(完整word版)高中数学中的函数图象变换及练习题.doc
(word版)高中数学三角函数y=Asin(ωx+φ)图像变换练习题

三角函数y =Asin(ωx +φ)图像练习题一、单选题1. 函数f(x)=2sin(ωx +φ)(ω>0,−π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是( )A. 2,−π3 B. 2,−π6 C. 4,−π6 D. 4,π32. 为了得到函数y =sin (2x +π3)的图象,只需要把函数y =sinx 的图象上( )A. 各点的横坐标缩短到原来的12,再向左平移π3个单位长度 B. 各点的横坐标缩短到原来的12,再向左平移π6个单位长度 C. 各点的横坐标伸长到原来的2倍,再向左平移π3个单位长度 D. 各点的横坐标伸长到原来的2倍,再向左平移π6个单位长度3. 要得到函数y =sinx +cosx 的图象,只需把函数y =√2sin (x −π12)的图象( )A. 向左平移π3个单位长度 B. 向右平移π3个单位长度 C. 向左平移13个单位长度D. 向右平移13个单位长度4. 要得到函数y =3sin (2x +π4)的图象,只需将y =3sin2x 的图象( )A. 向左平移π8个单位 B. 向右平移π8个单位 C. 向左平移π4个单位D. 向右平移π4个单位5. 已知函数f(x)=Msin(ωx +φ)(M >0,ω>0,|φ|<π2)在半个周期内的图象如图所示,则函数f(x)的解析式为( )A. f(x)=2sin(x +π6) B. f(x)=2sin(2x −π6)C. f(x)=2sin(x−π6)D. f(x)=2sin(2x+π6)6.为得到函数y=cos(x+π3)的图象,只需将函数y=sinx的图象()A. 向左平移π6个单位长度 B. 向右平移π6个单位长度C. 向左平移5π6个单位长度 D. 向右平移5π6个单位长度7.函数y=Asin(ωx+φ)在一个周期上的图象如图所示,则函数的解析式是()A. y=2sin(x2−23π)B. y=2sin(x2+43π)C. y=2sin(x2+23π)D. y=2sin(x2−π3)8.设ω>0,函数y=sin(ωx+π3)+2的图象向右平移4π3个单位长度后与原图象重合,则ω的最小值是().A. 23B. 43C. 32D. 39.如图所示,函数f(x)=Asin(2x+φ)(其中A>0,|φ|<π2)的图象过点(0,√3),则f(x)的图象的一个对称中心是()A. (−π3,0)B. (−π6,0)C. (π6,0)D. (π4,0)10.将函数y=sinωx(ω>0)的图象向左平移π6个单位长度,平移后的图象如图所示,则平移后的图象所对应的函数解析式为()A. y=sin(x+π6)B. y=sin(x−π6)C. y=sin(2x+π3)D. y=sin(2x−π3)11.将函数f(x)=sin(x+φ)图象上所有点的横坐标变为原来的1ω(ω>1)(纵坐标不变),得函数g(x)的图象.若g(π6)=1,g(2π3)=0,且函数g(x)在(π6,π2)上具有单调性,则ω的值为()A. 2B. 3C. 5D. 712.设函数的最小正周期为π,则下列说法正确的是()A. 函数f(x)的图象关于直线x=π3对称B. 函数f(x)的图象关于点(π12,0)对称C. 函数f(x)在(−5π12,π12)上单调递减D. 将函数f(x)的图象向右平移5π12个单位,得到的新函数是偶函数13.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<π2),其图象相邻的最高点之间的距离为π,将函数y=f(x)的图象向左平移π12个单位长度后得到函数g(x)的图象,且g(x)为奇函数,则()A. f(x)的图象关于点(π6,0)对称 B. f(x)的图象关于点(−π6,0)对称C. f(x)在(−π6,π3)上单调递增 D. f(x)在(−2π3,−π6)上单调递增14.已知曲线C1:y=cosx,C2:y=sin(2x+2π3),则下面结论正确的是()A. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C. 把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D. 把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C215.已知曲线y=sin(2x+π6)向左平移φ(φ>0)个单位,得到的曲线y=g(x)经过点(−π12,1),则()A. 函数y=g(x)的最小正周期T=π2B. 函数y=g(x)在[11π12,17π12]上单调递增C. 曲线y=g(x)关于直线x=π6对称D. 曲线y=g(x)关于点(2π3,0)对称16.若函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤π)的图象如图所示,则函数y=f(x)的解析式为()A. y=32sin(2x+π6)B. y=32sin(2x−π6)C. y=32sin(2x+π3)D. y=32sin(2x−π3)二、多选题17.已知函数f(x)=sin(2x+π3),将其图象向右平移φ(φ>0)个单位长度后得到函数g(x)的图象,若函数g(x)为奇函数,则φ的值可以为()A. π12B. π6C. π3D. 2π318.为了得到函数y=cos(2x+π4)的图象,只要把函数y=cosx图象上所有的点()A. 向左平移π4个单位长度,再将横坐标变为原来的2倍B. 向左平移π4个单位长度,再将横坐标变为原来的12倍C. 横坐标变为原来的12倍,再向左平移π8个单位长度 D. 横坐标变为原来的12倍,再向左平移π4个单位长度19. 已知函数f(x)=2cos 2ωx +√3sin2ωx −1(ω>0)的最小正周期为π,则下列说法正确的有( )A. ω=2B. 函数f(x)在[0,π6]上为增函数C. 直线x =π3是函数y =f(x)图象的一条对称轴 D. 点(512π,0)是函数y =f(x)图象的一个对称中心20. 将函数f(x)的图象向右平移π6个单位长度,再将所得函数图象上的所有点的横坐标缩短到原来的23,得到函数g(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π2)的图象.已知函数g(x)的部分图象如图所示,则下列关于函数f(x)的说法正确的是( )A. f(x)的最小正周期为π,最大值为2B. f(x)的图象关于点(π6,0)中心对称 C. f(x)的图象关于直线x =π6对称 D. f(x)在区间[π6,π3]上单调递减第II 卷(非选择题)三、解答题21. 已知函数f(x)=4cos xsin (x +π6)−1.(1)求f(x)的最小正周期;(2)求f(x)在区间[−π6,π4]上的最大值和最小值.22.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,−π2<φ<π2)的部分图象如图所示.(1)求函数f(x)的解析式;(2)若x∈[−53,53],求函数f(x)的值域.23.已知函数f(x)=2√3sinxcosx−cos(2x+π3)−cos(2x−π3).(Ⅰ)求f(π2)的值.(Ⅱ)求函数f(x)在区间[−π12,5π12]上的最大值和最小值.24.已知函数y=12sin (2x+π6),x∈R.(1)求它的振幅、周期、初相;(2)用“五点法”作出它在一个周期内的简图;(3)该函数的图象可由y=sin x(x∈R)的图象经过怎样的平移和伸缩变换得到⋅25.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π2)的部分图像如图所示:(1)求函数f(x)的解析式;(2)将函数y=f(x)的图像上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y=g(x)的图像,求函数y=g(x)在区间[0,π4]上的最大值及函数取最大值时相应的x 值.26.已知函数f(x)=cos2x+sin(2x−π6).(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)当x∈[0,π]时,求函数f(x)的单调递增区间.27.已知函数f(x)=2cos(x−π3)+2sin(3π2−x).(1)求函数f(x)的单调递减区间;(2)求函数f(x)的最大值,并求f(x)取得最大值时的x的取值集合;(3)若f(x)=65,求cos(2x−π3)的值.28.已知函数f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<π)的部分图像如图所示.(I)求f(x)的解析式;(II)在△ABC中,角A、B、C的对边分别为a,b,c,a=1,c=2,f(A)=1,求b的值.29.已知函数f(x)=√3sinxcosx+sin2x−12.(1)求f(x)的单调递增区间;(2)若A∈(π12,π3),f(A)=13,求cos(2A−5π6)的值.30.已知函数f(x)=4sinxcos(x+π3)+√3.(1)求函数f(x)的最小正周期及单调增区间;(2)求函数f(x)在区间[−π4,π6]上的值域和取得最大值时相应的x的值.答案和解析1.【答案】A本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,属于基础题.结合图象由周期求出ω,由特殊点的坐标求出φ的值.【解答】解:由题意可知T=2×(11π12−5π12)=π,∴ω=2,x=5π12时,函数取得最大值2,可得:2sin(2×5π12+φ)=2,,即,又∵−π2<φ<π2,所以φ=−π3.故选A.2.【答案】B本题考查了函数y=Asin(ωx+φ)的图象的伸缩平移,属于基础题.根据函数图象伸缩平移变换法则即可得到答案.【解答】解:y=sinx图象上各点的横坐标缩短到原来的12,得到y=sin2x的图象,再向左平移π6个单位长度得到y=sin[2(x+π6)]=sin(2x+π3)的图象,故选B.3.【答案】A【分析】本题主要考查函数y=Asin(ωx+φ)的图象的平移变换,辅助角公式,属于基础题.由辅助角公式,根据函数y=Asin(ωx+φ)的图象的平移变换可得答案.【解答】解:y =sinx +cosx,则要得到函数y =sinx +cosx 的图象,只需把函数y =√2sin (x −π12)的图象向左平移π3个单位长度. 故选A .4.【答案】A本题考查函数y =Asin(ωx +φ)的图象变换规律,属于基础题.由y =3sin (2x +π4)=3sin [2(x +π8)],根据左加右减的平移原理,即可得到结果. 【解答】解:y =3sin (2x +π4)=3sin [2(x +π8)],因此将函数y =3sin2x 的图象向左平移π8个单位,即可得到函数y =3sin (2x +π4)的图象. 故选A .5.【答案】A【分析】本题主要考查由函数y =Asin(ωx +φ)的部分图象求解析式,属于基础题. 