1.1 两个基本计数原理(2)

合集下载

两个基本计数原理加法原理和乘法原理

两个基本计数原理加法原理和乘法原理

两个基本计数原理加法原理和乘法原理两个基本计数原理:加法原理和乘法原理在我们日常生活和数学学习中,计数是一项非常重要的活动。

当我们需要计算完成某件事情的方法数时,就会用到两个基本的计数原理:加法原理和乘法原理。

这两个原理看似简单,但却在解决各种计数问题时发挥着关键作用。

先来说说加法原理。

加法原理指的是,如果完成一件事情有 n 类不同的方式,在第一类方式中有 m₁种不同的方法,在第二类方式中有m₂种不同的方法,……,在第 n 类方式中有 mₙ 种不同的方法,那么完成这件事情共有 N = m₁+ m₂+… + mₙ 种不同的方法。

举个简单的例子,假如你要从A 地去B 地,有两种交通方式可选,一是坐火车,有 3 趟不同的车次;二是坐汽车,有 2 趟不同的班车。

那么你从 A 地去 B 地一共有 3 + 2 = 5 种选择。

再比如,你周末想出去玩,有三个选择:去公园散步、去商场购物或者去电影院看电影。

去公园散步有 2 条不同的路线,去商场购物有 3 家不同的商场可去,去电影院看电影有 5 部不同的影片可选择。

那么你周末出去玩的方式就有 2 + 3 + 5 = 10 种。

加法原理的核心在于“分类”,每一类方法都是相互独立的,彼此之间没有交叉和重叠,最终将每一类的方法数相加就能得到总的方法数。

接下来谈谈乘法原理。

乘法原理是说,如果完成一件事情需要 n 个步骤,做第一步有 m₁种不同的方法,做第二步有 m₂种不同的方法,……,做第 n 步有 mₙ 种不同的方法,那么完成这件事情共有 N = m₁ × m₂ × … × mₙ 种不同的方法。

比如说,你要从你的家去一个朋友家,需要先坐公交车到地铁站,有 4 路公交车可选择;然后再从地铁站坐地铁到朋友家附近的站点,有 3 条地铁线路可选择;最后从地铁站走到朋友家,有 2 条不同的路可走。

那么你去朋友家的路线就有 4 × 3 × 2 = 24 种。

基本计数原理

基本计数原理

《基本计数原理》复习学案(一)2010.5知识点回顾(一)两个基本计数原理1.分类计数原理2.分步计数原理(二)排列组合1.排列数公式_________A =m n2.组合数公式_________C =m n3.组合数公式的两个重要的性质(三)二项式定理1.二项式展开式的通项2.二项式系数的性质例题分析(Ⅰ)两种计数原理应用例1: 书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书,(1)若从这些书中任取一本,有多少种不同的选法?(2) 若从这些书中取数学书、语文书、英语书各一本, 有多少种不同的选法?(3) 若从这些书中取不同科目的书两本, 有多少种不同的选法?变式1:四封信,投入三个不同的信箱,有多少种不同的投法?变式2:三封信,投入四个不同的信箱,有多少种不同的投法?变式3:三封信,投入四个不同的信箱,要求每个信箱最多投一封信,有多少种不同的投法?(Ⅱ)排数问题例2:用0,1,2,3,4,5六个数字组成无重复数字的五位数,分别求出下列各类数的个数(1)奇数;(2)偶数(3)比20300大的数;(4)被5整除的数(Ⅲ)排队问题例3:有5名男生,3名女生排成一排(1)若男生甲既不站在排头又不站在排尾,则有多少不同的排法?(2)若男生甲不站在排头,女生乙不站在排尾,则有多少不同的排法?(3)若女生全部站在一起,则有多少不同的排法?(4)若3名女生互不相邻,则有多少不同的排法?(5)若有且仅有两名女生相邻,则有多少不同的排法?(6)若甲乙两人必须排在一起,丙丁两人不能排在一起,则有多少不同的排法?(7)如果3名女生不全在一起, 有多少种不同的排法?(8)如果甲在乙左, 丙在乙右,顺序固定, 有多少种不同的排法?(Ⅳ)抽取分配问题例4:从4台甲型和5台乙型电视机中任取3台,其中至少有甲型和乙型各1台, 有多少种不同的取法?变式:从5男4女中选4位代表,其中至少2位男士,且至多2位女士,分到四个不同的工厂调查,不同的分配方法有多少种?(Ⅴ)分配分组问题例5:6本不同的书,按下列要求各有多少种不同的选法:(1)分给甲、乙、丙三人,每人2本;(2)分为三份,每份2本;(3)分为三份,一份1本,一份2本,一份3本;(4)分给甲、乙、丙三人,一人1本,一人2本,一人3本;(5)分给甲、乙、丙三人,每人至少1本。

