水泥浆性能试验

合集下载

水泥浆性能试验

水泥浆性能试验

中国石油大学(钻井工程)实验报告实验日期:2014.12.04 成绩:班级学号:姓名:教师:同组者:油井水泥浆性能实验一、实验目的1.通过实验掌握油井水泥浆密度、流变性能的测定方法,掌握有关仪器的使用方法,对油井水泥浆基本性能的指标范围有一定的认识。

2.通过实验掌握水泥浆稠化时间的测量方法及常压稠化仪的操作方法,了解常用油井水泥的稠化性能与有关标准,充分认识水泥浆稠化时间对固井作业的重要性。

二、实验原理1.YM 型钻井液密度计是不等臂杠杠测试仪器。

杠杠左端为盛液杯,右端连接平衡筒。

当盛液杯盛满被测试液体时,移动砝码使杠杠主尺保持水平的平衡位置,此时砝码左侧边所对应的刻度线就是所测试液体的密度。

2.六转速粘度计是以电动机为动力的旋转型仪器。

被测试液体处于两个同心圆筒间的环形空间内。

通过变速传动外转筒以恒速旋转,外转筒通过被测试液体作用于内筒产生一个转矩,使同扭簧连接的内筒旋转了一个相应角度。

依据牛顿定律,该转角的大小与液体的粘度成正比,于是液体粘度的测量转变为内筒转角的测量。

反应在刻度盘的表针读数,通过计算即为液体粘度、切应力。

3.水泥浆常压稠化仪中有一带固定浆叶的可旋转的水泥容器。

浆杯由电机带动以150 转/分的转速逆时针转动,浆杯中的水泥浆给予浆叶一定的阻力。

这个阻力与水泥浆的稠度变化成比例关系。

该阻力矩与指示计的弹簧的扭矩相平衡,通过指针在刻度盘上指示出稠度值。

三、实验仪器、设备1.电子天平2.恒速搅拌器3.钻井液密度计4.六速旋转粘度计5.油井水泥常压稠化仪四、实验步骤1.标定常压稠化仪指示计实验前,应当在标定装置上对指示计进行标定,将铜套圈装在指示计上方;缺口对准指示计销轴,尼龙线一端系在指示的销轴上,另一端沿铜套圈沟槽绕一周,然后再沿滑轮的沟槽引下与吊钩连接。

标定时,在吊钩上装上砝码,读出指示计数值。

然后将吊钩、砝码用手托起,使指示计指针回到零。

接着松手让吊钩、砝码慢慢落下,读数。

如此反复几次,取平均值。

M40水泥浆配合比试验报告

M40水泥浆配合比试验报告

M40水泥浆配合比试验报告一、概述1、M40水泥浆主要用于桥梁工程的T梁预应力孔道压浆,设计强度等级M40,要求稠度14S-18S。

2、水泥采用重庆酉阳水泥厂“九鑫”P.O42.5普通硅酸盐水泥。

3、外加剂为:株洲振兴抗裂膨胀剂,掺量为水泥用量的8.0% 。

4、可饮用水。

5、水泥浆采用机械拌制。

二、设计计算依据1、确定配置强度fm.o M40水泥浆配合比δ取6fm.o=f2+0.645δfm.o=43.9Mpa2、根据设计要求水灰比不大于0.4.3、水泥浆稠度为14S-18S.4、膨胀率小于10%。

5、水泥浆的泌水率最大不得超过3%,拌和后3h泌水率控制在2%,泌水应在24h内全部被浆吸回。

6、配置强度取43.9 Mpa三、配合比的确定、试拌与调整根据设计计算依据,采用体积法得基准配合比为:W/f=0.39 C=1333 W=560 J=107 取水灰比0.39,外加剂摻量为水泥用量的8.0%拌制:取水泥10kg,外加剂0.8Kg,水4.2kg拌和,水全部用完。

测拌和物的稠度为15S,3h泌水率为3%,24h膨胀率为5%,泌水在24h内全部被浆吸回,满足设计要求。

实际测得M40水泥浆每立方米单位体积重为1986kg,符合要求。

计算得每立方米材料用量分别为:水泥:1324kg 水:556kg 外加剂:106kg四、减少水灰比0.02为0.37根据设计计算依据,采用体积法得基准配合比为:W/f=0.37 C=1352 W=540 J=108取水灰比0.37,外加剂摻量为水泥用量的8.0%拌制:取水泥10kg,外加剂0.8Kg,水4.0kg拌和,水全部用完。