由函数的最值求出A ,由周期求出ω,由五点法作图求出φ的值.【解答】解:由图象知M =2. 设函数f(x)的最小正周期为T , 则14T =π3−(−π6)=π2,可知T =2π,ω=2πT=1,将(π3,2)代入f(x)的解析式得sin(π3+φ)=1, 又|φ|<π2,可得φ=π6,故函数f(x)的解析式为f(x)=2sin(x +π6). 故选A .6.【答案】C本题考查了函数y =Asin(ωx +φ)的图象与性质、函数图象的变换的相关知识,属于基础题.根据函数y=Asin(ωx+φ)的图象变换的规则可得结论.【解答】解:故选C.7.【答案】C本题考查三角函数y=Asin(ωx+φ)的图象和性质,涉及诱导公式应用,属于基础题.依题意,根据图象求得A=2,ω=12,根据五点作图法得进而求得结果.【解答】解:由图知A=2,T2=8π3−2π3=2π=πω,ω=12,y=2sin(12x+φ),根据五点作图法知,代入得,,所以,k∈Z,故选C.8.【答案】C本题考查函数y=Asin(ωx+φ)的图象和性质,属于基础题.函数y=sin(ωx+π3)+2的图象向右平移4π3个单位长度后与原图象重合,可判断出4π3是此函数周期的整数倍,由此能求出ω的表达式,判断出它的最小值.【解答】解:由函数的图象向右平移4π3个单位长度后与原图象重合,得4π3是此函数周期的整数倍.又ω>0,∴2πω⋅k=4π3(k∈Z,且k>0),∴ω=3k2(k∈Z,且k>0),∴ωmin=32.故选C.9.【答案】B【解答】解:由函数图象可知A=2,由于图象过点(0,√3),可得2sinφ=√3,即sinφ=√32,由于|φ|<π2,解得φ=π3,即有f(x)=2sin(2x+π3).由2x+π3=kπ,k∈Z,解得x=kπ2−π6,k∈Z,故f(x)的图象的对称中心是(kπ2−π6,0),k∈Z,当k=0时,f(x)的图象的一个对称中心是(−π6,0).故选B.10.【答案】C本题考查三角函数图像的平移变换,函数的解析式,属于基础题.由三角函数图像的平移得为,代入点,得,得ω=2,从而得解析式.【解答】解:函数y=sinωx(ω>0)的图象向左平移π6个单位长度,则平移后的图象所对应的函数解析式为,代入点,得,,k∈Z,当k=0时,ω=2,即解析式为y=sin(2x+π3).故选C.11.【答案】B本题考查函数y=Asin(ωx+φ)的图象与性质,属于中档题.根据题意得出,得出ω=2n−1(n∈N∗),由函数g(x)在(π6,π2)上具有单调性,得出π2−π6⩽T2=πω,即可求出结果.【解答】解:由题意得,g(x)=sin(ωx+φ),最小正周期T=2πω,若g(π6)=1,g(2π3)=0,,∴ω=2n−1(n∈N∗),∵函数g(x)在(π6,π2)上具有单调性,∴π2−π6⩽T2=πω,解得ω⩽3,又ω>1,ω=2n−1(n∈N∗),∴ω=3.故选B.12.【答案】D本题考查函数y=Asin(ωx+φ)的图象与性质,正弦、余弦函数的图象与性质,属于中档题.先根据函数f(x)=12sin(ωx+π3)(ω>0)的最小正周期为π,求出ω=2,再根据选项逐一判断即可.【解答】解:∵函数f(x)=12sin(ωx+π3)(ω>0)的最小正周期为π,∴2πω=π,解得ω=2,则f(x)=12sin(2x+π3),对于A.当x=π3时,f(π3)=12sin(2×π3+π3)=0,∴函数f(x)的图象关于点(π3,0)对称,故A不正确;对于B.当x=π12时,f(π12)=12sin(2×π12+π3)=12,∴函数f(x)的图象关于直线x=π12对称,故B不正确;对于C.f(x)=12sin(2x+π3)的单调递减区间满足:2kπ+π2≤2x+π3≤2kπ+3π2,k∈Z,解得kπ+π12≤x≤kπ+7π12,k∈Z,k=−1时不符合,故C不正确;对于D.将函数f(x)的图象向右平移5π12个单位,得到新函数为g(x)=f(x−5π12)=1 2sin(2x−π2)=−12cos2x,是偶函数,故D正确.故选D.13.【答案】C本题考查三角函数的图象的性质,属一般题.根据题意求出函数解析式,然后验证对称性和单调性.【解答】解:f(x)=2sin(ωx +φ)(ω>0,|φ|<π2),其图象相邻最高点之间距离为,ω=2, 所以将函数y =f(x)的向左平移π12个单位长度后,,因为g(x)为奇函数, 所以,则,则,当,,当,,故A ,B 错误;当x ∈(−π6,π3)时,,所以f(x)在(−π6,π3)单调递增,故C 正确;当x ∈(−2π3,−π6)时,,所以f(x)在(−2π3,−π6)单调递减,故D 错误; 故选C .14.【答案】D本题考查三角函数的图象变换、诱导公式的应用. 利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变, 得到函数y =cos2x 图象,再把得到的曲线向左平移π12个单位长度, 得到函数y =cos2(x +π12)=cos(2x +π6) =sin(2x +2π3)的图象,即曲线C 2,故选D .15.【答案】D本题主要考查函数y =Asin(ωx +φ)的图象变换规律,三角函数的图象和性质,属于基础题.利用函数y =Asin(ωx +φ)的图象变换规律求得g(x)的解析式,再利用余弦函数的图象和性质,可得结论.【解答】解:把曲线y=sin(2x+π6)向左平移φ(φ>0)个单位,得到的曲线y=g(x)=sin(2x+2φ+π6),由于所得曲线经过点(−π12,1),∴sin(−π6+2φ+π6)=sin2φ=1,,,∵φ>0,,,,,故g(x)=cos(2x+π6)的最小正周期为2π2=π,故A错误;在[11π12,17π12]上,2x+π6∈[2π,3π],故函数y=g(x)在[11π12,17π12]上单调递减,故B错误;当x=π6时,g(x)=0,故g(x)的图象关于点(π6,0)对称,故C错误;当x=2π3时,g(x)=0,故g(x)的图象关于点(2π3,0)对称,故D正确,故选:D.16.【答案】D由图象求y=Asin(ωx+φ)(A>0,ω>0)解析式的方法;(1)A可由图象上最高点和最低点的纵坐标确定;(2)ω可由图象上最高点与最低点的横坐标确定,先求出最小正周期T,再由T=2πω求出ω;(3)φ可以由某一点处的函数值求得,要注意φ的范围.【解答】解:设f(x)的最小正周期为T,则12T=2π3−π6=π2,T=π,∴ω=2πT =2.又由图象可得A=32,∴f(x)=32sin(2x+φ).∵f(5π12)=32sin(2×5π12+φ)=32,∴5π6+φ=2kπ+π2,k∈Z,即φ=2kπ−π3,k∈Z,又|φ|≤π,∴φ=−π3,∴y=f(x)=32sin(2x−π3).故选D.17.【答案】BD【解析】【分析】本题考查了函数y=Asin(ωx+φ)的图象与性质的相关知识,试题难度较易由题意将函数f(x)图象向右平移φ(φ>0)个单位长度后,得到的图象对应的解析式g(x),又函数g(x)为奇函数,即可得出φ的值【解答】解:将函数f(x)图象向右平移φ(φ>0)个单位长度后,得到的图象对应的解析式为g(x)=sin[2(x−φ)+π3]=sin(2x−2φ+π3).由g(x)为奇函数可得−2φ+π3=kπ(k∈Z),故φ=π6−kπ2(k∈Z),又φ>0,结合选项,所以φ的值可以为π6,23π.故应选BD.18.【答案】BC【分析】本题考查函数y=Asin(ωx+φ)的图象与性质,函数图象的平移伸缩变换,属于基础题.依据函数y=Asin(ωx+φ)的图象平移伸缩变换的规则逐一判定即可.【解答】解:对于A,把函数y=cosx图象上所有的点向左平移π4个单位长度,可得函数,再将横坐标变为原来的2倍,可得函数,故A错误;对于B,把函数y=cosx图象上所有的点向左平移π4个单位长度,可得函数,再将横坐标变为原来的12倍,可得函数,故B正确;对于C,把函数y=cosx图象上所有的点横坐标变为原来的12倍,可得函数y=cos 2x,再向左平移π8个单位长度,可得函数,故C正确;对于D,把函数y=cosx图象上所有的点横坐标变为原来的12倍,可得函数y=cos 2x,再向左平移π4个单位长度,可得函数,故D错误.故选BC.19.【答案】BD本题考查三角函数的性质应用,考查两角和与差的三角函数公式,辅助角公式及二倍角公式应用,属基础题.依题意,根据两角和与差的三角公式及二倍角公式化简函数,再根据三角函数的性质求解即可.【解答】解:,因最小正周期为π得ω=1,故A错误,当时,,得函数f(x)在[0,π6]上为增函数,故B正确;当,,所以直线x=π3不是函数y=f(x)图象的一条对称轴,故C 错误;当,,得点(512π,0)是函数y=f(x)图象的一个对称中心,故D正确;故选BD.20.【答案】ACD本题考查三角函数的图象与性质,涉及正弦函数图象与性质的应用,属于中档题.先由函数图象得出g(x)的解析式,再由函数图象的变换得出f(x)的解析式,借助正弦函数的图象与性质得出答案即可.【解答】解:由图可知,A=2,T=4×(2π9−π18)=2π3,∴ω=2πT=3,又由g(2π9)=2,可得2π9×3+φ=π2+2kπ(k∈Z),且lφ|<π2,∴φ=−π6,∴g(x)=2sin(3x −π6),将函数g(x)的图象上所有点的横坐标伸长到原来的32,可得函数,再将函数图象向左平移π6个单位长度,得到函数,∴f(x)=2sin(2x +π6),∴f(x)的最小正周期为π,最大值为2,A 正确. 令2x +π6=kπ,k ∈Z ,得,∴函数f(x)图象的对称中心为(kπ2−π12,0)(k ∈Z), 由kπ2−π12=π6,得k =12,不符合k ∈Z ,B 错误; 对于选项C ,令2x +π6=π2+kπ(k ∈Z),得x =π6+kπ2(k ∈Z),∴函数f(x)图象的对称轴为直线x =π6+kπ2(k ∈Z),当k =0时,x =π6,故C 正确;当x ∈[π6,π3]时,2x +π6∈[π2,5π6],∴f(x)在区间[π6,π3]上单调递减,D 正确. 故选ACD .21.【答案】解:(1)因为f(x)=4cos xsin (x +π6)−1=4cos x (√32sin x +12cos x)−1=√3sin 2x +2cos 2x −1 =√3sin 2x +cos 2x=2sin (2x +π6), 所以f(x)的最小正周期为π; (2)因为−π6≤x ≤π4, 所以−π6≤2x +π6≤2π3.故当2x +π6=π2,即x =π6时,f(x)取得最大值2; 当2x +π6=−π6,即x =−π6时,f(x)取得最小值−1.【解析】本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,属于中档题.(1)利用二倍角和两角和与差以及辅助角公式将函数化为y=Asin(ωx+φ)的形式,即可求出函数的最小正周期;(2)先根据x的取值范围求得2x+π6的范围,再由正弦函数的性质即可求出函数的最大值和最小值.22.【答案】解:(1)由图象知函数的最大值为1,即A=1,T2=3−(−1)=4,即周期T=8,即2πω=8,得ω=π4,则f(x)=sin(π4x+φ),由五点对应法得π4×1+φ=π2,得φ=π4,即f(x)=sin(π4x+π4).