两个基本原理-PPT课件

两个基本原理-PPT课件

例1、某班共有男生28名、女生20名,
从该班选出学生代表参加校学代会。
(1)若学校分配给该班1名代表,有多少种
不同的选法?
(2)
若学校分配给该班2名代表,且男女生代表
各1名,有多少种不同的 不同方法各有多少种?
A
B (1)
A
B
(2)
8
例3、为了确保电子信箱的安全,在注册
1.1 两个基本计数原理
1
问题一:从甲地到乙地,可以乘火车, 也可以乘汽车,一天中,火车有3班,汽车有 2班.那么一天中,乘坐这些交通工具从甲地 到乙地共有多少种不同的走法?
解:因为一天中乘火车有3种走法,乘汽车有2 种走法,每一种走法都可以从甲地到乙地,所 以共有 3+2=5 种不同的走法。
2
分类计数原理 完成一件事,有n类方 式,在第1类方式中有m1种不同的方法,在 第2类方式中有m2种不同的方法,…,在第 n类方式中有mn种不同的方法,那么完成这 件事共有:
例5、自然数2520有多少个正约数?
例6、书架上原来并排放着5本不同的书, 现要插入三本不同的书,那么不同的插法有 多少种?
15
时,通常要设置电子信箱密码。在某网站设
置的信箱中,
(1)
密码为4位,每位均为0到9这10个数字中的一
个数字,这样的密码共有多少个?(2)密码
为4位,每位均为0到9这10个数字中的一个,
或是从A到Z这26个英文字母中的1个。这样的
密码共有多少个?
(3)密码
为4到6位,每位均为0到9这10个数字中的一
个。这样的密码共有多少个?
9
大家学习辛苦了,还是要坚持
继续保持安静
10
例4、(1)4名同学选报跑步、跳高、跳 远三个项目,每人报一项,共有多少种报名 方法?

1.1两个基本原理(2)

1.1两个基本原理(2)

二、两个原理的联系、区别:
分类计数原理 分步计数原理
联系 都是研究完成一件事的不同方法的种数的问题
完成一件事,共有n类 完成一件事,共分n个 区别1 办法,关键词“分类” 步骤,关键词“分步”
每类办法相互独立, 各步骤中的方法相互依 每类方法都能独立地 存,只有各个步骤都完 区别2 完成这件事情 成才算完成这件事
三、例题分析
1.有386,486,586型电脑各一台,A、B、C、D四 名操作人员的技术等次各不相同,A、B会操作三种 型号的电脑,C不能操作586,而D只会操作386,今 从这四名操_________种. 2.某市拟成立一个由6名大学生组成的社会调查小组, 并准备将这6个名额分配给本市的3所大学,要求每 所大学都有学生参加,则不同的名额分配方法共有 _______种
1.1 两个基本计数原理(2)
一、复习回顾两个基本计数原理
分类计数原理:完成一件事,有n类方式,在第1 类方式中有m1种不同的方法,在第2类方式中有 m2种不同的方法,……,在第n类方式中有mn种 不同的方法,那么完成这件事共有 N=m1+m2+…+mn种不同的方法。 分步计数原理:完成一件事,需要分成n个步骤, 做第1步有m1种不同的方法,做第2步有m2种不 同的方法,……,做第n有mn种不同的方法,那 么完成这件事共有N=m1×m2×…×mn种不同的 方法。
三、例题分析
3.现要排一份5天的值班表,每天有一个人值班,共 有5个人,每个人都可以值多天班或不值班,但相邻 两天不准由同一个人值班,问此值班表共有多少种 不同的排法? 4.乘积(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5) 的展开式中,有___ 项。 5.1800的正约数个数为_______。 6.有四位老师在同一年级的4个班级中,各教一班的 数学,在数学考试时,要求每位老师均不在本班监 考,则安排监考的方法总数是________.

