一阶微分方程的平衡点及其稳定性(精)
微分方程稳定性

det A 0
P0 (0, 0 )的 稳 定 性 由 (9 ) 的 特 征 方 程
det( A I ) 0
(11)
(12)
的根(特征根)决定。方程(12)可写为
2 p q 0 p ( a1 b 2 ) q d et A (1 3)
则特征根为
( 即 a 0 或 p , q 0) 得到的。在临界情况下 即 a = 0 或 p , q = 0) (
(1)平衡点和稳定性的概念只是对自治方程(1)(6)而言才有意义。
二者可以不一致。 (3) 在讨论平衡点稳定性时,对初始点的要求是存在一个邻 域,这是局部稳定的定义。如果要求对任意的初始点 (3)(8)式成立,成为全局稳定。对于线性方程,局部稳定 和全局稳定是等价的,对于非线性方程,二者不同。 (4) 对于临界情况,和非线性方程的全局稳定,可以用相 轨线分析方法讨论。
机动
目录
上页
下页
返回
结束
建模与求解:设地球半径为 R ,质量为M ;卫星轨 道半径为r ,卫星质量为m 。
根据假设(ii)和(iii),卫星只受到地球的引力,由牛 顿万有引力定律可知其引力大小为
F= GMm r
2
(1)
其中G 为引力常数。 为消去常数G ,把卫星放在地球表面,则由(1)式得
mg = GMm R
1 k
( 此处 mg k v 0 )
利用初始条件, 得 C ln ( mg ) 代入上式后化简, 得特解 v
mg k
机动 目录
t 足够大时
k m t
v
)
上页 下页
mg k
(1 e
微分方程的平衡点及稳定性分析

者 可 以不 一致 , 比如 说 , 线性 近 似方 程 的平衡 点 为 中心 时 , 用其 它 的方 法来判 断( ) 要 4 式平 衡 点 的稳
12 判 定 平 衡 点 稳 定 性 的 方 法 .
① 间接法 : 定义3 的方法称为间接法。 ②直接法 : 不求方程式( 的解 ) 1 ) 0的方法 , 称
为直接法。 方法: 在 将 ) 。 处作泰勒展开, 只取一
次项 , 有微 分方 程 ( ) 近似 为 1可
变化规律 , 预测它的未来形态时 , 要建立对象 的动 态模 型 , 常 要用到 微分方 程模 型 。 通 而稳 定性 模 型 的对象仍是动态过程 ,而建模 的目的是研究时间 充分 长 以后 过程 的变 化趋 势— — 平衡 状 态是 否 稳 定。 稳定性模型不求解微分方程 , 而是用微分方程
) ) () 1
①羞 0 0则称 ), < 。 为方程(和(的稳定的 1 3 ) ) 平
衡点。
o 则称 为方 程() 3的不稳 定 的平 , 1和() 衡点。
定义2 代数方程 ) 的实根 。 : = 0 称为微分方
程() 1的平衡 点 。 定 义 3从 某 领 域 的任 意 值 出发 , 方 程 ( ) : 使 1
。 o 作 泰勒 展 开 , ,) y处 只取 一 次项 , (在 P 。 。 得 4 ) 0 ,) Y
的线 性近 似方 程 为 :
贝 ) 却 r0 则根据定理 1x O I => , , 是不稳定的平衡 =
点 . I 一rO 是稳定的平衡点。 厂) <,
分 析 : 平衡 点 的稳 定性 来 看 , 从 随着 时 间 的推 移 , 口的增 长在 人 处 趋于 稳定 , 也就 是人 口达
4.1常微分方程的定性与稳定性

8
上页 下页 返回
四、初等奇点及其分类
1、线性系统
x a1 x a2 y
y
b1
x
b2
y
(5)
假设 f ( x, y), g( x, y)关于( x, y)有一阶连续偏导
数,对方程组(3)而言,只要( x0 , y0 )不是(3)的奇点,
即,( x0 , y0 )不同时 满足 f ( x, y) 0, g( x, y) 0,则
在( x0 , y0 )附近可将(3)改写为
7
上页 下页 返回
是稳定焦点;
当 1 2 i , 0, 0,即 p 0,q 0,p2 4q时, 是不稳定焦点;
当 1 2 i , 0即 p 0,q 0时,是中心。
11
上页 下页 返回
q p2 4q
不
稳
稳
中
定
不 稳 定 结
定
心
焦
焦
区
点
点
区
区
稳 定 结
点
点
区
区
O
p
鞍点区
12
上页 下页 返回
2、非线性系统
定义 2 设 x* ( x1*,, xn*)T 是方程 组(1)的平 衡点,x x(t) ( x1(t),, xn (t))T 是方程组(1)的任一 解 , 如果存在 x * 的某邻域 U( x*) ,使得当
x(t0 ) U ( x*)时,必有
lim
t
x
微分方程与差分方程

