信息光学05-二维线性系统分析1-傅里叶变换
信息光学中的傅里叶变换

为了克服这些局限性,未来的研究将更加注重发展新型的 光学器件和技术,如光子晶体、超表面和量子光学等。这 些新技术有望为傅里叶光学的发展带来新的突破和机遇, 推动光学领域的技术进步和应用拓展。同时,随着人工智 能和机器学习等领域的快速发展,将人工智能算法与傅里 叶光学相结合,有望实现更高效、智能的光波信号处理和 分析。
信息光学中的傅里叶变换
目录
• 傅里叶变换基础 • 信息光学基础 • 信息光学中的傅里叶变换 • 傅里叶变换在信息光学中的应用
实例 • 傅里叶变换的数学工具和软件包
01
傅里叶变换基础
傅里叶变换的定义
傅里叶变换是一种数学工具,用于将 一个信号或函数从时间域或空间域转 换到频率域。在信息光学中,傅里叶 变换被广泛应用于图像处理和通信系 统的 编程语言,具有广泛的应 用领域。
R语言是一种统计计算语 言,广泛应用于数据分析 和可视化。
ABCD
C的开源科学计算软件包 如FFTW等可用于计算傅 里叶变换,并支持并行计 算以提高效率。
R语言的科学计算库如 fftw等可用于计算傅里叶 变换,并支持多种数据类 型和可视化方式。
光的波动理论
光的波动理论认为光是一种波动现象,具有波长、频率、相 位等特征,能够发生干涉、衍射等现象。
光的波动理论在光学领域中具有基础性地位,是研究光的行 为和性质的重要工具。
光的量子理论
光的量子理论认为光是由粒子组成的,这些粒子被称为光子。该理论解释了光的 能量、动量和角动量等物理量的本质。
光的量子理论在量子力学和量子光学等领域中具有重要应用,为现代光学技术的 发展提供了理论基础。
04
傅里叶变换在信息光学中的 应用实例
图像处理中的傅里叶变换
图像去噪
信息光学傅里叶变换的基本性质和有关定理

1.7.3复振幅分布的空间频谱
任意的平面波可以用空间频率表示
(x, y)面上的平面波具有如下形式
在相干光照明下g(x,y)是xy面上复振幅分布
指数基元
表示传播方向余弦(cosα=λξ,cosβ=λη)
的单位振幅的单色平面波。而g(x,y)可看成无数基元函数代表的平 面波叠加。
空间频谱可用方向余弦表示
exp(i*x)=cos(x)+i*sin(x)
a (P)和φ(P)是P点的振幅和初相位。
通常用指数函数表示一点的光振动
优点:可以将与位置有关的φ(P)和与时间有关的2πνt分开。 定义复振幅 为单色波场P点的复振幅。它与时间无关,仅是空间的函数。 即描述了光振动的空间分布。而时间因子exp(2πνt)对各点均相 同,可省略。
3. 4.实函数
即
由于输入余弦函数的频率是任意的,上式可写为
说明在线性不变系统中,在有实值脉冲的响应情况下,余弦函 数将产生同频率的余弦输出。但有衰减和相移。其改变程度由传递 函数的模和辐角决定。
1.7 二维光场分析
光波的数学描述。 1.7.1. 单色光波场的复振幅表示 单色光波场中某点P在时刻t的振动为
1.5.2
傅里叶变换的基本定理
1. 卷积定理 如果 则
பைடு நூலகம்
2.相关定理 (1)互相关定理 如果 则 ☆ ,
称F*(ξ,η)G(ξ,η)为函数f(x,y)和g(x,y)的互谱能量密度(互谱密度)
(2)自相关定理 设 则 ☆
(3)巴塞伐定理 设 且积分
存在,则 表示能量守恒。
1.4.4.广义巴塞伐定理 设
称ξ为沿x方向的空间频率。 y方向的周期为无穷。
同样对y方向,当cosβ≠0也可得到 ,空间频率 在z方向 空间频率
光学傅里叶变换原理

光学傅里叶变换原理傅里叶变换是一种数学工具,用于将一个函数( 或信号)从时间 或空间)域转换到频率域。
在光学中,傅里叶变换也具有重要的应用,尤其是在描述光波传播、光学系统和图像处理等方面。
傅里叶变换原理涉及到以下重要概念和原则:1.(傅里叶级数:傅里叶级数指的是将周期性函数分解为一系列正弦和余弦函数的和的过程。
它表明任何周期性函数都可以表示为不同频率的正弦和余弦函数的叠加。
2.(连续傅里叶变换 Continuous(Fourier(Transform):对于连续信号,傅里叶变换将信号从时域转换到频域。