高二数学两个基本原理

高二数学两个基本原理

分类计数原理 完成一件事,有n类方 式,在第1类方式中有m1种不同的方法,在 第2类方式中有m2种不同的方法,…,在第 n类方式中有mn种不同的方法,那么完成这 件事共有:
N m1 m2 mn
种不同的方法。
分类计数原理又称为加法原理。
; / 少儿作文加盟

,使得收敛送终,尽其子道”夏五月,诏曰“父子之亲,夫妇之道,天性也。虽有患祸,犹蒙死而存之。诚爱结於心,仁厚之至也,岂能违之哉。自今,子首匿父母、妻匿夫、孙匿大父母,皆勿坐。其父母匿子、夫匿妻、大父母匿孙,罪殊死,皆上请廷尉以闻”立广川惠王孙文为广川王。秋七月, 大司马霍禹谋反。诏曰“乃者,东织室令史张赦使魏郡豪李竟报冠阳侯霍云谋为大逆,朕以大将军故,抑而不扬,冀其自新。今大司马博陆侯禹与母宣成侯夫人显及从昆弟冠阳侯云、乐平侯山、诸姊妹婿度辽将军范明友、长信少府邓广汉、中郎将任胜、骑都尉赵平、长安男子冯殷等谋为大逆。显前 又使女侍医淳于衍进药杀共哀后,谋毒太子,欲危宗庙。逆乱不道,咸伏其辜。诸为霍氏所诖误未发觉在吏者,皆赦除之”八月已酉,皇后霍氏废。九月,诏曰“朕惟百姓失职不赡,遣使者循行郡国问民所疾苦。吏或营私烦扰,不顾厥咎,朕甚闵之。今年郡国颇被水灾,已振贷。盐,民之食,而贾 咸贵,众庶重困。其减天下盐贾”又曰“令甲,死者不可生,刑者不可息。此先帝之所重,而吏未称。今系者或以掠辜若饑寒瘐死狱中,何用心逆人道也。朕甚痛之。其令郡国岁上系囚以掠笞若瘐死者所坐名、县、爵、里,丞相、御史课殿最以闻”十二月,清河王年有罪,废迁房陵。元康元年春, 以杜东原上为初陵,更名杜县为杜陵。徙丞相、将军、列侯、吏二千石、訾百万者杜陵。三月,诏曰“乃者凤皇集泰山、陈留,甘露降未央宫。朕未能章先帝休烈,协宁百姓,承天顺地,调序四时,获蒙嘉瑞,赐兹祉福,夙夜兢兢,靡有骄色,内省匪解,永惟罔极。《书》不云乎