测拌和物的稠度为17S,3h泌水率为2%,24h膨胀率为6%,泌水在24h内全部被浆吸回,满足设计要求。

实际测得M40水泥浆每立方米单位体积重为1990kg,符合要求。

计算得每立方米材料用量分别为:水泥:1344kg 水:538kg 外加剂:108kg五、减少水灰比0.02为0.35根据设计计算依据,采用体积法得基准配合比为:W/f=0.35 C=1372 W=518 J=110取水灰比0.35,外加剂摻量为水泥用量的8.0%拌制:取水泥10kg,外加剂0.8Kg水3.8kg拌和,水全部用完。

水泥物理性能试验报告

水泥物理性能试验报告

水泥物理性能试验报告水泥是一种常用的建筑材料,其物理性能对于其在建筑工程中的应用起着至关重要的作用。

本文将通过对水泥的物理性能试验进行详细分析和报告,以期能够总结出水泥在工程中的适用范围和注意事项。

首先,我们进行了水泥的初始和终凝时间试验。

实验结果显示,水泥的初始凝结时间为X小时,终凝时间为Y小时。

初始凝结时间指的是水泥和水混合后具备一定强度的时间,而终凝时间则是指水泥浆体全部凝结的时间。

这两个时间对于混凝土的施工至关重要。

如果初始凝结时间过长,施工过程中会导致浆体变得过于稀薄,难以保持形状。

而终凝时间过短,则会给施工工人带来压力,过早进行下一道工序可能会导致不良的质量问题。

因此,在工程中选择合适的水泥时需要注意这两个指标。

其次,我们进行了水泥的抗压强度试验。

实验表明,水泥的抗压强度为Z兆帕。

抗压强度是水泥的重要性能参数,它体现了水泥在承受压力时的能力。

在设计建筑结构时,需要根据所承受的载荷选择合适的水泥抗压强度。

如果水泥抗压强度过低,则会导致建筑物的不稳定和安全隐患。

另外,水泥抗压强度与水泥的配比、固化条件等也有一定关联,因此在工程中需要综合考虑这些因素。

此外,我们还进行了水泥的抗拉强度试验。

实验结果显示,水泥的抗拉强度为K兆帕。

抗拉强度是指材料在受拉状态下所能承受的最大拉应力。

在建筑中,水泥常用于混凝土的配筋,并承受着梁、柱等结构中的拉力。

因此,水泥的抗拉强度对于保证建筑结构的稳定和安全性非常重要。

在实际工程中,我们通常会根据设计要求和结构承受拉力的大小选择相应抗拉强度的水泥。

最后,我们进行了水泥的抗冻性试验。

实验结果显示,在经过X次冻融循环后,水泥的抗冻性仍然良好,无明显的剥落、龟裂等现象。

抗冻性是指材料在冻融循环过程中的耐久性能。

在寒冷地区的建筑工程中,水泥所处的环境温度会发生较大的变化,如果水泥的抗冻性能差,就容易因为冻融循环引起开裂、剥落等问题,从而影响结构的稳定性。

因此,选择具有良好抗冻性能的水泥对于这类工程非常重要。

水泥试验报告

水泥试验报告

水泥试验报告一、试验目的。

本次试验旨在对水泥进行性能测试,以评估其在建筑材料中的适用性和质量稳定性。

二、试验方法。

1. 水泥初凝时间测试,按照GB/T 1346-2011《水泥初凝时间和终凝时间的测定方法》进行测试,记录水泥浆体开始凝结的时间。

2. 水泥减水率测试,采用GB/T 8077-2000《水泥减水剂减水率的测定》标准,测定水泥的减水率。

3. 水泥强度测试,按照GB/T 17671-1999《水泥标准砂浆和混凝土强度的试验方法》进行测试,测定水泥的抗压强度和抗折强度。

三、试验结果。

1. 初凝时间,根据试验结果,水泥的初凝时间为3小时15分钟,符合国家标准要求。

2. 减水率,经测试,水泥的减水率为12%,达到了建筑材料中的使用要求。

3. 强度测试,水泥的抗压强度为42MPa,抗折强度为6.5MPa,均符合建筑材料的标准要求。

四、试验分析。

根据试验结果分析,本次水泥试验表现出良好的性能。

初凝时间适中,减水率和强度均符合建筑材料的使用要求,表明该水泥在实际工程中具有较好的适用性和稳定性。

五、试验结论。

综上所述,本次水泥试验结果良好,水泥性能稳定,适用于建筑材料中的使用。

建议在实际工程中,合理控制水泥的用量和配合比,以确保施工质量和工程安全。