它描述了信号在频率空间中的频谱特性,展示了信号由哪些频率分量组成。
3.(离散傅里叶变换 Discrete(Fourier(Transform):对于离散数据集合,比如数字图像或采样信号,离散傅里叶变换用于将这些离散数据从时域转换到频域。
它在数字信号处理和图像处理中得到广泛应用,用于分析和处理频率特性。
4.(光学中的应用:在光学中,傅里叶变换可以描述光的传播和衍射现象。
例如,傅里叶光学理论表明,光学系统(如透镜、光栅等)可以看作是对光波进行空间域的傅里叶变换。
这种理论有助于理解光的传播特性,并在光学系统设计和成像技术中发挥重要作用。
5.(变换原理:傅里叶变换原理表明,任何一个信号都可以通过傅里叶变换分解成一系列不同频率的正弦和余弦函数。
这种变换可以帮助我们理解信号的频率成分,并对信号进行处理、滤波或合成。
总的来说,傅里叶变换原理提供了一种从时域到频域的转换方法,在光学中,它被广泛应用于光波传播、光学系统设计和图像处理等领域,为我们理解和处理光学现象提供了重要的工具。
信息光学中的傅里叶变换

了图像科学、应用光学和光电子学的发展。可以认为它是光 学、光电子学、信息论和通讯理论的交叉学科。
信号频域分布特性的分析与处理 系统传输不同空间频率信号能力的分析与处理
空域←→频域
傅里叶分析
➢离散周期信号 ➢连续周期信号 ➢离散非周期信号 ➢连续非周期信号
F ( f x , f y )用模和幅角表示如下
F ( f x , f y ) F ( f x , f y ) exp j( f x , f y )
F( fx, fy)
( fx, fy)
2
F( fx, fy)
振幅谱 相位谱 功率谱
类似地,函数f (x,y)也可以用其频谱函数表示,即:
f (x, y) F( fx , f y ) exp j2 ( fx x f y y) dfxdf y = F -1{F ( f x , f y )}
但需说明的,为了物理学上描述方便起见,我们往往又用 理想化的数学函数来表示实际的物理图形,对这些有用的函 数而言,上面的三个条件中的一个或多个可能均不成立。例 如阶跃函数, 函数等就不满足存在条件。
因此,为了在傅里叶分析中能有更多的函数来描述物理图 形,有必要对傅里叶变换的定义作一些推广。
三、广义傅里叶变换
4、平移特性
F f ( x x0 , y y0 ) exp j2 ( fx x0 f y y0 ) F ( fx , f y )
F exp j2 ( fx0 x f y0y) f (x, y) F ( fx fx0 , f y f y0 )
f (x, y)
f
f (x x0, y y0)
(1)互相关定理
F f ( x , y ) ★g( x , y ) F( fx, fy ) G( fx , f y )
《信息光学》第一章 傅里叶分析

1、一些常用函数
函数的常用性质 a) 筛选性质
x x , y y x, y dxdy x , y
0 0 0 0
b) 对称性
( x) ( x)
1 | | x0
c) 比例变化性质
(x x0 )
(x
矩形函数
三角形函数 sinc函数 高斯函数 圆域函数 描述不同类型的“图像”信号
***图像信息的体现:强度分布、颜色
脉冲函数(函数)
梳状函数
1、一些常用函数 1)阶跃函数 (Step function) 定义
1 x 0 1 step x x0 2 x0 0
相位板的振幅透过率
1、一些常用函数 3)矩形函数 (Rectangle function) 定义 应用
1 x rect a 0
2 others
x a
常用矩形函数表示狭缝、矩孔的透 过率;它与某函数相乘时,可限制 该函数自变量的范围,起到截取的 作用,故又常称为“门函数”。
圆孔光瞳的非相干脉冲响应 以及圆孔的夫琅和费衍射图样
1、一些常用函数
需要特别说明的是,上面提到的常用函数有的本身就是二维函
数,而那些只给出一维形式的函数也具有二维形式,这里不再赘 述,只给出这些常用二维函数的图形化表示。 二维矩形函数
x x0 y y 0 x x0 y y0 rect ( , ) rect ( )rect ( ) b d b d