N, ,
N (t )
Nm Nm r ( t t 0 ) 1 N 1 e 0
.
下面,我们对模型作一简要分析. (1)当 t , N (t ) N m ,即无论人口的初值如何,人口总数趋向于极限值 N m ; (2)当 0 N N m 时, 数; (3) 由于
这就是马尔萨斯人口模型,用分离变量法易求出其解为
N (t ) N 0 e r (t t0 ) ,
此式表明人口以指数规律随时间无限增长. 模型检验:据估计 1961 年地球上的人口总数为 3.06 10 ,而在以后 7 年中,人口总数
9
9 以每年 2%的速度增长,这样 t 0 1961 , N 0 3.06 10 , r 0.02 ,于是
dx f ( x, y ) dt dy g ( x, y ) dt
定义 3:代数方程组
(5)
f ( x, y) 0 的实数根 x x0 , y y0 ,称它为(5)的一个平衡点 g ( x, y) 0
(或奇点) ,记为 P0 ( x0 , y0 ) . 定义 4:如果从所有可能的初始条件出发,方程(5)的解 x (t ) , y (t ) 都满足
2 T D 0
特征根为 1,2
T T 2 4D . 2
下面就分别特征根为相异实根、重根及复根三种情况加以研究: 1) T 4 D 0
2
3
华南农业大学数学建模培训
ⅰD0 ⅱD0
2
T 0 T 0
二根异号
二根同正 二根同负
O 是不稳定结点 O 是稳定结点
O 是鞍点
显然 O(0, 0) 为系统的奇点,记系统系数矩阵 A
微分方程稳定性定理

微分方程稳定性定理微分方程是数学中的一种基础工具,它描述了自然界中的许多现象,例如物理学中的运动、力学、电路等等。
那么如何判断一个微分方程解的稳定性呢?这就需要用到微分方程稳定性定理。
微分方程稳定性定理是微分方程理论中的一个基础定理,通过研究微分方程的解的奇点的性质,可以判断微分方程的解的稳定性。
微分方程的解的稳定性与它的初值条件和参数有关。
下面我们来详细介绍微分方程稳定性定理。
首先,我们来看一个简单的微分方程的例子:$y'=-y$这个微分方程的解为$y=Ce^{-x}$,其中$C$为常数,在不同的初值条件下,这个微分方程的解会发生不同的情况。
如果初值条件为$y(0)>0$,那么解曲线将呈现出一种渐近逼近某个值的趋势,也就是我们所说的稳定性;如果初值条件为$y(0)<0$,那么解曲线将呈现出一种指数增长的趋势,也就是我们所说的不稳定性。
对于一个一阶微分方程$\frac{dy}{dx} = f(x,y)$,如果它的所有解在某一点$(x_0,y_0)$处存在且唯一,而且$f(x_0,y_0)=0$,那么称这个点$(x_0,y_0)$为微分方程的一个奇点。
奇点可以分为以下三类:1.鞍点若在$(x_0,y_0)$附近的任意一个点$(x,y)$,都有$f(x,y)\neq0$,那么$(x_0,y_0)$就是鞍点,这个点是微分方程的不稳定平衡点。
2.稳定平衡点若在$(x_0,y_0)$附近的所有点$(x,y)$,都有$f(x,y)$的符号相同,那么$(x_0,y_0)$就是稳定平衡点,这个点是微分方程的稳定平衡点。
3.不稳定平衡点若在$(x_0,y_0)$附近的所有点$(x,y)$,都有$f(x,y)$的符号不同,那么$(x_0,y_0)$就是不稳定平衡点,这个点是微分方程的不稳定平衡点。
接下来我们来介绍微分方程稳定性定理,微分方程稳定性定理包含了两个基本的结论:稳定性定理和不稳定性定理。
阶微分方程的平衡点及其稳定性

