,已知两个多项式A、B,求A﹣2B的值.他误将“A﹣2B”看成“A+2B”,经过正确计算得到的结果是x2+14x﹣6.已知A=﹣2x2+5x﹣1.(1)请你帮助这位同学求出正确的结果;(2)若x是最大的负整数,求A﹣2B的值.【解答】解:(1)由题意得:2B=x2+14x﹣6﹣(﹣2x2+5x﹣1)=x2+14x﹣6+2x2﹣5x+1=3x2+9x﹣5,所以,A﹣2B=﹣2x2+5x﹣1﹣(3x2+9x﹣5)=﹣2x2+5x﹣1﹣3x2﹣9x+5=﹣5x2﹣4x+4;(2)由x是最大的负整数,可知x=﹣1,所以,A﹣2B=﹣5×(﹣1)2﹣4×(﹣1)+4=﹣5+4+4=3【考点8整式加减的应用】【典例9】(2021秋•海沧区期末)为了促进“资源节约和环境友好型”社会建设,引导居民合理用电.某市结合实际,决定提供两种家庭用电计费方式供居民选择.方式一:峰谷计价.收费标准为:峰时段(上午8:00~晚上21:00)用电的电价为0.65元/度,谷时段(晚上21:00~次日晨8:00)用电的电价为0.35元/度.方式二:阶梯计价.收费标准如下表:超过400度的部分居民一个月用电量不超过200度超过200度但不超过400度的部分电价(单位:元/度)0.500.600.75(1)若该市居民小王家某月用电300度,其中,峰时段用电200度,谷时段用电100度.他家选择哪种计费方式费用较低?(2)若该市居民小张家某月总用电量为a度,其中80%为峰时段的用电量.请用含a的式子分别表示两种计费方式应缴的电费.【解答】解:(1)方式一:200×0.65+100×0.35=130+35=165(元).方式二:200×0.50+(300﹣200)×0.60=100+100×0.60=100+60=160(元).160元<165元,所以他家选择方式二计费方式费用较低.(2)方式一:80%a×0.65+(1﹣80%)×a×0.35=0.8a×0.65+0.2a×0.35=0.52a+0.07a=0.59a(元).方式二:当a不超过200时,电费为:a×0.5=0.5a(元).当a超过200但不超过400时,电费为:200×0.5+(a﹣200)×0.6=100+0.6a﹣120=0.60﹣(120﹣100)=(0.6a﹣20)(元).当a超过400时,电费为:200×0.50+(400﹣200)×0.60+(a﹣400)×0.75=100+120+0.75a﹣400×0.75=220+0.75a﹣300=0.75a﹣(300﹣220)=(0.75a﹣80)(元).答:小张家按方式一计费方式应缴电费0.59元.方式二计费时,当a不超过200时,应缴电费0.5a元;当a超过200但不超过400时,应缴电费(0.6a一20)元;当a超过400时,应缴电费(0.75a一80)元.【变式9】(2021秋•沐川县期末)滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.45元/分钟0.4元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.4元.(1)若小东乘坐滴滴快车,行车里程为5公里,行车时间为10分钟,则需付车费多少元;(2)若小明乘坐滴滴快车,行车里程为a公里,行车时间为b分钟,则小明应付车费多少元?(用含a、b的代数式表示,并化简)(3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,并且小王的行车时间比小张的行车时间多24分钟,请计算说明两人下车时所付车费有何关系?【解答】解:(1)1.8×5+0.45×10=13.5(元),答:需付车费13.5元;(2)当a≤10时,小明应付费(1.8a+0.45b)元;当a>10时,小明应付费1.8a+0.45b+0.4(a﹣10)=(2.2a+0.45b﹣4)元;(3)设小王与小张乘坐滴滴快车分别为a分钟、(a﹣24)分钟,则小王应付车费1.8×9.5+0.45a=17.1+0.45a,小张应付车费1.8×14.5+0.45(a﹣24)+0.4×(14.5﹣10)=17.1+0.45a,因此,两人车费一样多【典例10】(2021秋•新泰市期末)如图是一块长方形花园,内部修有两个凉亭及过道,其余部分种植花圃(阴影部分).(1)用整式表示花圃的面积;(2)若a=3m,修建花圃的成本是每平方米60元,求修建花圃所需费用.