ramp ( x x0 ) b
slope=1/b
slope=1/2
ramp (
x 1 ) 2
1
0 x0 x0+b -4 -3 -2
光学经典理论傅里叶变换

光学经典理论|傅里叶光学基础2018-02-24 17:00今天的光学经典理论为大家带来的是傅里叶光学基础,傅里叶光学是现代光学的一个分支,将电信理论中使用的傅里叶分析方法移植到光学领域而形成的新学科。
光学人们可以看看!在电信理论中,要研究线性网络怎样收集和传输电信号,一般采用线性理论和傅里叶频谱分析方法。
在光学领域里,光学系统是一个线性系统,也可采用线性理论和傅里叶变换理论,研究光怎样在光学系统中的传播。
两者的区别在于,电信理论处理的是电信号,是时间的一维函数,频率是时间频率,只涉及时间的一维函数的傅里叶变换;在光学领域,处理的是光信号,它是空间的三维函数,不同方向传播的光用空间频率来表征,需用空间的三维函数的傅里叶变换。
包含内容60年代发明了激光器,使人们获得了新的相干光源后,傅里叶光学无论在理论和应用领域均得到了迅速发展。
傅里叶光学运用傅里叶频谱分析方法和线性系统理论对广泛的光学现象作了新的诠释。
其主要内容包括标量衍射理论、透镜成像规律以及用频谱分析方法分析光学系统性质等。
推导演示一个光学信息系统和一个电学信息系统有许多相同之处,它们都是收集信息和传递信息,它们都有共同的数学工具──线性系统理论和傅里叶分析。
从信息论角度,关心的是信息在系统中传递过程;同样,对一个光学系统来讲,物和像的关系,也可以根据标量衍射理论由系统中光场的传播来确定,因此光学系统可以看成一个通信信道。
这样,通信理论中已经成熟的线性系统理论可以用来描述大部分光学系统。
当物体用非相干光照射时,在系统像平面上强度分布与物体上强度分布成线性(正比)关系。
而用来描述电学系统的脉冲响应h(t,τ)概念,即系统对一窄脉冲δ(t)(狄喇克δ函数)的响应,也可以用来描述光学系统,即用光学系统对点光源δ(x,y)的响应(点光源的像)h(x,y;ξ,η)来描述系统的性质,两者的区别仅仅在于电学系统的脉冲响应是时间一维函数,光学系统的脉冲函数是空间二维函数,另外两者都具有位移不变性,前者分布不随时间位移而变,后者分布不随空间位移而变(即等晕条件)。
信息光学常用函数傅立叶变换相关卷积线性系统二维光场

一般情况下,相关运算与卷积运算的区别:
f(x)要取复共轭;运算时 f(x) 不需折叠
2.互相关不满足交换律
相 关 运 算(correlation)
2. 自相关 auto-correlation
rff (x)
f (x)★f (x)
f ( ) f *( x)d
互相关在两函数有相似性时出现峰值, 自相关则在位移到重叠时出现极大值
相 关 运 算(correlation)
1. 互相关 cross correlation
rfg (x)
f (x)★g(x)
f *( )g(x )d
与卷积的关系:
rfg ( x) f * ( x)g( )d g( x) f * ( x)
1. 当且仅当 f*(-x)=f(x) ,相关才和卷积相同。
三角形函数
原型
:
tri ( x)
1
0,
x,
x 1 其它 ,
标准型
:
tri
(
x
a
x0
)
1 0,
x x0 , a
x x0 1 a 其它
tri(x) 1
1
-1 0 1 x
-a+x0
x x0 a+x0
底宽: 2 最大值:tri(0)=1 曲线下面积: S=1
底宽:2|a|, 面积: S= |a|
2024/10/1
H仅依赖于观察点与脉冲输入点坐标在x和y方向
的相对间距 ( x )和 ( y ) ,与坐标本身的绝
对数值无关。
叠
加
g( x, y) f ( , )h( x , y )dd
积
分
f ( x, y) h( x, y)
信息光学常用函数傅立叶变换相关卷积线性系统二维光场

1807年-《热的传播》推导出热传导方程 ,提出任一函数 都可以展成三角函数的无穷级数。
1822年-《热的分析理论》中解决了热在非均匀加热的固 体中分布传播问题
频域
在你的理解中,一段音乐是什么呢?