(2)若x∈[−53,53 ],则π4x+π4∈[−π6,2π3],∴当π4x+π4=−π6时,即x=−53时,f(x)最小,最小值为f(−53)=−12,当π4x+π4=π2时,即x=1时,f(x)最大,最大值为f(1)=1,∴f(x)的值域为[−12,1].【解析】本题主要考查三角函数的图象和性质,利用图象法求出函数的解析式以及结合三角函数的最值性质是解决本题的关键.难度不大.(1)根据函数图象先求出A和周期,结合周期公式求出ω,利用五点对应法求出φ即可求出函数的解析式.(2)求出角的范围,结合三角函数的最值关系进行求解即可.23.【答案】解:(Ⅰ;(Ⅱ)f(x)=2√3sinxcosx−cos(2x+π3)−cos(2x−π3)=√3sin2x−12cos2x+√32sin2x−12cos2x−√32sin2x=√3sin2x −cos2x =2sin(2x −π6),因为x ∈[−π12,5π12]∴−π3≤2x −π6≤2π3,∴2sin(2x −π6)∈[−√3,2]. 即函数f(x)在区间[−π12,5π12]上的最大值为2,最小值为−√3.【解析】本题考查三角函数的化简与求值,考查三角函数的性质,属基础题. (Ⅰ)将代入化简即可;(Ⅱ)利用辅助角公式化简得到f(x),由x 的取值范围得出2x −π6的范围,再由正弦函数的性质得出最值即可.24.【答案】解:(1)函数y =12sin (2x +π6)的振幅为12,周期为π,初相为π6.(2)列表:描点画图(如图所示):(3)函数y =sinx 的图象向左平移π6个单位长度,得到函数y =sin (x +π6)的图象, 再保持纵坐标不变,把横坐标缩短为原来的12倍,得到函数y =sin (2x +π6)的图象, 再保持横坐标不变,把纵坐标缩短为原来的12倍,得到函数y =12sin (2x +π6)的图象.【解析】本题主要考查了三角函数的图象和性质以及“五点法”作图和图象的平移和伸缩变换,属于基础题.(1)结合振幅、周期、初相的定义可得; (2)按照列表、描点、连线的步骤求解画图;(3)由y =sinx (x ∈R )的图象左移π6个单位得到数y =sin (x +π6),x ∈R 的图象,然后横坐标再伸缩得到y =sin (2x +π6),x ∈R 的图象,最后纵坐标再伸缩得到y =12sin (2x +π6),x ∈R 的图象.25.【答案】解:(1)如图可知,A =2,T =4×[π12−(−π6)]=π,∴ω=2πT=2.∵{2sin (2×π12+φ)=2|φ|<π2,∴φ=π3,即函数解析式为;(2)根据图象平移原则得g (x )=2sin (4x +π3), ∵x ∈[0,π4],∴4x +π3∈[π3,4π3],∴2sin (4x +π3)∈[−√3,2], 当,即x =π24时,函数g(x)在区间[0,π4]上的最大值为2.【解析】本题考查了三角函数的图象与性质的应用,求出函数f(x)的解析式是关键,属于中档题.(1)利用三角函数的图象,得出振幅A 与周期T ,代入特殊点求出φ,即可求出函数解析式;(2)根据图像平移,得到函数g(x)的解析式,最后利用正弦型函数的性质求出结果.26.【答案】解:(Ⅰ)函数f(x)=cos2x +sin(2x −π6)=cos2x +√32sin2x −12cos2x =sin(2x +π6),故它的最小正周期为2π2=π.(Ⅱ)令2kπ−π2≤2x +π6≤2kπ+π2,k ∈Z , 得kπ−π3≤x ≤2kπ+π6,k ∈Z ,∴函数的增区间为[kπ−π3,2kπ+π6],k∈Z,∵x∈[0,π],∴函数的增区间为[0,π6]、[2π3,π].【解析】本题主要考查两角和差的三角公式,正弦函数的周期性和单调性,属于基础题.(Ⅰ)由题意利用两角和差的三角公式化简函数f(x)的解析式,可得它的最小正周期.(Ⅱ)由题意利用正弦函数的单调性,求出函数f(x)的单调递增区间.27.【答案】解:f(x)=2cosxcosπ3+2sinxsinπ3−2cosx=cosx+√3sinx−2cosx=√3sinx−cosx=2sin(x−π6 ).(1)令2kπ+π2≤x−π6≤2kπ+32π(k∈Z),∴2kπ+2π3≤x≤2kπ+5π3(k∈Z),∴f(x)的单调递减区间为[2kπ+2π3,2kπ+5π3](k∈Z).(2)f(x)取最大值2时,x−π6=2kπ+π2(k∈Z),则x=2kπ+2π3(k∈Z).∴f(x)的最大值是2,取得最大值时的x的取值集合是{x|x=2kπ+2π3,k∈Z}.(3)∵f(x)=65,∴2sin(x−π6)=65,∴sin(x−π6)=35.∴cos(2x−π3)=1−2sin2(x−π6)=1−2×(35)2=725.【解析】本题考查了函数y=Asin(ωx+φ)的图象与性质,诱导公式,两角和与差的三角函数公式和二倍角公式,属于中档题.利用诱导公式和两角差的余弦函数公式得f(x)=√3sinx−cosx,即.(1)利用函数y=Asin(ωx+φ)的单调性,计算得结论;(2)利用函数y=Asin(ωx+φ)的最值,计算得结论;(3)利用题目条件得,再利用余弦的二倍角公式,计算得结论.28.【答案】解:(1)由最值可确定A=2,周期T=2×(π3+π6)=π⇒ω=2,又f(π3)=2,即,,即,∵|φ|<π,∴φ=−π6,所以f(x)=2sin (2x−π6);(2)f(A)=2sin (2A−π6)=1⇒sin (2A−π6)=12⇒2A−π6=π6或5π6,故A=π6或π2,当A=π2时,三角形为直角三角形,此时a>c,这与题目条件a=1,c=2矛盾,所以舍掉;当A=π6时,由余弦定理得:a2=b2+c2−2bccos A⇒b2−2√3b+3=0,解得b=√3.【解析】本题考查函数y=Asin(ωx+φ)的图象与性质,余弦定理,考查运算化简的能力,属于中档题.(1)由图可得A=2,,可得ω=2,再由f(π3)=2,结合|φ|<π可得φ,从而可得f(x)的解析式;(2)由(1)及f(A)=1,求得A=π6或π2,按A讨论结合余弦定理可得.29.【答案】解:(1)f(x)=√3sinxcosx+sin2x−12=√32sin2x+1−cos2x2−12=sin(2x−π6 ),令−π2+2kπ≤2x−π6≤π2+2kπ,k∈Z.解得,k∈Z.所以f(x)的单调增区间为[−π6+kπ,π3+kπ](k∈Z).(2)由(1)得f(x)=sin(2x−π6),所以f(A)=sin(2A−π6)=13,令θ=2A−π6,则0<θ<π2,所以sinθ=13,cosθ=2√23,则cos(2A−56π)=cos(θ−23π)=cosθcos23π+sinθsin23π=2√23×(−12)+13×√32=√3−2√26.【解析】本题考查了函数y=Asin(ωx+φ)的图象与性质和三角恒等变换,是中档题。
函数图像变换练习题

函数图像变换练习题函数图像变换练习题函数图像变换是数学中的重要概念,它帮助我们理解函数的性质和变化规律。
通过对函数图像进行变换,我们可以观察到函数在平移、伸缩和翻转等操作后的形态变化。
在这篇文章中,我们将通过一些练习题来加深对函数图像变换的理解。
1. 平移变换平移变换是指将函数图像沿着坐标轴的方向进行平移。
具体而言,平移变换可以分为水平平移和垂直平移两种情况。
练习题1:考虑函数f(x) = x^2,将其沿x轴方向平移3个单位,请画出平移后的函数图像。
解答:对于函数f(x) = x^2,进行水平平移3个单位后的函数可以表示为f(x-3) = (x-3)^2。
通过计算可知,平移后的函数图像与原函数相比,在x轴上整体向右平移了3个单位。
2. 伸缩变换伸缩变换是指将函数图像沿着坐标轴的方向进行拉伸或压缩。
具体而言,伸缩变换可以分为水平伸缩和垂直伸缩两种情况。
练习题2:考虑函数f(x) = x^2,将其在x轴方向进行压缩,使得函数图像变为原来的一半宽度,请画出压缩后的函数图像。
解答:对于函数f(x) = x^2,进行在x轴方向的压缩后的函数可以表示为f(2x) = (2x)^2。
通过计算可知,压缩后的函数图像与原函数相比,在x轴上整体变窄了一半。
3. 翻转变换翻转变换是指将函数图像沿着坐标轴进行翻转。
具体而言,翻转变换可以分为水平翻转和垂直翻转两种情况。
练习题3:考虑函数f(x) = x^2,将其进行水平翻转,请画出翻转后的函数图像。
解答:对于函数f(x) = x^2,进行水平翻转后的函数可以表示为f(-x) = (-x)^2。
通过计算可知,翻转后的函数图像与原函数相比,在y轴上对称翻转。
通过以上练习题,我们可以看到函数图像在不同的变换下发生了形态上的变化。
这些变换可以帮助我们更好地理解函数的性质和变化规律。
在实际应用中,函数图像变换也被广泛应用于物理、工程和经济等领域。
除了上述的平移、伸缩和翻转变换,函数图像还可以进行其他的变换,如旋转和剪切等。
专题 函数的图像变换结论总结(练习及答案)高三数学总复习

第88讲 函数的图像变换结论总结一、点的变换设(),P x y ,则它1.关于x 轴对称的点为(),x y -.2.关于y 轴对称的点为(),x y -.3.关于原点对称的点为(),x y --.4.关于直线y x =对称的点为(),y x .5.关于直线y x =-对称的点为(),y x --.6.关于直线y b =对称的点为(),2x b y -.7.关于直线x a =对称的点为()2,a x y -.8.关于直线y x a =+对称的点为(),y a x a -+.9.关于直线y x a =-+对称的点为(),a y a x --.10.关于点(),a b 对称的点为()2,2a x b y --.11.按向量(),a b 平移得到的点为(),x a y b ++.二、曲线的变换曲线(),0F x y =按下列变换后所得的方程:1.按向量(),a b 平移,得到(),0F x a y b --=.2.关于x 轴对称,得到(),0F x y -=.3.关于y 轴对称,得到(),0F x y -=.4.关于原点对称,得到(),0F x y --=.5.关于直线x a =对称,得到()2,0P a x y -=.6.关于直线y b =对称,得到(),20F x b y -=.7.关于点(),a b 对称,得到()2,20F a x b y --=.8.关于直线y x =对称,得到(),0F y x =.9.关于直线y x a =+对称,得到(),0F y a x a -+=.10.关于直线y x a =-+对称,得到(),0F a y a x --=.11.纵坐标不变,横坐标变为原来的a 倍,得到方程,0x F y a ⎛⎫= ⎪⎝⎭. 12.横坐标不变,纵坐标变原来的b 倍,得到方程,0y F x b ⎛⎫= ⎪⎝⎭. 三、两个函数的图像性质1.左右平移:()()0y f x a a =±>的图像可由()y f x =的图像向左()+或向右()-平移a 个单位得到.2.()()0,0y f mx a m a =±>>的图像可由()y f mx =的图像向左()+或向右()-平和多a m个单位而得到. 