数值模拟验证
通过数值模拟,我们验证了理论分析的正确性,并展示 了平衡点的稳定性和动态行为。
ABCD
稳定性分析
通过分析微分方程的线性化矩阵,我们确定了平衡点的 稳定性,并给出了稳定性条件。
应用价值
阶微分方程的平衡点及其稳定性研究在物理、工程、生 物等领域具有广泛的应用价值。
研究展望
深入研究其他类型的平衡点
PART 02
阶微分方程基础
REPORTING
WENKU DESIGN
定义与分类
一阶微分方程
描述一个变量随时间变化的速率与其当前值有关的方程。
二阶微分方程
描述一个变量的变化率与该变量的当前值和其变化率有关的方程。
高阶微分方程
描述一个变量的变化率与该变量的多个历史值有关的方程。
平衡点的概念
平衡点
阶微分方程的平衡点 及其稳定性
https://
REPORTING
• 引言 • 阶微分方程基础 • 平衡点的稳定性分析 • 平衡点的分岔现象 • 数值模拟与实例分析 • 结论与展望
目录
PART 01
引言
REPORTING
WENKU DESIGN
主题简介
阶微分方程是描述系统动态行为的数 学模型,平衡点是微分方程的解,表 示系统在某一状态下保持稳定。
当系统的参数发生变化时,平衡点的稳定性可能会发生改变,导致系统行为发生 突然变化,这种现象称为分岔。
分岔的类型与判别
01
叉形分岔
当系统参数变化时,平衡点数量 发生改变,从两个平衡点变为一 个或从一个变为两个。
鞍-结分岔
02
03
霍普夫分岔
当系统参数变化时,平衡点从稳 定变为不稳定或从不稳定变为稳 定。
稳定性理论

微分方程的稳定性理论简介一阶方程的平衡点及稳定性设有微分方程()()t f x x •= 〔1〕右端方程不显含自变量t ,称为自治方程。
代数方程的实根0x x =称为方程〔1〕的平衡点〔或齐点〕它也是方程〔1〕的解〔齐解〕。
如果存在某个邻域,使方程〔1〕的解()x t 从这个邻域内的某个(0)x 出发,满足0lim ()t x t x →∞= 〔3〕则称平衡点0x 是稳定的〔稳定性理论中称渐近稳定〕;否则,称0x 是不稳定的(不渐近稳定)推断平衡点0x 是否稳定点通常有两种方法。
利用定义即〔3〕式称间接法。
不求方程〔1〕的解()x t ,因而不利用〔3〕式的方法称直接法。
下面介绍直接法。
将()f x 在0x 点做Taylor 展开,只取一次项,方程〔1〕近似为'00()x t f x x x •=-()() 〔4〕〔4〕称为〔1〕的近似方程,0x 也是方程〔4〕的平衡点。
关于0x 点稳定性有如下结论:假设'0f x ()<0, 则0x 对于方程〔4〕和〔1〕都是稳定的; 假设'0f x ()>0,则0x 对于方程〔4〕和〔1〕都是不稳定的。
0x 对于方程〔4〕的稳定性很简单由定义〔3〕式证明,因为假设记'0()f x a =,则〔4〕的一般解是其中c 是由初始条件决定的常数,显然,当0a <时〔3〕式成立。
二阶方程的平衡点和稳定性二阶方程可用两个一阶方程表示为112212()(,)()(,)x t f x x x t g x x ⎧=⎪⎨⎪=⎩ 〔6〕右端不显含t ,是自治方程。
代数方程组 1212(,)0(,)0f x xg x x =⎧⎨=⎩ 〔7〕的实根011x x =,022x x =称为方程〔6〕的平衡点,记做00012(,)P x x 。
如果存在某个邻域,使方程〔6〕的解1()x t ,2()x t 从这个邻域内的某个12((0),(0))x x 出发,满足011lim ()t x t x →∞= ,022lim ()t x t x →∞= 〔8〕则称平衡点0P 是稳定的〔渐近稳定〕;否则,称0P 是不稳定的〔不渐近稳定〕。
66 微分方程稳定性理论简介 一阶方程的平衡点及稳定性