时域:
频域:
傅里叶级数
傅里叶级数
周期为 1 的函数 f (t)可以展开为三角级数
aJ1( 2a f x 2 f y 2 ) fx2 fy2
(
f
)
1( 2
f
f0)
1( 2
f
f0)
高斯函数 g(x) exp(ax2 )
函数 (x)
1
常数
1
傅里叶变换的意义
三角形函数
原型
:
tri ( x)
1
0,
x,
x 1 其它 ,
标准型
:
tri
(
x
a
x0
)
1 0,
x x0 , a
x x0 1 a 其它
tri(x) 1
1
-1 0 1 x
-a+x0
x x0 a+x0
底宽: 2 最大值:tri(0)=1 曲线下面积: S=1
底宽:2|a|, 面积: S= |a|
x
曲线下面积 S=1; 0点位置 x=n (n=1, 2, 3…)等间隔; 偶函数
Sinc 函数
二维sinc函数:
sinc(x)sinc(y)
Sinc函数的重要性: 数学上,sinc函数和rect函数互为傅里叶变换
物理上,单一矩形脉冲rect(t)的频谱是sinc函数;
单缝的夫琅和费衍射花样是sinc函数
傅里叶变换
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
exp(-j2fx)
变换核
§1-2 二维傅里叶变换 2-D Fourier Transform
一、定义(续)
由频谱函数求原函数的过程称为傅里叶逆变换:
f ( x, y) F ( f x , f y ) exp[j 2 ( f x x f y y)dfx df y
记作:
f(x,y)=
复指函数的F.T.是移位的d 函数
§1-2 二维傅里叶变换Fourier Transform
四、 F.T.定理
4. 帕色伐(Parseval)定理
设 g(x,y) F.T. G(fx,fy),
g ( x, y)
2
dxdy G( f x , f y ) dfx df y
傅里叶-贝塞尔变换
例: 利用F-B变换求圆域函数的F.T.
1, r 1 定义: circ(r ) , 0, 其它
1
r x 2 y 2 是圆对称函数
{circ(r )} 2 rJ 0 (2r )dr
0
作变量替换, 令r’ =2r, 并利用:
J
0
2 0
傅里叶-贝塞尔变换
当 f 具有园对称性,即仅是半径r的函数:f(x,y)= g(r,) = g (r). 依F.T.定义:
G( , f ) rg (r ) exp[ j 2r cos( f )]d d r
0 0
2
利用贝塞尔函数关系
2
0
exp[ ja cos( f )]d 2J 0 (a)
t / 2
exp( j 2 x)dx 二、广义f xF.T.
计算
0
sin(f ) df f
t /2 1 exp( j 2 f x x) t / 2 j 2 f x
重要推论: 则
1 j 2 f x
(e
jtf x
e
jtf x
sin(tf x ) ) t sinc(t f x ) fx
-1{F(f
x,fy)}. 显然
-1
{f(x,y)}= f(x,y)
综合可写:
f(x,y)
F.T. F.T.-1
F(fx,fy)
f(x,y)和F(fx,fy)称为傅里叶变换对 x (y) 和 fx (fy )称为一对共轭变量, 它们在不同 的范畴(时空域或频域) 描述同一个物理对象.
§1-2 二维傅里叶变换 2-D Fourier Transform
四、 F.T.定理 -- Parseval定理的证明
g ( x) dx g ( x) g * ( x)dx
2
G ( f ) exp( j 2fx)df G * ( f ' ) exp( j 2f ' x)df ' dx
一、定义(续)
f ( x, y) F ( f x , f y ) exp[j 2 ( f x x f y y)dfx df y
F(fx,fy)是f(x,y)的频谱函数 x, y, fx , fy 均为实变量, F(fx,fy)一般是复函数, F(fx,fy) =A(fx,fy)e jf (fx,fy)
§1-2 二维傅里叶变换 2-D Fourier Transform
一、定义及存在条件
函数f(x,y)在整个x-y平面上绝对可积且满足狄氏条件(有 有限个间断点和极值点,没有无穷大间断点), 定义函数
F ( f x , f y ) f ( x, y) exp[ j 2 ( f x x f y y)dxdy
G( , f ) d rg (r , ) exp[ j 2r cos( f )]dr
0 0 2
则极坐标下的的二维傅里叶变换定义为:
g (r , ) d G( , f ) exp[ j 2r cos( f )]d
0 0
2
§1-2 二维傅里叶变换 2-D Fourier Transform
2
若g(x)代表加在单位电阻上的电流或电压, 则∫| g(x) |2dx 代表信号的总能量(或总功率) Parseval定理说明,信号的能量由|G(f)|2曲线下面积给 出.或者说等于各频率分量的能量之和—能量守恒 | G(f) |2代表能量(功率)的谱密度(单位频率间隔 的能量或功率)
§1-2 二维傅里叶变换Fourier Transform
F ( f x , f y ) f ( x, y) exp[ j 2 ( f x x f y y)dxdy
极 坐 标 变 换
r x 2 y 2 x r cos 空域 1 y tan ( x ) y r sin
f 2 f 2 x y f x cosf 频域 1 f y f tan ( f ) f y sin f x
贝塞尔函数
贝塞尔函数积分表示
1 2π j(x sin n ) J n(x ) d 0 e 2 π (j ) n 2π - j(xcos n ) 或, J n(x ) d 0 e 2 π
§1-2 二维傅里叶变换 2-D Fourier Transform
H(fx,fy),
空域中两个函数的卷积, 其F.T.是各自F.T.的乘积.