两个基本计数原理教案

两个基本计数原理教案

两个基本计数原理教案第一章:概述1.1 计数原理的定义解释计数原理的概念和重要性强调计数原理在数学和实际生活中的应用1.2 两个基本计数原理介绍两个基本计数原理:排列原理和组合原理解释排列原理:从n个不同元素中取出m(m≤n)个元素的所有排列方式的个数解释组合原理:从n个不同元素中取出m(m≤n)个元素的所有组合方式的个数第二章:排列原理2.1 排列原理的公式介绍排列公式:P(n, m) = n! / (n-m)!解释排列公式的含义和推导过程2.2 排列原理的应用举例说明排列原理在实际问题中的应用练习题:根据给定的问题,运用排列原理计算不同的排列方式个数第三章:组合原理3.1 组合原理的公式介绍组合公式:C(n, m) = n! / [m! (n-m)!]解释组合公式的含义和推导过程3.2 组合原理的应用举例说明组合原理在实际问题中的应用练习题:根据给定的问题,运用组合原理计算不同的组合方式个数第四章:排列与组合的综合应用4.1 排列与组合的区别与联系解释排列与组合的概念及其区别强调排列与组合在解决实际问题中的综合应用4.2 综合应用举例举例说明排列与组合在实际问题中的综合应用练习题:根据给定的问题,运用排列与组合原理计算不同的方式个数第五章:练习与拓展5.1 练习题提供一系列练习题,巩固排列与组合原理的应用鼓励学生自主思考,提高解题能力5.2 拓展与应用探讨排列与组合原理在其他领域的应用鼓励学生发现生活中的数学问题,运用排列与组合原理解决第六章:排列与组合在概率论中的应用6.1 排列与组合在概率计算中的作用解释排列与组合在概率计算中的重要性介绍排列与组合在计算事件概率时的应用6.2 具体案例分析通过具体案例,展示排列与组合在概率计算中的应用练习题:根据给定的概率问题,运用排列与组合原理进行计算第七章:排列与组合在日常生活中的应用7.1 排列与组合在日常生活中的实例探讨排列与组合原理在日常生活中的应用实例强调排列与组合原理在解决实际问题中的重要性7.2 练习题提供一系列与日常生活相关的练习题,运用排列与组合原理进行解答鼓励学生自主思考,提高解决实际问题的能力第八章:排列与组合在算法与编程中的应用解释排列与组合在算法与编程中的应用介绍排列与组合在解决算法与编程问题时的作用第八章:排列与组合在算法与编程中的应用8.1 排列与组合在算法中的应用解释排列与组合在算法中的重要性介绍排列与组合在算法设计中的应用实例8.2 排列与组合在编程语言中的应用探讨排列与组合在编程语言中的应用实例强调排列与组合在编程问题解决中的重要性第九章:排列与组合在数学竞赛中的应用9.1 排列与组合在数学竞赛中的题目特点分析数学竞赛中排列与组合题目的特点解释排列与组合在数学竞赛中的重要性9.2 练习题提供一系列数学竞赛中的排列与组合题目,进行练习鼓励学生自主思考,提高解决竞赛题目的能力第十章:总结与提高10.1 排列与组合原理的总结回顾本教案的主要内容,总结排列与组合原理的重要性和应用强调排列与组合原理在数学和实际生活中的重要性10.2 提高题与研究性学习提供一系列提高题,鼓励学生深入研究排列与组合原理鼓励学生开展研究性学习,探索排列与组合原理在其他领域的应用重点和难点解析六、排列与组合在概率论中的应用重点:排列与组合在概率计算中的作用,具体案例分析难点:理解排列与组合在概率计算中的应用,以及如何将实际问题转化为概率问题七、排列与组合在日常生活中的应用重点:排列与组合在日常生活中的实例,练习题难点:将抽象的排列与组合原理应用到具体的生活情境中,提高解决实际问题的能力八、排列与组合在算法与编程中的应用重点:排列与组合在算法与编程中的应用,练习题难点:理解算法与编程中排列与组合的概念,以及在实际编程中应用这些概念九、排列与组合在数学竞赛中的应用重点:排列与组合在数学竞赛中的题目特点,练习题难点:解决数学竞赛中的排列与组合问题,需要学生具备较高的逻辑思维和解题能力十、总结与提高重点:排列与组合原理的总结,提高题与研究性学习难点:巩固所学知识,进一步探索排列与组合原理在其他领域的应用全文总结与概括:本教案主要介绍了排列与组合两个基本计数原理,通过讲解排列与组合的概念、公式及其在概率论、日常生活、算法与编程、数学竞赛等领域的应用,使学生能够理解并掌握这两个基本计数原理。

最新人教版选修2-3高二数学1.1 2 基本计数原理和排列组合教学设计

最新人教版选修2-3高二数学1.1 2 基本计数原理和排列组合教学设计

一本周教内容:选修2—3 基本计数原理和排列组合二教目标和要求1 掌握分类加法计数原理和分步乘法计数原理,并能用两个计数原理解决一些简单的问题。

2 理解排列和组合的概念,能利用计数原理推导排列数公式,组合数公式,并解决简单的实际问题。

3 让生体会思想与方法,培养生分析问题,解决问题的能力,激发生习的兴趣。

注意问题的转化,分类讨论,注重数形结合,会从不同的切入点解决问题。

三重点和难点重点:两个基本计数原理的内容;排列和组合的定义,排列数和组合数公式及其应用难点:两个计数原理的应用和应用排列组合数公式解决实际的问题四知识要点解析[]1 两个基本计数原理(1)分类加法计数原理:做一件事情,完成它有类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的办法……在第类办法中有m种不同的方法,那么完成这件事情共有N=m1+m2+…+m种不同的方法(2)分步乘法计数原理:做一件事情,完成它需要分成个步骤,做第一个步骤有m1种不同的方法,做第二个步骤有m2种不同的办法……做第个步骤有m种不同的方法,那么完成这件事情共有N=m1×m2×…×m种不同的方法说明:(1)两个基本计数原理是解决计数问题最基本的理论根据,它们分别给出了用两种不同方式(分类和分步)完成一件事情的方法总数的计算方法(2)考虑用哪个计数原理,关键是看完成一件事情是否能独立完成,决定是分类还是分步。