3.上下平移:()()0y f x b b =±>的图像可由()y f x =的图像向上()+或向下()-平移b 个单位而得到.4.()y f x =-的图像与()y f x =的图像关于y 轴对称,换句话说:()y f x =与()y g x =若满足()()f x g x =-,则它们关于0x =对称.5.()y f x =-的图像与()y f x =的图像关于x 轴对称,换句话说:()y f x =与()y g x =若满足()()f x g x =-,则它们关于0y =对称.6.()y f x =--的图像与()y f x =的图像关于原点对称.7.()y f x =的图像可如此得到()y f x =的图像在x 轴下方的部分以x 轴为对称轴翻折到x 轴的上方,其余不变.(下翻上)8.()y f x =的图像:保留()y f x =的图像在y 轴右侧的部分,并沿y 轴翻折到y 轴左边部分代替原y 轴左边部分.(去左翻右) 9.()y f x a =+与()y f b x =-关于直线2b a x -=对称.10.()y f a x =-与()y f x b =-关于直线2a b x +=对称. 11.()y f x =与()2y a f x =-关于直线y a =对称,换种说法:()y f x =与()y g x =若满足()()2f x g x a +=,则它们关于点(),a b 对称.12.()y f x =与()22y b f a x =--关于点(),a b 对称,换种说法:()y f x =与()y g x =,若满足()()22f x g a x b +-=,则它们关于点(),a b 对称.13.()1y f x -=与()y f x =关于直线y x =对称.14.()1y f x -=--的图像与()y f x =的图像关于直线y x =-对称.15.函数()y f a mx =+的图像与()y f b mx =-的图像关于直线2b a x m -=对称. 16.函数()y f x =与()a x f a y -=-的图像关于直线x y a +=成轴对称.17.伸缩变换:()()0y Af x A =>的图像,可将()y f x =的图像上每一个点的横坐标不变,纵坐标变为原来的A 倍而得到.18.()()0y f kx k =>的图像,可将()y f x =的图像上每一个点的纵坐标不变,横坐标变为原来的1k而得到. 四、单个函数的图像性质1.对任意x ,()()f x f a x =-⇔()y f x =的图像关于直线2a x =对称. 2.对任意x ,()f x a +是偶函数⇔()y f x =关于x a =对称.3.对任意x ,()()f x a f b x +=-()y f x ⇔=的图像关于直线2a b x +=对称. 4.若函数()y f x =对定义域中的任意x 的值,都满足()()f a mx f b mx +=-,则函数()y f x =的图像关于直线2a b x +=对称. 5.若函数()y f x =对定义域中的任意x ,都满足()()f a mx f b mx +=-,则函数()y f mx =的图像关于直线2a b x m+=对称.6.对任意x ,()()0f x f a x +-=⇔()y f x =的图像关于点,02a ⎛⎫ ⎪⎝⎭对称. 7.对任意x ,()f x a +是奇函数⇔()y f x =关于(),0a 对称.8.对任意x ,()()0f x a f b x ++-=()y f x ⇔=的图像关于点,02a b +⎛⎫ ⎪⎝⎭对称. 9.若函数()y f x =对定义域中的任意x 的值,都满足()()0f a x f b x ++-=,则函数()y f x =的图像关于点,02a b +⎛⎫ ⎪⎝⎭对称. 10.若函数()y f x =对定义域中的任意x ,都满足()()0f a mx f b mx ++-=,则函数()y f mx =的图像关于点,02a b m +⎛⎫ ⎪⎝⎭对称. 11.()y f x =的图像关于点(),a b 对称⇔对任意的x ,()()2f a x f a x b ++-=;更一般地:若()()f a x f b x c ++-=,则()y f x =的图像关于点,22a b c +⎛⎫ ⎪⎝⎭对称. 12.若()f x 有两条对称轴x a =和x b =,则函数()y f x =是周期函数,且2b a -是一个周期.13.若()f x 有两个对称中心(),0a 和(),0b ,则函数()y f x =是周期函数,且2b a -是一个周期.14.若()f x 以x a =为对称轴,且以(),0b 为对称中心,则函数()y f x =是周期函数,则4b a -是函数()f x 的一个周期.15.若()()f x A f x B +=+,则()f x 是周期函数,B A -是它的一个周期.16.对于非零数学A ,若函数()y f x =满足()()f x A f x +=-,则函数()y f x =必有一个周期为2A .17.若函数()y f x =对任意实数x ,都有()()f x A f x B M +++=,则函数()y f x =必有一个周期为2B A -.18.对于非零常数A ,函数()y f x =满足()()1f x A f x +=,则函数()y f x =的一个周期为2A .19.对于非零常数A ,函数()y f x =满足()()1f x A f x +=-,则函数()y f x =的一个周期为2A .20.对于非零常数A ,函数()y f x =满足()()()11f x f x A f x -+=+,则函数()y f x =的一个周期为2A .21.对于非零常数A ,函数()y f x =满足()()()11f x f x A f x ++=-,则函数()y f x =的一个周期为4A .22.对于非零常数A ,函数()y f x =满足()()()2f x A f x f x A +=++,则函数()y f x =的一个周期为6A .五、直线一般式的对称问题对称轴方程为0Ax By C ++=,则1.点(),A x y 与(),B x y ''关于直线0Ax By C ++=对称,则()()222222A Ax By C x x A B B Ax By C y y A B ++⎧'=-⎪⎪+⎨++⎪'=-⎪⎩+. 2.函数()y f x =与()()222222B Ax By C A Ax By C y f x A B A B ++++⎛⎫-=- ⎪++⎝⎭关于直线0Ax By C ++=成轴对称.3.(),0F x y =与()()222222,0A Ax By C B Ax By C F x y A B A B ++++⎛⎫--= ⎪++⎝⎭关于直线0Ax By C ++=成轴对称.。
高中数学《三角函数的图像和变换》以及经典习题

函数sin()y A x ωϕ=+的图象与变换【知识网络】1.函数sin()y A x ωϕ=+的实际意义;2.函数sin()y A x ωϕ=+图象的变换(平移平换与伸缩变换) 【典型例题】 [例1](1)函数3sin()226x y π=+的振幅是 ;周期是 ;频率是 ;相位是 ;初相是 .(2)函数2sin(2)3y x π=-的对称中心是 ;对称轴方程是;单调增区间是 .(3) 将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=-⎪⎝⎭平移,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( )A .sin()6y x π=+ B .sin()6y x π=- C .sin(2)3y x π=+ D .sin(2)3y x π=-(4) 为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点 ( ) (A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(5)将函数x x f y sin )(= 的图象向右平移4π个单位后再作关于x 轴对称的曲线,得到函数x y 2sin 21-=的图象,则)(x f 的表达式是 ( )(A )x cos (B )x cos 2 (C )x sin (D )x sin 2[例2]已知函数2()2cos 2,(01)f x x x ωωω=<<其中,若直线3x π=为其一条对称轴。
(1)试求ω的值 (2)作出函数()f x 在区间[,]ππ-上的图象.[例3]已知函数2()sin ()(0,0,0)2f x A x A πωϕωϕ=+>><<,且()y f x =的最大值为2,其图象相邻两对称轴间的距离为2,并过点(1,2). (I )求ϕ;(II )计算(1)(2)(2008)f f f +++.[例4]设函数2()sin cos f x x x x a ωωω=++(其中0,a R ω>∈)。
高一数学(必修1)专题复习二函数的图像变换

高一数学(必修1)专题复习二函数的图象变换一.平移变换:(1)函数)(h x f y )0(h 的图象是把)(x f y 的图象向左平移h 个单位得到的;(2)函数)(h x f y )0(h 的图象是把)(x f y 的图象向右平移h 个单位得到的;(3)函数k x f y )()0(k 的图象是把)(x f y 的图象向上平移k 个单位得到的;(4)函数k x f y)()0(k的图象是把)(x f y的图象向下平移k 个单位得到的.练习:1.将下列变换的结果填在横线上:(1)将函数xy 3的图象向右平移2个单位,得到函数的图象;(2)将函数)13(log 2x y的图象向左平移2个单位,得到函数的图象.2.函数)32(x f 的图象,可由)32(xf 的图象经过下述变换得到()A .向左平移6个单位B .向右平移6个单位C .向左平移3个单位D .向右平移3个单位3.讨论函数xx y3132的图像是由哪个反比例函数的图像通过哪些变换而得到?二.对称变换1.同一函数的对称性(自对称)若函数)(x f y对定义域内一切x(1))(x f =)(x f 函数)(x f y图象关于y 轴对称;(2)函数)(x f y的不可能关于x 轴对称(除0)(x f 外);(3))(x f =-)(x f 函数)(x f y 图象关于原点对称;(4))()(1x f x f函数)(x f y 图象关于直线x y对称;(5))()(x f x f 函数)(x f y图象关于直线y 轴对称;(6))()2(x f x af 函数)(x f y 图象关于直线a x对称;(7))()(x a f x a f 函数)(x f y 图象关于直线a x 对称;(8))()(x a f a x f 函数)(x f y 图象关于y 轴对称;(9))()(x b f x af 函数()yf x 的图象关于直线2a b x对称;(10))(2)2(x f bx a f 即bx f x af 2)()2(函数)(x f y 图象关于点),(b a 成中心对称.2.