【解答】解:(1)根据题意得:(7.5+12.5)×(a+2a+2a+2a+a)﹣12.5•2a×2=20•8a﹣50a=160a﹣50a=110a(m2),所以,花圃的面积为:110a;(2)当a=3m、修建花圃的成本是每平方米60元时,修建花圃所需费用为110×3×60=19800(元),所以,修建花圃所需费用为19800元.【变式10】(2022春•莱州市期末)如图是一个长方形游乐场,其宽是4a米,长是6a米.其中半圆形休息区和长方形游泳区以外的地方都是绿地.已知半圆形休息区的直径和长方形游泳区的宽是2a米,游泳区的长是3a米.(1)该游乐场休息区的面积为a2m2,游泳区的面积为6a2m2.(用含有a的式子表示)(2)若长方形游乐场的宽为40米,绿化草地每平方米需要费用30元,求这个游乐场中绿化草地的费用.【解答】解:(1)休息区的面积为:×π×a2=a2(m2);游泳区的面积为:3a×2a=6a2(m2).故答案为:a2,6a2;(2)∵长方形游乐场的宽为40米,∴a=10米.所以(6a×4a﹣6a2﹣a2)×30≈(24a2﹣6a2﹣1.57a2)×30=16.43a2×30=492.9a2.当a=10时,原式=49290(元).答:游乐场中绿化草地的费用为49290元.【典例11】(2021秋•连城县期中)某商场销售一种西装和领带,西装每套定价1000元,领带每条定价200元,“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一套西装送一条领带:方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x条(x>20).(1)若该客户按方案一购买,需付款元.(用含x的代数式表示)若该客户按方案二购买,需付款元.(用含x的代数式表示)(2)若x=40,通过计算说明此时按哪种方案购买较为合算?(3)当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.并算出需要付款多少元?【解答】解:(1)客户要到该商场购买西装20套,领带x条(x>20).方案一费用:20×1000+(x﹣20)×200=(200x+16000)元,方案二费用:(20×1000+200x)×0.9=(180x+18000)元,故答案为:(200x+16000),(180x+18000).(2)当x=40时,方案一:200×40+16000=24000(元),方案二:180×40+18000=25200(元),所以,按方案一购买较合算.(3)能给出一种更为省钱的购买方案;先按方案一购买20套西装获赠送20条领带,再按方案二购买20条领带;需要付款:20000+200×20×90%=23600(元).【变式11】(2021秋•淅川县期中)某校羽毛球队需要购买6支羽毛球拍和x盒羽毛球(x >6),羽毛球拍市场价为150元/支,羽毛球为30元/盒.甲商场优惠方案为:所有商品九折.乙商场优惠方案为:买1支羽毛球拍送1盒羽毛球,其余原价销售.(1)分别用x的代数式表示在甲商场和乙商场购买所有物品的费用.(2)当x=20时,请通过计算说明选择哪个商场购买比较省钱.【答案】(1甲:27x+810乙:30x+720(2)乙商场购买比较省钱【解答】解:(1)在甲商场购买所有物品的费用为:0.9(6×150+30x)=27x+810,在乙商场购买所有物品的费用为:6×150+30(x﹣6)=30x+720;(2)当x=20时,27x+810=1350(元);30x+720=1320(元);1350>1320,答:选择乙商场购买比较省钱.。
初一数学(秋季)讲义第十四讲:整式的加减

初一数学(秋季)讲义第十四讲:整式的加减括号前是“+”号,括号里各项;括号前是“-”号,括号里各项。