n2m
n 0,1, 2,
性质: 递推性
d x n J n ( x ) x n J n 1 ( x) dx d n x J n ( x) x n J n 1 ( x) dx d xJ1 ( x) xJ 0 ( x) dx d J 0 ( x ) J1 ( x ) dx
四、 F.T.定理 -- F.T.的基本性质
设 g(x,y) F.T. G(fx,fy), h(x,y)
1. 线性定理 Linearity
F.T.
H(fx,fy),
g(x,y)+b h(x,y)}= G(fx,fy) + b H(fx,fy)
F.T.是线性变换
2. 空间缩放 Scaling (相似性定理)
振幅谱 位相谱
描述了各频率分量的相对幅值和相移.
§1-2 二维傅里叶变换 2-D Fourier Transform
广义 F.T.
对于某些不符合狄氏条件的函数, 求F.T.的方法.
对某个可变换函数组成的系列取极限不符合狄氏条件的函数, 函数系列变换式的极限原来函数的广义F. T.
例: g(x,y)=1, 在(-, + )不可积
1
x 1/2 0 1/2
空域压缩
1
x 1/4 01/4
F.T. 频域扩展 F.T.
G(f) 1 1/2
f 1 G( x ) a a
0
-1
0
1
f
-2
2
f
§1-2 二维傅里叶变换Fourier Transform
四、 F.T.定理
3. 位移定理 Shifting
设 g(x,y) F.T. G(fx,fy),
G( f )G * ( f )df
思考题:
sin 2 ( x) 利用Parseval 定理求积分: dx 2 ( x)
§1-2 二维傅里叶变换Fourier Transform
四、 F.T.定理
设 g(x,y)
F.T.
5. 卷积定理
G(fx,fy),
h(x,y)
F.T.
注意: 并非实函数的频谱一定是实函数.只有厄米函数(实部 为偶函数,虚部为奇函数)的频谱才一定是实函数.
例: rect (x) (实、偶) F.T. sinc(fx) (实、偶) 但是, rect (x-1) (实、非偶) F.T. 复函数
§1-2 二维傅里叶变换 2-D Fourier Transform
{rect(x)} =sinc(fx)
根据广义傅立叶变换的定义和d 函数的定义:
t
{rect(x/t)rect(y/t)} =t2sinc(tfx)sinc(tfy)
{g(x,y)}=limt2sinc(tfx)sinc(tfy) = d(fx, fy) {1} = d(fx, fy)
按照广义变换的概念可以 得出一系列特殊函数的F.T.
§1-2 二维傅里叶变换 2-D Fourier Transform
极坐标下的二维傅里叶变换
则在极坐标中:
F ( cosf , sin f ) d f (r cos , r sin ) exp[ j 2r cos( f )]rdr
0 0 2
令:
G( , f ) F ( cosf , sin f ) g (r , ) f (r cos , r sin )
x
0 ( )d
xJ1 ( x)
J1 (2 )
{circ(r )}
1 2
2
r ' J 0 (r ' )dr'
§1-2 二维傅里叶变换 2-D Fourier Transform
三. 虚、实、奇、偶函数的 F.T.
将频谱函数G(f)分别写成实部(余弦变换)和 虚部(正弦变换), 然后根据g(x)的虚、实、奇、偶 性质讨论频谱的相应性质.
1 fx f y g (ax, by) G , ab a b
§1-2 二维傅里叶变换Fourier Transform
四、 F.T.定理 空间缩放
注意空域坐标(x,y)的扩展(a,b<1),导致频域中坐标 (fx,fy)的压缩及频谱幅度的变化. 反之亦然.