不同函数对称性(互对称)给出函数)(x f y (1)函数)(x f y 与)(x f y 的图象关于y 轴对称;(2)函数)(x f y 与)(x f y 的图象关于x 轴对称;(3)函数)(x f y 与)(x f y 的图象关于原点对称;(4)函数)(1x fy 与)(x f y的图象关于直线x y 对称;(5)函数)(x f y的图象可以看作)(x f y的图象去掉y 轴左边部分,保留y 轴右边部分,并在y 轴左方作右方关于y 轴对称的图象(注意)(x f y为偶函数);(6)函数)2(x a f y 与)(x f y 的图象关于直线a x对称;(7)函数)(x a f y 与)(x a f y 的图象关于y 轴对称;(8)函数)(a x f y 与)(x a f y 图象关于直线a x 对称;(9)函数)(x af y与)(x bf y的图象关于直线2ab x 对称;(10)函数)(x f y 与)2(2x a f b y (即)2(2x af yb)的图像关于点),(b a 成中心对称.三.训练题目1.已知函数)(x f y 的定义域为R ,则下列命题中:①若)2(x f 是偶函数,则函数)(x f 的图象关于直线2x对称;②若)2()2(xf x f ,则函数)(x f 的图象关于原点对称;③函数)2(x f y 与函数)2(x f y 的图象关于直线2x ④函数)2(xf y与函数)2(x f y的图象关于直线2x其中正确的命题序号是.2.已知函数x f 是定义域为R 的偶函数,且x f x f 2.若x f 在0,1上是减函数,则x f 在3,2上是()A .增函数B .减函数C .先增后减的函数D .先减后增的函数3.设实数集R 上定义的函数)(x f ,对任何R x 都有)(x f +)(x f =1,则这个函数的图象()A .关于原点对称B .关于y 轴对称C .关于点)21,0(对称D .关于点)1,0(对称4.函数)1(x f y 与)1(1x fy 的图像关于()对称A .直线x y B .直线1xy C .直线1x yD .直线xy5.设定义域为R 的函数)(x f y 、)(x g y 都有反函数,并且)1(x f 和)2(1x g 的函数图像关于直线x y 对称,若2002)5(g ,那么)4(f ()A .2002 B .2003C .2004D .20056.已知函数1)22(x f y 是定义在R 上的奇函数,函数)(x g y 的图象与函数)(x f y的图象关于直线0yx对称,若221x x ,则)()(21x g x g ()A .2B .2C .4D .47.已知函数)(x f y 满足:①是偶函数)1(x f y;②在,1上为增函数.若0,021x x ,且221x x ,则)(1x f 与)(2x f 的大小关系是()A .)()(21x f x fB .)()(21x f x f C .)()(21x f x f D .不能确定8.函数11xy 的图象与x 轴围成封闭区域的面积是.9.函数(21)yf x 是偶函数,则函数(2)y f x 的对称轴是.10.设)(x f 是定义在R 上的偶函数,且)1()1(x f x f ,当01x 时,x x f 21)(,则)6.8(f __.11.设)(x f 是定义在R 上的奇函数,且图象关于直线21x ,则)5()4()3()2()1(f f f f f __ ___.12.函数)(x f y 对一切实数x 都满足)21()21(x f x f 并且方程0)(x f 有三个实根,这三个实根的和.13.定义在R 上的函数)(x f 满足)()(x a f x f ,(a 是大于1的整数),若方程0)(x f 有n 个实根,它们的和为2001,N n,则a ,n 的值可能有___种.14.若函数)(x f y 的图象关于直线2x 对称,当2x 时,21)(x x f ,则当2x 时,则)(x f .15.已知曲线C 与抛物线142x xy 关于点(2,-1)对称,函数)(x f y的图象与曲线C 关于x 轴对称,则)(x f y的函数关系式为.16.定义在R 上的函数)(x f 满足)1(1)1(1)1(x f x f x f ,则)2000()3()2()1(f f f f 的值为_ _.。
函数的图像变换和例题

难点10 函数图象与图象变换函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,考生要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质.●难点磁场(★★★★★)已知函数f (x )=ax 3+bx 2+cx +d 的图象如图,求b 的范围.●案例探究[例1]对函数y =f (x )定义域中任一个x 的值均有f (x +a )=f (a -x ),(1)求证y =f (x )的图象关于直线x =a 对称;(2)若函数f (x )对一切实数x 都有f (x +2)=f (2-x ),且方程f (x )=0恰好有四个不同实根,求这些实根之和.命题意图:本题考查函数概念、图象对称问题以及求根问题.属★★★★★级题目. 知识依托:把证明图象对称问题转化到点的对称问题.错解分析:找不到问题的突破口,对条件不能进行等价转化. 技巧与方法:数形结合、等价转化.(1)证明:设(x 0,y 0)是函数y =f (x )图象上任一点,则y 0=f (x 0),又f (a +x )=f (a -x ),∴f (2a -x 0)= f [a +(a -x 0)]=f [a -(a -x 0)]=f (x 0)=y 0,∴(2a -x 0,y 0)也在函数的图象上,而2)2(00x x a +-=a ,∴点(x 0,y 0)与(2a -x 0,y 0)关于直线x =a 对称,故y =f (x )的图象关于直线x =a 对称.(2)解:由f (2+x )=f (2-x )得y =f (x )的图象关于直线x =2对称,若x 0是f (x )=0的根,则4-x 0也是f (x )=0的根,由对称性,f (x )=0的四根之和为8.[例2]如图,点A 、B 、C 都在函数y =x 的图象上,它们的横坐标分别是a 、a +1、a +2.又A 、B 、C 在x 轴上的射影分别是A ′、B ′、C ′,记△AB ′C 的面积为f (a ),△A ′BC ′的面积为g (a ).(1)求函数f (a )和g (a )的表达式;(2)比较f (a )与g (a )的大小,并证明你的结论.命题意图:本题考查函数的解析式、函数图象、识图能力、图形的组合等.属★★★★★级题目. 知识依托:充分借助图象信息,利用面积问题的拆拼以及等价变形找到问题的突破口. 错解分析:图形面积不会拆拼.技巧与方法:数形结合、等价转化.解:(1)连结AA ′、BB ′、CC ′,则f (a )=S △AB ′C =S 梯形AA ′C ′C -S △AA ′B ′-S △CC ′B =21(A ′A +C ′C )=21(2++a a ),g (a )=S △A ′BC ′=21A ′C ′·B ′B =B ′B =1+a .)11121(21)]1()12[(21)122(21)()()2(<++-+++=-+-+-+=+-++=-aa a a a a a a a a a a g a f∴f (a )<g (a ). ●锦囊妙计1.熟记基本函数的大致图象,掌握函数作图的基本方法:(1)描点法:列表、描点、连线;(2)图象变换法:平移变换、对称变换、伸缩变换等.2.高考中总是以几类基本初等函数的图象为基础来考查函数图象的.题型多以选择与填空为主,属于必考内容之一,但近年来,在大题中也有出现,须引起重视.●歼灭难点训练一、选择题1.(★★★★)当a ≠0时,y =ax +b 和y =b ax 的图象只可能是( )2.(★★★★)某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了,再走余下的路,下图中y 轴表示离学校的距离,x 轴表示出发后的时间,则适合题意的图形是( )二、填空题3.(★★★★★)已知函数f (x )=log 2(x +1),将y =f (x )的图象向左平移1个单位,再将图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数y =g (x )的图象,则函数F (x )=f (x )-g (x )的最大值为_________.三、解答题 4.(★★★★)如图,在函数y =lg x 的图象上有A 、B 、C 三点,它们的横坐标分别为m ,m +2,m +4(m >1).(1)若△ABC 面积为S ,求S =f (m ); (2)判断S =f (m )的增减性.5.(★★★★)如图,函数y =23|x |在x ∈[-1,1]的图象上有两点A 、B ,AB ∥Ox 轴,点M (1,m )(m ∈R 且m >23)是△ABC 的BC 边的中点.(1)写出用B 点横坐标t 表示△ABC 面积S 的函数解析式S =f (t ); (2)求函数S =f (t )的最大值,并求出相应的C 点坐标. 6.(★★★★★)已知函数f (x )是y =1102+x-1(x ∈R )的反函数,函数g (x )的图象与函数y =-21-x 的图象关于y 轴对称,设F (x )=f (x )+g (x ).(1)求函数F (x )的解析式及定义域;(2)试问在函数F (x )的图象上是否存在两个不同的点A 、B ,使直线AB 恰好与y 轴垂直?若存在,求出A 、B 的坐标;若不存在,说明理由.7.(★★★★★)已知函数f 1(x )=21x -,f 2(x )=x +2, (1)设y =f (x )=⎩⎨⎧∈--∈]1,0[ ),(3)0,1[ ),(21x x f x x f ,试画出y =f (x )的图象并求y =f (x )的曲线绕x 轴旋转一周所得几何体的表面积;(2)若方程f 1(x +a )=f 2(x )有两个不等的实根,求实数a 的范围.(3)若f 1(x )>f 2(x -b )的解集为[-1,21],求b 的值.8.(★★★★★)设函数f (x )=x +x1的图象为C 1,C 1关于点A (2,1)对称的图象为C 2,C 2对应的函数为g (x ).(1)求g (x )的解析表达式;(2)若直线y =b 与C 2只有一个交点,求b 的值,并求出交点坐标; (3)解不等式log a g (x )<log a29 (0<a <1).参考答案难点磁场解法一:观察f (x )的图象,可知函数f (x )的图象过原点,即f (0)=0,得d =0,又f (x )的图象过(1,0),∴f (x )=a +b +c ①,又有f (-1)<0,即-a +b -c <0②,①+②得b <0,故b 的范围是(-∞,0)解法二:如图f (0)=0有三根,∴f (x )=ax 3+bx 2+cx +d =ax (x -1)(x -2)=ax 3-3ax 2+2ax ,∴b = -3a ,∵a >0,∴b <0.歼灭难点训练一、1.解析:∵y =b ax =(b a )x ,∴这是以b a 为底的指数函数.仔细观察题目中的直线方程可知:在选择支B 中a >0,b >1,∴b a>1,C 中a <0,b >1,∴0<b a<1,D 中a <0,0<b <1,∴b a>1.