要点诠释:去括号后括号及前面的符号就消失了二、合并同类项1、同类项定义:所含相同,并且相同字母的也分别相等的项叫做同类项.几个常数项也是同类项.要点诠释:判断几个项是否是同类项有两个条件:①所含相同;②相同字母的分别相等2、合并同类项法则:合并同类项后,所得项的是合并前各同类项的的和,且字母部分不变.要点诠释:字母及其指数不变,系数相加减三、整式的加减运算及化简例1、去括号:(1)d-2(3a-2b+3c)= (2)-(-xy-1)+(-x+y) =(3)n-4(3-2m)= (4)2(a-2b)-3(2m-n)=变式1-1、x+(-y+3)= 8m-(3n+5)= 3-(x+y)= –(–a + b ) – c = -(x-y)+3= (a –b )–(c + d ) = 变式1-2、下列运算正确的是( )A .-3(x-1)=-3x-1B .-3(x-1)=-3x+1C .-3(x-1)=-3x-3D .-3(x-1)=-3x+3变式1-3、下列去括号正确的是( ).A.2222(2)2a a b b a a b b --+=--+B .2222(2)()2x y x y x y x y -+--+=-++-C .2223(5)235x x x x --=-+D .323222[4(13)]4a a a a a x y ---+-=-++-例2、指出下列各题中的两项是不是同类项,不是同类项的说明理由.(1)233x y 与32y x -; (2)22x yz 与22xyz ; (3)5x 与xy ; (4)5-与8变式2-1、下列每组数中,是同类项的是( ) .①2x ²y3与x ³y ² ②-x ²yz 与-x ²y ③10mn 与23mn④(-a)5与(-3)5 ⑤-3x ²y 与0.5yx ² ⑥-125与12A .①②③B .①③④⑥C .③⑤⑥D .只有⑥变式2-2、已知23m n x y +与232m x y 是同类项,那么m 的值为______,n 的值为_________.例3、合并下列各式中的同类项:(1)-2x ²-8y ²+4y ²-5x ²-5x+5x-6xy=(2)8a+2b+(5a-b)=(3)a+(5a-3b)-(a-2b)=(4)8x 2-4(2x 2+3x -1) =(5)5x 2-2(3y 2-5x 2)+(-4y 2+7xy )=变式3-1、(1)2283569p q q p -+-- =(2)(4ab-a-b)-(-a+b+3ab)=(3)2(x 2y +xy )-3(x 2y -xy )-4x 2y =(4)3(2a 2+5ab -b 2)+2(-a 2-6ab +b 2)=例4、已知222232,23,M x xy y N x xy y =-+=+-求:()()1;223.M N M N --变式4、已知7532234+-+=x x x A ,且325324++-=+x x x B A ,求B 的值.例5、当a =1,b =-2时,求多项式5411214929532323---+--b a ab b a ab b a ab 的值.变式5、已知222242923x xy y x xy y ++--+,求值,其中2x =,1y =.1、如两个单项式是同类项,那么下列叙述错误的是( )A 、这两个单项式中,相同字母的指数一定相同B 、这两个单项式所含的字母一定相同C 、这两个单项式的次数一定相同D 、这两个单项式的和不一定是单项式2、下列各组式中是同类项的为( )A .4x ³y 与-2xy ³B .-4yx 与7xyC .9xy 与-3x ²D .ab 与bc3、下列各题中的两个项不是同类项的是( )A 、25m n 与22nm -B 、415a y 与415ay C 、2abc 与22210abc ⨯ D 、32x y -与33yx4、下列各式中与a -b -c 的值不相等的是( ).A .a -(b +c )B .a -(b -c )C .(a -b )+(-c )D .(-c )-(b -a ) 5、下列去括号中,正确的是( )A 、a 2-(2a-1)=a 2-2a-1B 、a 2+(-2a-3)=a 2-2a+3C 、3a-(5b-2c-1)=3a-5b+2c+1D 、-(a+b )+(c-d )=-a-b-c+d6、-[a -(b -c)]去括号正确的是( )A 、 -a -b+cB 、-a+b -cC 、-a -b -cD 、-a+b+c 7、下列去括号中,错误的是( )A 、a 2-(3a-2b+4c )=a 2-3a+2b-4cB 、4a 2+(-3a+2b )=4a 2+3a-2bC 、2x 2-3(x-1)=2x 2-3x+3D 、-(2x-y )-(-x 2+y 2)=-2x+y+x 2-y 28、-a+2b -3c 的相反数是( ).A .a -2b+3cB .a 2-2b -3cC .a+2b -3cD .a -2b -3c9、下列运算中结果正确的是( ).A .3a +2b =5abB .5y -3y =2C .