李敖:與大陸軍備競賽會拖垮台灣 2005-6-23 【大公網訊】 無黨籍「立委」李敖 23 日表示,台灣 與大陸軍備競賽是三輪車追汽車,越追越 遠,還未與大陸開戰,台灣的經濟就會被 拖垮,如同前蘇聯與美國軍備競賽,因經 濟崩潰而解體,因此不應購買愛國者三型 飛彈等三項軍購。
2
将f(x)在x0点作Taylor展开,只取一次项, 方程(1)近似为 & (t ) = f ′( x0 )( x − x0 ), x (4) (4)称为(1)的近似线性方程,x0也是方程(4)的 平衡点. 关于x0点稳定性有如下结论: 若f '(x0) < 0,则x0对于方程(4)和(1)都是 稳定的; 若f '(x0) > 0,则x0对于方程(4)和(1)都是 不稳定的.
6.6 微分方程稳定性理论简介 一阶方程的平衡点及稳定性 设有微分方程
& (t ) = f ( x ), x
(1)
右端不含字变量t,称为自治方程. 代数方程 f(x) = 0 (2) 的实根x = x0称为方程(1)的平衡点(或奇点). 它 也是(1)的解(奇解).
1
如果存在某个邻域,使方程(1)的解x(t) 从这个邻域内的某个x(0)出发,满足 lim x (t ) = x0 , (3) t →∞ 则称平衡点x0是稳定的(稳定性理论中称渐进 稳定); 否则,称x0是不稳定的(不渐进稳定). 判断平衡点x0是否稳定通常有两种方法. 利用定义即(3)式称间接法. 不求方程(1)的解 x(t),因而不利用(3)式的方法称直接法. 下 面介绍直接法.
⎪ ⎨ p = −( a1 + b2 ) . ⎪ q = det A ⎩
(13)
将特征根记作λ1, λ2,则 1 λ1 , λ2 = ( − p ± p 2 − 4q ). 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F(x)=0的根x0 ~微分方程的平衡点
xx 0 x x0 x
0
设x(t)是方程的解,若从x0 某邻域的任一初值出发,
都有
lim x ( t ) x , 称x0是方程(1)的稳定平衡点 0 t
产量模型
稳定性判断
F ( x0 ) E r, F ( x0 ) 0, F ( x1 ) 0
E r F ( x0 ) 0, F ( x1 ) 0
E~捕捞强度
x0稳定, x1不稳定
x0不稳定, x1稳定
r~固有增长率
F ( x0 )(x x0 ) (2) x
不求x(t), 判断x0稳定性的方法——直接法 (1)的近似线性方程
F ( x0 ) 0 x0稳定(对(2), (1)) F ( x0 ) 0 x0不稳定(对(2), (1))
6.1
背景
捕鱼业的持续收获
• 再生资源(渔业、林业等)与 非再生资源(矿业等) • 再生资源应适度开发——在持续稳 产前提下实现最大产量或最佳效益。
• 鱼销售价格p
• 单位捕捞强度费用c 收入 T = ph(x) = pEx 支出 S = cE
单位时间利润
R T S pEx cE
E R( E ) T ( E ) S ( E ) pNE(1 ) cE r r c r E ( 1 ) E* 求E使R(E)最大 R 2 pN 2 2 rN c 渔场 x N (1 E R ) N c hR (1 2 2 ) R 4 p N 2 2p 鱼量 r
建模
捕捞情况下 渔场鱼量满足
记 F ( x) f ( x) h( x)
x (t ) F ( x) rx(1 ) Ex x N
• 不需要求解x(t), 只需知道x(t)稳定的条件
x (t ) F ( x) rx(1 ) Ex x N E F ( x) 0 x0 N (1 ), x1 0 r 平衡点
稳定平衡点 x0 N (1 E / r )
捕捞 • 封闭式捕捞追求利润R(E)最大 过度 • 开放式捕捞只求利润R(E) > 0
令 E R( E ) T ( E ) S ( E ) pNE(1 ) cE =0 r
ER
r c (1 ) 2 pN
c Es r (1 ) pN
R(E)=0时的捕捞强度(临界强度) Es=2ER 临界强度下的渔场鱼量
c Es xs N (1 ) p r
S(E)
p , c
Es , xs
0
ER E*
T(E) Es r E
捕捞过度
问题 及 分析
• 在捕捞量稳定的条件下,如何控 制捕捞使产量最大或效益最佳。 • 如果使捕捞量等于自然增长量,渔 场鱼量将保持不变,则捕捞量稳定。
产量模型 假设
x(t) ~ 渔场鱼量
• 无捕捞时鱼的自然增长服从 Logistic规律 x (t ) f ( x) rx(1 x ) N r~固有增长率, N~最大鱼量 • 单位时间捕捞量与渔场鱼量成正比 h(x)=Ex, E~捕捞强度
F ( x) 0
f 与h交点P
0 x0*=N/2 x0
N
E r x0稳定
P的横坐标 x0~平衡点
* * 0
x
P的纵坐标 h~产量
产量最大 P ( x N / 2, hm rN / 4)
E hm / x r / 2
* * 0
控制渔场鱼量为最大鱼量的一半
效益模型
假设
在捕捞量稳定的条件下,控制捕捞 强度使效益最大.
x0 稳定, 可得到稳定产量
x1 稳定, 渔场干枯
在捕捞量稳定的条件下, 产量模型 图解法 控制捕捞强度使产量最大 F ( x) f ( x) h( x) y y=rx y=E*x x y=h(x)=Ex f ( x) rx(1 ) * P hm N P h h( x) Ex y=f(x)