故选择支B 、C 、D 均与指数函数y =(b a )x 的图象不符合.答案:A2.解析:由题意可知,当x =0时,y 最大,所以排除A 、C.又一开始跑步,所以直线随着x 的增大而急剧下降.答案:D二、3.解析:g (x )=2log 2(x +2)(x >-2) F (x )=f (x )-g (x )=log 2(x +1)-2log 2(x +2) =log 21441log441log)2(122222+++=+++=++x x x x x x x x)1(21111log2->++++=x x x ∵x +1>0,∴F (x )≤41log211)1(21log 22=++⋅+x x =-2当且仅当x +1=11+x ,即x =0时取等号.∴F (x )max =F (0)=-2. 答案:-2三、4.解:(1)S △ABC =S 梯形AA ′B ′B +S 梯形BB ′C ′C -S 梯形AA ′C ′C . (2)S =f (m )为减函数. 5.解:(1)依题意,设B (t ,23 t ),A (-t ,23t )(t >0),C (x 0,y 0).∵M 是BC 的中点.∴2x t +=1,2230y t + =m .∴x 0=2-t ,y 0=2m -23t .在△ABC 中,|AB |=2t ,AB 边上的高h AB =y 0-23t =2m -3t .∴S =21|AB |·h AB =21·2t ·(2m -3t ),即f (t )=-3t 2+2mt ,t ∈(0,1).(2)∵S =-3t 2+2mt =-3(t -3m )2+32m ,t ∈(0,1],若⎪⎪⎩⎪⎪⎨⎧>≤<23130m m ,即23<m ≤3,当t =3m 时,S max =32m ,相应的C 点坐标是(2-3m ,23m ),若3m >1,即m >3.S =f (t ) 在区间(0,1]上是增函数,∴S max =f (1)=2m -3,相应的C 点坐标是(1,2m -3).6.解:(1)y =1102+x-1的反函数为f (x )=lg xx +-11(-1<x <1).由已知得g (x )=21+x ,∴F (x )=lgxx +-11+21+x ,定义域为(-1,1).(2)用定义可证明函数u =xx +-11=-1+12+x 是(-1,1)上的减函数,且y =lg u 是增函数.∴f (x )是(-1,1)上的减函数,故不存在符合条件的点A 、B .7.解:(1)y =f (x )=⎪⎩⎪⎨⎧∈+--∈-]1,0[,1)0,1[,12x x x x .图略.y =f (x )的曲线绕x 轴旋转一周所得几何体的表面积为(2+2)π. (2)当f 1(x +a )=f 2(x )有两个不等实根时,a 的取值范围为2-2<a ≤1. (3)若f 1(x )>f 2(x -b )的解集为[-1,21],则可解得b =235-.8.(1)g (x )=x -2+41-x .(2)b =4时,交点为(5,4);b =0时,交点为(3,0).(3)不等式的解集为{x |4<x <29或x >6}.。
(完整版)(完整版)高一函数经典图像题

1.把函数log a y x =(0a >且1a ≠)的图像绕原点逆时针旋转90︒后新图像的函数解析式是(A )x y a =-(B )x y a -=(C )()log a y x =- (D )log a y x =-2.设lg 2a =,lg3b =,则5log 12=(A )21a ba++ (B )21a b a ++(C )21a ba+- (D )21a ba+- 3.设,x y 是关于m 的方程2260m am a -++=的两个实根,则()()2211x y -+-的最小值为(A )494-(B )18(C )8(D )344.若函数()2f x x x a =-+满足()0f m -<,则()1f m +的值(A )是正数(B )是负数(C )与a 有关(D )与m 有关C. {4}D. {1,5}5、设函数)(log )(b x x f a +=(a >0且a ≠1)的图象经过两点)0,1(-A 、)1,0(B ,则b a +的值是( ) (A) 2 (B) 3 (C) 4 (D) 56.已知函数132)(-+=x x x f ,函数)(x g 的图像与()11+=-x f y 的图像关于y=x 对称,则)1(-g 的值是A.21-B. 1-C. 23- D.-3 7. 对于任意x 1、x 2∈[a ,b ],满足条件f (221x x +)>21[f (x 1)+f (x 2)]的函数f (x )的图象是8. 若定义在区间(–1,0)上的函数f (x )=log 2a (x +1)满足f (x )>0,则a 的取值范围是A.(0,21) B.(0,21] C.(21,+∞) D.(0,+∞)9.若函数()f x 的图象是连续不断的,且(0)0>f ,(1)0>f ,(2)0<f ,则加上下列哪个条件可确定()f x 有唯一零点A. (3)0<fB. (1)0->fC. 函数在定义域内为增函数D. 函数在定义域内为减函数10、将函数x y 2sin =的图象的各点向左平移2π、向上平移1个长度单位后,的到的图象对应的函数解析式是( )A.12cos +=x yB. 12cos +-=x yC. 12sin +=x yD. 12sin +-=x y 11、函数)62sin(2π+=x y 的单调增区间为( )A.)](65,3[Z k k k ∈++ππππ B. )](32,6[Z k k k ∈++ππππC. )](6,3[Z k k k ∈+-ππππD. )](,65[Z k k k ∈++ππππ12. 已知函数 f (n )= ⎩⎨⎧<+≥-)10)](5([)10(3n n f f n n ,其中n ∈N ,则f (8)等于 ( )A. 2B. 4C. 6D. 713. 下列关系式中正确的是( )A 313232215121⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛ B 323231512121⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛C 323132212151⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛ D 313232212151⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛14.已知0lg lg =+b a ,则函数xa x f =)(与函数x x gb log )(-=的图象可能是 ( )15.已知函数2()22(4)1f x mx m x =--+,()g x mx =,若对于任一实数x ,()f x 与()g x 至少有一个为正数,则实数m 的取值范围是 ( ) A . (0,8) B .(0,2) C .(2,8) D . (,0)-∞ 16.( 本小题满分6分)化简、求值:0.2563238log 2log (log 27)+⨯ 17、(江苏省启东中学高三综合测试四)已知函数错误!未找到引用源。
函数的图象Word版含答案

函数的图象【课前回顾】1.描点法作函数图象其基本步骤是列表、描点、连线,具体为:(1)①确定函数的定义域;②化简函数的解析式;③讨论函数的性质(奇偶性、单调性、周期性).(2)列表(注意特殊点、零点、最大值点、最小值点以及坐标轴的交点). (3)描点、连线. 2.函数图象的变换 (1)平移变换①y =f (x )的图象―――――――→a >0,右移a 个单位a <0,左移|a |个单位y =f (x -a )的图象; ②y =f (x )的图象――――――――→b >0,上移b 个单位b <0,下移|b |个单位y =f (x )+b 的图象. (2)对称变换①y =f (x )的图象―――――→关于x 轴对称 y =-f (x )的图象; ②y =f (x )的图象―――――――→关于y 轴对称 y =f (-x )的图象; ③y =f (x )的图象――――――→关于原点对称y =-f (-x )的图象; ④y =a x (a >0且a ≠1)的图象――――――→关于直线y =x 对称y =log a x (a >0且a ≠1)的图象. (3)伸缩变换①y =f (x )的图象y =f (ax )的图象;②y =f (x )的图象――――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变y =af (x )的图象. (4)翻转变换①y =f (x )的图象―――――――――→x 轴下方部分翻折到上方x 轴及上方部分不变y =|f (x )|的图象; ②y =f (x )的图象―――――――――――→y 轴右侧部分翻折到左侧原y 轴左侧部分去掉,右侧不变y =f (|x |)的图象.【课前快练】1.下列图象是函数y =⎩⎪⎨⎪⎧x 2,x <0,x -1,x ≥0的图象的是( )答案:C2.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )=( )A .e x +1B .e x -1C .e-x +1D .e-x -1解析:选D 与曲线y =e x 关于y 轴对称的图象对应的解析式为y =e -x ,将函数y =e -x的图象向左平移1个单位长度即得y =f (x )的图象,∴f (x )=e -(x +1)=e -x -1,故选D.3.已知函数f (x )的图象如图所示,则函数g (x )=log2f (x )的定义域是________.解析:当f (x )>0时,函数g (x )=log2f (x )有意义,由函数f (x )的图象知满足f (x )>0时,x ∈(2,8].答案:(2,8]4.若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值范围是________.解析:由题意得a =|x |+x ,令y =|x |+x =⎩⎪⎨⎪⎧2x ,x ≥0,0,x <0,其图象如图所示,故要使a =|x |+x 只有一个解,则a >0.答案:(0,+∞)考点一 函数图象的识辨1.学会寻找函数图象与解析式之间的5种对应关系(1)从函数的定义域,判断图象的左右位置,从函数的值域(或有界性),判断图象的上下位置;(2)从函数的单调性,判断图象的升降变化趋势;(3)从函数的奇偶性,判断图象的对称性:奇函数的图象关于原点对称,在对称的区间上单调性一致,偶函数的图象关于y 轴对称,在对称的区间上单调性相反;(4)从函数的周期性,判断图象是否具有循环往复特点;(5)从特殊点出发,排除不符合要求的选项,如f (0)的值,当x >0时f (x )的正负等. 2.函数图象变换问题的3个注意(1)函数图象中左、右平移变换可记口诀为“左加右减”,但要注意加、减指的是自变量.(2)注意含绝对值符号的函数的对称性,如y =f (|x |)与y =|f (x )|的图象是不同的. (3)分清条件“f (x +1)=f (x -1)”与“f (x +1)=f (1-x )”的区别,前者告诉函数的周期为2,后者告诉函数的图象关于直线x =1对称.