如果完成一件事情有类办法,每类办法都能独立完成,则用分类加法计数原理;如果完成一件事情,需要分成个步骤,各个步骤都是不可缺少的,需要依次完成所有步骤,才能完成这件事情,则用分步乘法计数原理(3)在解决具体问题,要弄清是“分步”,还是“分类”,还要弄清“分步”或者“分类”的标准是什么,注意分类,分步不能重复,不能遗漏2 排列问题(1)排列的定义:一般的,从个不同的元素中任取m (m ≤)个元素,按照一定的顺序排成一列,叫做从个不同元素中取出m 个元素的一个排列说明:①定义中包含两个基本内容:一是“取出元素”,二是“按一定顺序排列”②一个排列就是完成一件事情的一种方法③不同的排列就是完成一件事情的不同方法④两个排列相同,需要满足两个条件:一是元素相同,二是顺序相同⑤从个不同的元素全部取出的一个排列,叫做个不同元素的一个全排列,记作n n A(2)排列数的定义:从个不同的元素中任取m (m ≤)个元素的所有排列的个数,叫做从个不同元素中任取m 个元素的排列数。

1.1(2)第2课时 两个计数原理及其综合应用

1.1(2)第2课时 两个计数原理及其综合应用

当A与E种植相同植物或不同植物时F的种法有区别,不全是2种. [正解] 分3类考虑,第一类:A,C,E种同一种植物,有4种种法,当A,C,E 种好后,B,D,F从余下3种植物中选1种,各有3种种法,一共有4×3×3×3= 108(种)种法; 第二类:A,C,E种两种植物,有12种种法,当A,C种同一种植物时,B有3 种种法,D,F有2种种法,若C,E和E,A种同一种植物,种法相同,因此,共 有12×3×(3×2×2)=432(种)种法;
【变式1】 从1~20共20个整数中任取两个相加,使其和为偶数 的不同取法共有多少种? 解 第一类:两个偶数相加,由分步乘法计数原理,共有
10×9 =45(种)不同的取法; 2 第二类:两个奇数相加,由分步乘法计数原理,共有 =45(种)不同的取法. 由分类加法计数原理得,共有45+45=90(种)不同取法. 10×9 2