六、参考文献。

1. GB/T 1346-2011《水泥初凝时间和终凝时间的测定方法》。

2. GB/T 8077-2000《水泥减水剂减水率的测定》。

3. GB/T 17671-1999《水泥标准砂浆和混凝土强度的试验方法》。

七、附录。

1. 试验记录表。

2. 试验仪器设备清单。

以上为本次水泥试验报告的全部内容。

水泥实验实验原理

水泥实验实验原理

水泥实验实验原理
水泥实验是通过一系列试验来测试水泥的物理和化学性能。

实验原理主要涉及以下几个方面:
1. 流动度测试:流动度测试是检测水泥浆体流动性的方法。

该实验使用几何模型装置,将一定量的水泥浆体置于模型中,然后测量浆体在自身重力作用下的流动性能。

流动度越大,说明水泥浆体的流动性越好。

2. 凝结时间测试:凝结时间测试用于评估水泥浆体的凝结速度。

实验中,预先配制一定比例的水泥浆体,然后通过观察其外观和测量其凝结时间来评估水泥的凝结速度。

3. 强度测试:强度测试是评估水泥的力学性能的重要方法。

实验中通常使用压力机对水泥试样进行加载,测量其抗压强度或抗拉强度。

这种测试方法能够确定水泥的强度特性以及其在特定条件下的耐久性。

4. 化学分析:化学分析用于确定水泥中主要成分的含量和比例。

实验中通常采用化学分析方法,如X射线衍射分析(XRD)
和扫描电子显微镜(SEM)等,来确定水泥中典型成分(如
矿物质相和化学成分)的含量和化学组成。

以上是水泥实验的一些基本原理,通过这些实验可以评估水泥的基本性能和质量,为水泥在工程中的应用提供依据。

水泥浆体自由膨胀率试验数据

水泥浆体自由膨胀率试验数据

水泥浆体自由膨胀率试验数据水泥浆体自由膨胀率试验是评估水泥浆体在一定条件下的膨胀性能的实验方法。

膨胀率是指水泥浆体在固化过程中的膨胀程度,该实验数据可以为工程设计和施工提供参考依据。

以下将详细介绍水泥浆体自由膨胀率试验数据,以及其相关的背景知识和试验步骤。

背景知识:水泥浆体是由水泥、水和掺合材料以及其他添加剂组成的混合材料,常用于建筑工程中的灌注、填缝、砌筑等施工过程。

在固化过程中,水泥浆体会发生膨胀,而膨胀率的大小对工程施工具有重要影响。

因此,进行水泥浆体自由膨胀率试验可以评估水泥浆体的膨胀性能,为工程设计和施工提供重要依据。

试验步骤:1.准备试验材料:-水泥:选择一种常用的水泥作为试验材料,并控制其含水量。

-水:用干净的水掺和水泥,按照一定比例进行配制。

-掺合材料和添加剂:可根据具体需要选择合适的掺合材料和添加剂。

2.配制水泥浆体:-按照一定比例将水和水泥混合搅拌,直至达到均匀的浆状物。

-如果需要,可以在水泥浆体中添加掺合材料和添加剂,按照一定比例进行混合。

3.浆体养护:-将配制好的水泥浆体倒入试验模具中。

-利用振动器或震动台进行振动,以排除空气和提高浆体的密实性。

-将振动后的试样进行养护,在一定温度和湿度条件下,等待其固化。

4.测量膨胀率:-在固化一定时间后,采用测量工具(如卡尺、游标卡尺等)测量试样的尺寸变化。

-按照一定的时间间隔重复测量,记录每次测量结果。

-根据测量数据计算膨胀率,可以采用以下公式进行计算:膨胀率(%)=(试样尺寸变化值/初始尺寸)× 100%5.分析数据:-对测量到的膨胀率数据进行整理和分析。

-可以绘制膨胀率随时间变化的曲线图,以便更直观地观察膨胀特性。

按照以上步骤进行水泥浆体自由膨胀率试验,得到的试验数据即为水泥浆体在特定条件下的膨胀性能。

这些数据可以用于评估水泥浆体在固化过程中的体积变化,为实际的工程施工提供科学依据。

需要注意的是,水泥浆体自由膨胀率试验只是评估水泥浆体在特定条件下的膨胀性能,并不能完全代表其在实际施工中的情况。

水泥基灌浆料的性能实验研究

水泥基灌浆料的性能实验研究

水泥基灌浆料的性能实验研究摘要:水泥基灌浆料是目前注浆工程中应用最广泛的浆材,泥基灌浆料与传统细石混凝土相比 , 具有流动性更好、强度更高和施工易于控制的特点 ; 与传统环氧砂浆相比 ,具有膨胀性好、施工简便快捷等特点。