【典型例题】考法(一) 根据函数解析式或图象识辨函数图象1.函数f (x )=1+log 2x 与g (x )=⎝⎛⎭⎫12x在同一直角坐标系下的图象大致是( )解析:选B 因为函数g (x )=⎝⎛⎭⎫12x 为减函数,且其图象必过点(0,1),故排除A 、D.因为f (x )=1+log 2x 的图象是由y =log 2x 的图象上移1个单位长度得到的,所以f (x )为增函数,且图象必过点(1,1),故可排除C ,选B.2.(2017·全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )解析:选C 令函数f (x )=sin 2x1-cos x ,其定义域为{x |x ≠2k π,k ∈Z},又f (-x )=sin (-2x )1-cos (-x )=-sin 2x1-cos x =-f (x ),所以f (x )=sin 2x1-cos x 为奇函数,其图象关于原点对称,故排除B ;因为f (1)=sin 21-cos 1>0,f (π)=sin 2π1-cos π=0,故排除A 、D ,选C.3.已知定义在区间[0,4]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为( )解析:选D 法一:先作出函数y =f (x )的图象关于y 轴的对称图象,得到y =f (-x )的图象;然后将y =f (-x )的图象向右平移2个单位,得到y =f (2-x )的图象;再作y =f (2-x )的图象关于x 轴的对称图象,得到y =-f (2-x )的图象.故选D. 法二:先作出函数y =f (x )的图象关于原点的对称图象,得到y =-f (-x )的图象;然后将y =-f (-x )的图象向右平移2个单位,得到y =-f (2-x )的图象.故选D.[题型技法]1.知式选图的2种常用方法找出所给函数对应的基本初等函数并作出该函数的图象,然后利用平移变换、伸缩变换、对称变换、翻折变换规则得出函数图象.考法(二) 根据实际背景、图形判断函数图象4.如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )解析:选B 当x ∈⎣⎡⎦⎤0,π4时,f (x )=tan x +4+tan 2x ,图象不会是直线段,从而排除A 、C.当x ∈⎣⎡⎦⎤π4,3π4时,f ⎝⎛⎭⎫π4=f ⎝⎛⎭⎫3π4=1+5,f ⎝⎛⎭⎫π2=2 2.∵22<1+5,∴f ⎝⎛⎭⎫π2<f ⎝⎛⎭⎫π4=f ⎝⎛⎭⎫3π4,从而排除D ,故选B.5.如图,不规则四边形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 交AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把四边形ABCD 分成两部分,设AE =x ,左侧部分的面积为y ,则y 关于x 的图象大致是( )解析:选C 当l 从左至右移动时,一开始面积的增加速度越来越快,过了D 点后面积保持匀速增加,图象呈直线变化,过了C 点后面积的增加速度又逐渐减慢.故选C.[题型技法]根据实际背景、图形判断函数图象的方法(1)根据题目所给条件确定函数解析式,从而判断函数图象(定量分析);(2)根据自变量取不同值时函数值的变化、增减速度等判断函数图象(定性分析).考点二 函数图象的应用求解函数图象的应用问题,其实质是利用数形结合思想解题,其思维流程一般是:角度(一) 研究函数的性质1.已知函数f (x )=x |x |-2x ,则下列结论正确的是( ) A .f (x )是偶函数,递增区间是(0,+∞) B .f (x )是偶函数,递减区间是(-∞,1) C .f (x )是奇函数,递减区间是(-1,1) D .f (x )是奇函数,递增区间是(-∞,0)解析:选C 将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.[题型技法] 利用函数的图象研究函数的性质对于已知或解析式易画出其在给定区间上图象的函数,其性质常借助图象研究: ①从图象的最高点、最低点,分析函数的最值、极值; ②从图象的对称性,分析函数的奇偶性;③从图象的走向趋势,分析函数的单调性、周期性. 角度(二) 研究不等式2.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f (x )-f (-x )x <0的解集为( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)解析:选D 因为f (x )为奇函数,所以不等式f (x )-f (-x )x <0可化为f (x )x <0,即xf (x )<0,f (x )的大致图象如图所示.所以xf (x )<0的解集为(-1,0)∪(0,1).3.若不等式(x -1)2<log a x (a >0,且a ≠1)在x ∈(1,2)内恒成立,则实数a 的取值范围为( )A .(1,2] B.⎝⎛⎭⎫22,1 C .(1,2) D .(2,2)解析:选A 要使当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,只需函数y =(x -1)2在(1,2)上的图象在y =log a x 的图象的下方即可.当0<a <1时,显然不成立;当a >1时,如图,要使x ∈(1,2)时,y=(x -1)2的图象在y =log a x 的图象的下方,只需(2-1)2≤log a 2,即log a 2≥1,解得1<a ≤2,故实数a 的取值范围是(1,2].故选A.[题型技法] 利用函数的图象研究不等式思路当不等式问题不能用代数法求解,但其与函数有关时,常将不等式问题转化为两函数图象的上下关系问题,从而利用数形结合求解.【针对训练】1.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]解析:选D 由y =|f (x )|的图象(如图所示)知,①当x >0时,只有a ≤0时才能满足|f (x )|≥ax ,可排除B 、C.②当x ≤0时,y =|f (x )|=|-x 2+2x |=x 2-2x .故由|f (x )|≥ax 得x 2-2x ≥ax .当x =0时,不等式为0≥0成立; 当x <0时,不等式等价为x -2≤a .∵x -2<-2,∴a ≥-2.综上可知,a ∈[-2,0].2.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时,f (x )=⎝⎛⎭⎫121-x,则:①2是函数f (x )的周期;②函数f (x )在(1,2)上递减,在(2,3)上递增;③函数f (x )的最大值是1,最小值是0;④当x ∈(3,4)时,f (x )=⎝⎛⎭⎫12x -3.其中所有正确命题的序号是________.解析:由已知条件得f (x +2)=f (x ),则y =f (x )是以2为周期的周期函数,①正确; 当-1≤x ≤0时,0≤-x ≤1,f (x )=f (-x )=⎝⎛⎭⎫121+x, 函数y =f (x )的部分图象如图所示:由图象知②正确,③不正确;当3<x <4时,-1<x -4<0,f (x )=f (x -4)=⎝⎛⎭⎫12x -3,因此④正确.故正确命题的序号为①②④.答案:①②④【课后演练】1.图中阴影部分的面积S 是关于h 的函数(0≤h ≤H ),则该函数的大致图象是( )解析:选B 由题图知,随着h 的增大,阴影部分的面积S 逐渐减小,且减小的越来越慢,结合选项可知选B.2.为了得到函数y =2x -3-1的图象,只需把函数y =2x 的图象上所有的点( )A .向右平移3个单位长度,再向下平移1个单位长度B .向左平移3个单位长度,再向下平移1个单位长度C .向右平移3个单位长度,再向上平移1个单位长度D .向左平移3个单位长度,再向上平移1个单位长度解析:选A y =2x ――――→向右平移3个单位长度y =2x -3―――――→向下平移1个单位长度y =2x -3-1. 3.若函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1,ln (x +a ),x ≥-1的图象如图所示,则f (-3)等于( )A .-12B .-54C .-1D .-2解析:选C 由图象可得-a +b =3,ln(-1+a )=0,得a =2,b =5,∴f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,ln (x +2),x ≥-1,故f (-3)=2×(-3)+5=-1,故选C. 4.下列函数y =f (x )图象中,满足f ⎝⎛⎭⎫14>f (3)>f (2)的只可能是( )解析:选D 因为f ⎝⎛⎭⎫14>f (3)>f (2),所以函数f (x )有增有减,排除A 、B.在C 中,f ⎝⎛⎭⎫14<f (0)=1,f (3)>f (0),即f ⎝⎛⎭⎫14<f (3),排除C ,选D.5.已知函数f (x )=(x -a )(x -b )(其中a >b )的图象如图所示,则函数g (x )=a x +b 的图象是( )解析:选A由f(x)的图象与x轴的交点位置知:0<a<1,b<-1.由0<a<1可排除C、D,又由g(0)=1+b<0可排除B,故选A.6.函数f(x)是周期为4的偶函数,当x∈[0,2]时,f(x)=x-1,则不等式xf(x)>0在(-1,3)上的解集为()A.(1,3)B.(-1,1)C.(-1,0)∪(1,3) D.(-1,0)∪(0,1)解析:选C作出函数f(x)的图象如图所示.当x∈(-1,0)时,由xf(x)>0得x∈(-1,0);当x∈(0,1)时,由xf(x)>0得x∈∅;当x∈(1,3)时,由xf(x)>0得x∈(1,3).故x∈(-1,0)∪(1,3).7.已知函数y=f(x+1)的图象过点(3,2),则函数y=f(x)的图象一定过点________.解析:因为函数y=f(x+1)的图象过点(3,2),所以函数y=f(x)的图象一定过点(4,2).答案:(4,2)8.如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集为________.解析:令y =log 2(x +1),作出函数y =log 2(x +1)图象如图.由⎩⎪⎨⎪⎧ x +y =2,y =log 2(x +1),得⎩⎪⎨⎪⎧x =1,y =1.∴结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}.答案:{x |-1<x ≤1}9.如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________.解析:当-1≤x ≤0时,设解析式为f (x )=kx +b (k ≠0), 则⎩⎪⎨⎪⎧ -k +b =0,b =1,得⎩⎪⎨⎪⎧k =1,b =1.