-3x +5x =-8xD .3x 2y -2x 2y =x 2y 10、a +b +2(b +a )-4(a +b )合并同类项等于( )A 、a +bB 、-a -bC 、b -aD 、a -b11、化简2(21)2(1)x x ---+的结果为( )A. 12+xB. x 2C. 45+xD. 23-x12、当a =5,b =3时,a -[b -2a -(a -b )]等于( )A 、10B 、14C 、-10D 、4 二、填空题13、x-(-3-y)= )(2)(2b a b a a +-++= )]2([b a ---=__________ )32(3)5(y x y x --+-= )22(--a a = )32(2[)3(1yz x x xy +-+--= 2222344522x xy y x xy y -+-+-=3232399111552424xy x y xy x y xy x y --+---=14、把多项式3223535y x y x xy +--按字母x 的指数从大到小排列是15、在x x x x 6214722+--+-中,27x 与 同类项,x 6与 是同类项,-2与 是同类项16、单项式ab b a ab ab b a 3,4,3,2,3222--的和为17、若4)13(22+-=+--a a A a a ,则A =18、若-32a 2b m 与4a n b 是同类项,则m= ,n = 。
整式的加减讲义

整式的加减复习讲义(第一课时,计39分钟)一、课前准备(自习10分钟)1、_________和_________统称整式。
2、所含_______相同,并且相同字母的_______也分别相等的项叫同类项。
所有的常数项_______(是/不是)同类项。
3、合并同类项的法则:把同类项的________相加,所得的结果作为____________,字母和字母的指数______________.4、去括号法则:(1)括号前是“+”号,把括号和前面的“+”号去掉,括号里各项都_______符号。
(2)括号前是“-”号,把括号和前面的“-”号去掉,括号里各项都______符号。
5、添括号法则:(1)所添括号前面是“+”号,括号里各项都_________符号(2)所添括号前面是“-”号,括号里各项都_________符号6、整式的加减的一般步骤:(1)如果有括号,那么__________;(2)如果有同类项,那么___________。
二、知识点回顾(提问、讲解15分钟) 代数式:用基本的运算符号(加、减、乘、除、乘方等)把数或表示数的字母连结而成的式 子叫做代数式。
单独的一个数或字母也是代数式。
单项式:像2a -,2πr ,213x y -,abc -,237x yz ,…,这些代数式中,都是数字与字母的积,这样的代数式称为单项式。
单项式的次数:是指单项式中所有字母的指数和。
单项式的系数:单项式中的数字因数叫做单项数的系数。
同类项:所含字母相同,并且相同字母的指数也分别相同的单项式叫做同类项。
多项式:几个单项式的和叫做多项式。
多项式的项:其中每个单项式都是该多项式的一个项。
多项式的次数:多项式里,次数最高项的次数就是这个多项式的次数。
整式:单项式和多项式统称为整式整式运算合并同类项:把多项式中同类项合并成一项,叫做合并同类项。
合并同类项时,只需把系数相加,所含字母和字母指数不变。
三、讲与练板块一 单项式与多项式【例1】用代数式表示a 与-5的差的2倍是( )(5分钟)A 、a-(-5)×2B 、a+(-5)×2C 、2(a-5)D 、2(a+5)练习:1、某班共有学生x 人,其中女生人数占35%,那么男生人数是( )A 、35%xB 、(1-35%)xC 、35%xD 、135%x - 2、一个两位数,十位上的数字是x ,个位上的数字是y ,如果把十位上的数与个位上的数对调,所得的两位数是( )A 、yxB 、y+xC 、10y+xD 、10x+y【例2】下列说法正确的是( )(3分钟)A .单项式23x -的系数是3-B .单项式3242π2ab -的指数是7 C .1x是单项式 D .单项式可能不含有字母 练习:单项式2335a bc -的系数是______,次数是______;【例3】多项式2332320.53x y x y y x ---是 次 项式,关于字母y 的最高次数项是 ,关于字母x 的最高次项的系数 ,把多项式按x 的降幂排列 。