分别用 a,b,c 代表 3 种作物,先安排第一块试验田,有 3
种方法, 不妨设种 a, 再安排第二块试验田种 b 或 c, 有 2 种方法, 不妨设种 b,安排第三块试验田也有 2 种方法,种 c 或 a. (1) 若第三块试验田种 c:
a b c
则第四、五块田分别有 2 种种法,共有 2×2 种种法.
名师点睛 应用两个计数原理时的注意事项 (1)要弄清问题中的“一件事”的含义,即知道做“一件事”,或完成一个“事 件”在每个题中的具体所指. (2)必须明确完成题中所指“事件”是“分类”完成还是“分步”完成.分类用 加法,分步用乘法.
(3)对于较为复杂的既需分步又需分类的问题,应该先弄清分类与分步的先后顺 序,如果先分类再分步,则整体用分类加法计数原理,每一类中再用分步乘法 计数原理;如果先分步再分类,则整体用分步乘法计数原理,每一步中再用分 类加法计数原理. (4)对题目中的特殊元素(位置)可优先考虑,即优先考虑有限制条件的元素(位置 ),然后再考虑其他元素(位置).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学内容
§1.1 两个基本计数原理(2)
教学目标要求(1)掌握分类计数原理与分步计数原理,并能根据具体问题的特征,选择分类加法原理或分步乘法原理解决一些简单的实际问题;
(2)通过对分类计数原理与分步计数原理的理解和运用,提高学生分析问题和解
决问题的能力,开发学生的逻辑思维能力.
教学重点分类计数原理与分步计数原理的区别和综合应用.
教学难点分类计数原理与分步计数原理的区别和综合应用.
教学方法和教具
教师主导活动学生主体活动一.问题情境
复习回顾:1.两个基本计数原理;
2.练习:
(1)从2,3,5,7,11中每次选出两个不同的数作为分数的分子、
分母,则可产生不同的分数的个数是,其中真分数的
个数是.
(2)①用0,1,2,……,9可以组成多少个8位号码;
②用0,1,2,……,9可以组成多少个8位整数;
③用0,1,2,……,9可以组成多少个无重复数字的4位整数;
④用0,1,2,……,9可以组成多少个有重复数字的4位整数;
⑤用0,1,2,……,9可以组成多少个无重复数字的4位奇数.
二.数学运用
1.例题:
例1 用4种不同颜色给如图所示的地图上色,要求相邻两块涂不同
的颜色,共有多少种不同的涂法?
分析完成这件事可分四个步骤,不妨
设①、②、③、④的次序填涂.
解:第一步,填涂①,有4种不同颜色
可选用;
第二步,填涂②,除①所用过的颜色外,
还有3种不同颜
色可选用;
第三步,填涂③,除①、②用过的2种
颜色外,还有2种
不同颜色可选用;
第四步,填涂④,除②、③用过的2种颜色外,还有2种不同颜色可
选用.
⨯⨯⨯=种不同的方法,即填涂这张
所以,完成这件事共有432248
地图共有48种方法.
答共有48种不同的涂法.
思考:如果按①、②、④、③的次序填涂,怎样解决这个问题?
例2 由1,2,3,4可以组成多少个自然数(数字可以重复,最多只能是四位数)?
分析:按自然数的位数多少,可以分为以下四类:一位,二位,三位,四位的自然数,而在每一类中,又可以分成几步进行.
解:组成的自然数可以分为以下四类:第一类:一位自然数,共有4个;
第二类:二位自然数,又可分两步来完成.先取出十位上的数字,再取出个位上的数字,共有4416
⨯=(个);
第三类:三位自然数,又可分三步来完成.每一位都可以从4个不同的数字中任取一个,共有44464
⨯⨯=(个);
第四类:四位自然数,又可分四步来完成.每一位都可以从4个不同的数字中任取一个,共有44256
=(个).
由分类计数原理,可以组成的不同自然数的个数为41664256340
+++=(个).
[变式延伸] 从1到200的这200个自然数中,各个位数上都不含数字8的共有多少个?(162)
说明:(1)在同一题目中牵涉两个原理时,必须搞清是先“分类”,还是先“分步”;“分类”和“分步”的标准又是什么?
(2)本题是先分类,后分步,按自然数的位数“分类”,按组成数的过程“分步”.
例3 在1到20共20个整数中任取两个数相加,使其和为偶数的不同取法共有多少种?
解:第一类:两个偶数相加,由分步计数原理,共有10990
⨯=(种)不同的取法,由于两个偶数相加时,与次序无关,即2+4和4+2是同
一个数字,因此适合题意的不同取法总数共有90
45
2
=(种);
第二类:两个奇数相加,由分步计数原理,共有109
45
2

=(种)
不同的取法.
由分类计数原理,共有45+45=90(种)不同取法.
[变式延伸]在1和20共20个整数中任取两个相加,使其和大于20的不同取法共有多少种?答案:100
例4 某艺术组有9人,每人至少会钢琴和小号中的一种乐器,其中7人会钢琴,3人会小号,从中选出会钢琴与会小号的各1人,有多少种不同的选法?
解:由题意可知,在艺术组9人中,有且仅有一人既会钢琴又会小号(把该人称为“多面手”),只会钢琴的有6人,只会小号的有2人,把会钢琴、小号各1人的选法分为两类:
第一类:多面手入选,另一人只需从其他8人中任选一个,故这类选法共有8种.
第二类:多面手不入选,则会钢琴者只能从6个只会钢琴的人中选出,会小号的1人也只能从只会小号的 2人中选出,放这类选法共有6×2=12种,
故共有8+12=20种不同的选法.
2.练习:用1,2,3可以写出多少个小于1000的正整数?
五.回顾小结:
分类计数原理与分步计数原理的综合应用
六.课外作业:
P习题1.1 第5,6,7,8,9,10,11题
课本9
板书设计
教后札记。

相关文档
最新文档