∴当-1≤x ≤0时,f (x )=x +1.当x >0时,设解析式为f (x )=a (x -2)2-1(a ≠0),∵图象过点(4,0),∴0=a (4-2)2-1,∴a =14. 故函数f (x )的解析式为 f (x )=⎩⎪⎨⎪⎧ x +1,-1≤x ≤0,14(x -2)2-1,x >0.答案:f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,14(x -2)2-1,x >0 10.设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是________.解析:如图,作出函数f (x )=|x +a |与g (x )=x -1的图象,观察图象可知:当且仅当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )恒成立,因此a 的取值范围是[-1,+∞).答案:[-1,+∞)11.(2018·惠州三调)函数f (x )=⎝⎛⎭⎫x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为( )解析:选D 函数f (x )=⎝⎛⎭⎫x -1x cos x (-π≤x ≤π且x ≠0)为奇函数,排除选项A 、B ;当x =π时,f (x )=⎝⎛⎭⎫π-1πcos π=1π-π<0,排除选项C ,故选D. 12.若函数y =f (x )的图象如图所示,则函数y =-f (x +1)的图象大致为( )解析:选C 要想由y =f (x )的图象得到y =-f (x +1)的图象,需要先将y =f (x )的图象关于x 轴对称得到y =-f (x )的图象,然后再向左平移一个单位得到y =-f (x +1)的图象,根据上述步骤可知C 正确.13.已知函数f (x )=⎩⎪⎨⎪⎧3x -1,x >0,x 2+1,x ≤0,若存在x 1∈(0,+∞),x 2∈(-∞,0],使得f (x 1)=f (x 2),则x 1的最小值为( )A .log 23B .log 32C .1D .2解析:选B 作出函数f (x )的图象如图所示,由图可知,当x 1取得最小值时,3x 1-1=1,x 1=log 32,即x 1的最小值为log 32.14.若函数f (x )=ax -2x -1的图象关于点(1,1)对称,则实数a =________. 解析:函数f (x )=ax -2x -1=a +a -2x -1(x ≠1),当a =2时,f (x )=2,函数f (x )的图象不关于点(1,1)对称,故a ≠2,其图象的对称中心为(1,a ),即a =1.答案:115.若直线y =1与曲线y =x 2-|x |+a 有四个交点,则a 的取值范围是________.解析:y =x 2-|x |+a =⎩⎪⎨⎪⎧x 2-x +a ,x ≥0,x 2+x +a ,x <0, 作出函数图象如图所示.此曲线与y 轴交于点(0,a ),最小值为a -14,要使y =1与其有四个交点,只需a -14<1<a ,∴1<a <54. 答案:⎝⎛⎭⎫1,54 16.已知函数f (x )=|x |(x -a ),a >0.(1)作出函数f (x )的图象;(2)写出函数f (x )的单调区间;(3)当x ∈[0,1]时,由图象写出f (x )的最小值. 解:(1)f (x )=⎩⎪⎨⎪⎧ x (x -a ),x ≥0-x (x -a ),x <0,其图象如图所示.(2)由图知,f (x )的单调递增区间是(-∞,0),⎝⎛⎭⎫a 2,+∞;单调递减区间是⎝⎛⎭⎫0,a 2. (3)由图象知,当a 2>1,即a >2时,f (x )min =f (1)=1-a ; 当0<a 2≤1,即0<a ≤2时,f (x )min =f ⎝⎛⎭⎫a 2=-a 24. 综上,f (x )min =⎩⎪⎨⎪⎧-a 24,0<a ≤2,1-a ,a >2.17.已知函数f (x )的图象与函数h (x )=x +1x +2的图象关于点A (0,1)对称.(1)求f (x )的解析式;(2)若g (x )=f (x )+a x,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围. 解:(1)设f (x )图象上任一点P (x ,y ),则点P 关于(0,1)点的对称点P ′(-x,2-y )在h (x )的图象上,即2-y =-x -1x +2,∴y =f (x )=x +1x (x ≠0).(2)g (x )=f (x )+a x =x +a +1x ,∴g ′(x )=1-a +1x 2. ∵g (x )在(0,2]上为减函数,∴1-a +1x 2≤0在(0,2]上恒成立,即a +1≥x 2在(0,2]上恒成立, ∴a +1≥4,即a ≥3,故实数a 的取值范围是[3,+∞).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学中的函数图象变换及练习题
①平移变换:
Ⅰ、水平平移:函数
y
f ( x a) 的图像可以把函数
y
f ( x) 的图像沿 x 轴方向向左
(a 0) 或向右 (a
0) 平移 | a | 个单位即可得到;
左移 h
右移 h
1) y =f ( x )
y =f ( x +h) ; 2)y =f ( x )
y =f ( x h) ;
x 轴方向向上
Ⅱ、竖直平移:函数
y
f ( x) a 的图像可以把函数 y
f ( x) 的图像沿 (a 0) 或向下 (a
0) 平移 | a |个单位即可得到;
上移 h
下移 h
1) y =f ( x ) y =f ( x )+h ; 2) y =f ( x )
y =f ( x ) h 。
②对称变换:
Ⅰ、函数 y f ( x) 的图像可以将函数 y
f ( x) 的图像关于 y 轴对称即可得到;
y 轴
y =f ( x )
y =f ( x )
f ( x) 的图像关于 x 轴对称即可得到; Ⅱ、函数 y
f ( x) 的图像可以将函数 y
y =f ( x )
x 轴
y = f ( x )
Ⅲ、函数 y
f ( x) 的图像可以将函数 y
f ( x) 的图像关于原点对称即可得到;
原点
y =f ( x )
y = f ( x )
Ⅳ、函数 x
f ( y) 的图像可以将函数 y
f ( x) 的图像关于直线 y x 对称得到。
直线 y x
y =f ( x )
x =f ( y )
Ⅴ、函数 y f ( 2a x) 的图像可以将函数 y
f (x) 的图像关于直线 x a 对称即可得到
③翻折变换:
f ( x) 的图像的 x 轴下方部分沿 x 轴翻折到 x 轴上
Ⅰ、函数 y | f (x) |的图像可以将函数 y 方,去掉原 x 轴下方部分,并保留 y
f ( x) 的 x 轴上方部分即可得到;
Ⅱ、函数 y f (| x |) 的图像可以将函数 y f ( x) 的图像右边沿 y 轴翻折到 y 轴左边替代原
y 轴左边部分并保留 y
f ( x) 在 y 轴右边部分即可得到
④伸缩变换:
Ⅰ、函数 y af ( x) ( a 0) 的图像可以将函数 y f (x) 的图像中的每一点横坐标不变纵坐
(a 1)
0 a 1 )为原来的 a 倍得到;
= ( x )
y a
标伸长
或压缩( y =af ( x )
y f
Ⅱ、函数 y f (ax) (a
0) 的图像可以将函数 y
f (x) 的图像中的每一点纵坐标不变横坐
标伸长 (a 1) 或压缩( 0
a 1)为原来的
1
倍得到。
f ( x ) y =f ( x )
x a
y =f ( ax )
a
1. 画出下列函数的图像
(1) y log 1
( x)
( 2) y(
1
) x (3) y log 2 x
(4) y x 2
1
2
2
(5)要得到 y
lg( 3 x) 的图像,只需作 y lg x 关于 _____轴对称的图像,再向 ____平移
3 个单位而得到。
( 6 ) 当 a 1 时 , 在 同 一 坐 标 系 中 函 数 y
a x 与 y
log a x 的
图 像 (
)
2 、已知函数 f ( x) 的图像关于直线x 1 对称,且当 x 0, 时,有
f ( x)
1
,则当
x
x , 2 时, f (x)的解析式是()
( A)1
( B)( C)
1
( D)
1 x x
2 2 x
3 、将函数y sin 2x 按向量 a ,1 平移后的函数解析式是
6
( A)y sin( 2x ) 1 ( B)y sin(2x ) 1
3 3
( C)y sin(2x ) 1 (D)y sin( 2x ) 1
6 6
y
【典型例题】
例 1(1) 已知函数f (x) ax3 bx 2 cx d 的图象如右图所示, 则
A)b ( ,0) B)b (0,1) O
1 2 x
C )b (1,2)
D )b (2, )
(2) 将函数y b a 的图象向右平移 2 个单位后又向下平移 2 个单位 , 所得图象如果与
x a
原图象关于直线y=x 对称 , 那么( )
( A)a 1,b 0 (B)a 1, b R
(C )a 1,b 0 ( D )a 0,b R
(3)已知函数 y=f(x) 和函数 y=g(x) 的图象如下 : 则函数 y=f(x)g(x) 的图象可能是
例 2. 作出下列函数的图象
(1) y x 2 ( x 1)(2) y lg x 1 (3)
2 x y
1
x
例 3 方程kx 1 ( x 2) 2有两个不相等的实根, 求实数 k 的取值范围
【课后作业】
1、 f(x)是定义在区间c, c 上的奇函数,其图象如图所示, 令 g(x)=af(x)+b则下列关于函
数 g(x) 的叙述正确的是
(A)若 a 0,则函数g(x)的图象关于原点对称
(B) 若a1, 2 b 0 ,则方程g(x)=0有大于2的实根
(C)若 a 0,b 2 ,则方程g(x)=0有两个实根
(D)若 a 1, b 2 ,则方程g(x)=0有三个实根
2、(福建卷)函数 f ( x) a x b的图象如图,其中a、 b 为常数,则下列结论正确的是
()
A.a 1,b 0 B.a 1, b 0
C.0 a 1,b 0 D.0 a 1, b 0
3、(湖北卷)函数y e|ln x| | x 1 |的图象大致是()
4、(福建卷)已知函数y=log 2x 的反函数是y=f -1 (x) ,则函数y= f -1 (1-x)的图象是()
5、已知 f ( x) 是偶函数,则 f ( x2) 的图像关于__________对称。
6、将函数y log 1 x 的图像沿x轴向右平移 1 个单位,得到图像C,图像 C1与 C关于原点
2
对称,图像C2与 C1关于直线 y=x 对称,求C2对应的函数。
7、试讨论方程 1 x kx 的实数根的个数。
8.( 1)方程lg x+x=3的解所在区间为()
A.(0,1) B.(1,2) C.(2,3) D .(3, +∞) ( 2)设 a 为常数,试讨论方程lg( x 1) lg( 3 x) lg( a x) 的实根的个数。
9.(上海,文、理8)在下列图象中,二次函数y=ax2+bx 与指数函数y=(b
)x的图象只可a
能是()。