整式的加减讲义

第2章整式的加减1.从用字母表示数逐渐提升到准确规范列代数式.(1)用字母表示数的意义:可以简明地表示数学运算定律;可以简明地表示公式;简明地表示问题中的数量关系.(2)用字母表示数要注意:同一个问题中不同数或数量要用不同的字母表示;不同问题中不同数或数量可以用相同的字母表示,但相同字母表示的含义是不同的;用同一个字母表示数,往往不只是一个值,而是若干个或无数个值,也就是同一个字母可以表示不同的数值;用字母表示数具有任意性,也有局限 性,如:式子中的a不能等于1;用多个字母表示某一问题中的数量关系时,字母的取值互相制约,如:式子中,字母a或b可以任意取值,但a,b却不能取相同的数值.(3)要求严格按照以下书写代数式的几点要求书写.①代数式中数与字母、字母与字母相乘时,通常应省略乘号。
如,×常写成 “·”号或省略不写 ,而数与数相乘时,则不能将“×”写成“·”号或省略不写;②数与字母相乘,数应写在字母的前面,如5a不写成a5;③除法运算常写成分数形式;④带分数与字母相乘,应把带分数化为假分数;⑤当系数或字母的指数是1时,这个“1”通常不写.(4)尽可能熟记一些常用数的表达方式. 以下代数式中,m,n均为(正)整数.如:奇数2n-1或2n+1;偶数2n;三个连续整数一般写作n-1,n,n+1;三个连续偶数般写作2n-2,2n,2n+2;三个连续奇数般写作2n-1,2n+1,2n+3;被3整除的数写作3n;被5除商m余1的数5m+1;用表示数的正负性;2.单项式、多项式、整式及其相关概念可通过适当例题加深理解与强化.(1)单项式:数字或字母的积组成的式子例1判断下列各式中,哪些是单项式,并说出各单项式的系数、次数?,,,, 0,,通过此题,强调应注意以下几点:①单项式只能含有乘除(乘方)运算,除法运算只限于除数是数字(因为可以看作分数系数)的情况;在确定单项式的系数时别忘了符号和分母中的数字;②单独的一个数字和字母也是单项式;③单项式次数只与字母指数有关;④圆周率π是常数.(2)多项式:几个单项的和; 整式:单项式和多项式统称为整式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
板块一 单项式与多项式
【例1】下列说法正确的是( )
A .单项式23x -的系数是3-
B .单项式324
2π2
ab -的指数是7
C .1
x
是单项式 D .单项式可能不含有字母
【例2】多项式2332320.53x y x y y x ---是 次 项式,关于字母y 的最高次数项是 ,关于字母x 的最高次项的系数 ,把多项式按x 的降幂排列 。
【例3】已知单项式431
2
x y -的次数与多项式21228m a a b a b +++的次数相同,求m 的值。
【例4】若A 和B 都是五次多项式,则( )
A .A
B +一定是多项式 B .A B -一定是单项式
C .A B -是次数不高于5的整式
D .A B +是次数不低于5的整式
【例5】若m 、n 都是自然数,多项式222m n m n a b ++-的次数是( )
A .m
B .2n
C .2m n +
D .m 、2n 中较大的数
【例6】同时都含有字母a 、b 、c ,且系数为1的7次单项式共有( )个。
A .1
B .3
C .15
D .36
板块二 整式的加减
【例7】若2222m a b +与333
4
m n a b +--是同类项,则m n += 。
【例8】单项式2141
2
n a b --与283m m a b 是同类项,则100102(1)(1)n m +⋅-=( )
A .无法计算
B .1
4
C .4
D .1
【例9】若5233m n x y x y -与的和是单项式,则n m = 。
【例10】下列各式中去括号正确的是( )
A .()
222222a a b b a a b b --+=--+ B .()()
222222x y x y x y x y -+--+=-++- C .()22235235x x x x --=-+
D .()3232
413413a a a a a a ⎡⎤---+-=-+-+⎣⎦
【例11】已知222223223A x xy y B x xy y =-+=+-,,求(2)A B A --
例题精讲。