本文主要通过实验来研究水泥基灌浆料的流动性,竖向膨胀率,有效承载面,抗压强度性能。

关键字:水泥基灌浆料流动性竖向膨胀率有效承载面抗压强度Experimental study on performance ofcement-based groutAbstract:Cement-based grout grouting project is currently the most widely used pulp wood, clay-based grouting material compared to traditional fine aggregate concrete has better mobility, higher strength and construction features easy to control; with traditional epoxy mortar compared with the expansion is good, quick and easy construction and so on. In this paper, cement-based grout to study the mobility, vertical expansion through experiments, the effective bearing surface, compressive strength and properties.Key word:Cement-based grout Liquidity vertical expansion effective bearing surface compressive strength目录1.水泥基灌浆料 (3)1.1水泥基灌浆料研究的背景和意义 (3)1.2 国内外灌浆材料研究概况 (3)1.2.1 国外灌浆材料研究概况 (3)1.2.2 国内灌浆材料研究概况 (4)2水泥基灌浆料特性的物理化学性质 (5)3.高性能水泥基灌浆料性能试验 (6)3.1实验材料 (6)3.2试验主要测试技术指标 (6)3.3试验方法 (7)3.3.1流动性 (7)3.3.2竖向膨胀率 (7)3.3.3有效承载面 (8)3.3.4抗压强度 (9)4配合比设计及主要试验结果 (10)5试验结果分析及展望 (11)参考文献 (13)致谢 (16)1.水泥基灌浆料1.1水泥基灌浆料研究的背景和意义水泥基灌浆料是一种由水泥、骨料(或不含骨料)、外加剂和矿物掺和料等原材料, 经工厂化配制生产而成的具有合理级配的干混料。

水泥浆体化学收缩试验方法国标

水泥浆体化学收缩试验方法国标

水泥浆体化学收缩试验方法国标摘要:一、引言二、水泥浆体化学收缩试验方法概述1.试验目的2.试验原理3.试验方法4.试验设备与材料三、国标规范要求1.试验条件2.试验步骤3.结果计算与分析四、试验注意事项1.安全操作2.试验环境要求3.设备维护与保养五、结论与建议正文:一、引言水泥浆体化学收缩试验方法是研究水泥浆体在硬化过程中化学反应对其体积变化的影响的重要手段。

通过该试验,可以了解水泥浆体的化学收缩特性,为优化水泥浆体配方、提高混凝土性能提供理论依据。

本文将介绍水泥浆体化学收缩试验方法的国标规范,以期为相关领域的研究和工作者提供参考。

二、水泥浆体化学收缩试验方法概述1.试验目的水泥浆体化学收缩试验的目的是测定水泥浆体在硬化过程中化学反应引起的体积变化,从而评价水泥的性能和应用效果。

2.试验原理水泥浆体化学收缩试验基于水泥硬化过程中化学反应产生的体积变化原理。

在试验过程中,通过测量水泥浆体在不同时间点的体积,计算其体积变化率,从而得到水泥浆体的化学收缩率。

3.试验方法试验采用干燥法、浸渍法、热膨胀法等多种方法测定水泥浆体的化学收缩。

具体操作方法可参考GB/T 23439-2017《水泥浆体化学收缩试验方法》国家标准。

4.试验设备与材料试验设备包括:天平、量筒、干燥器、恒温水浴、热膨胀仪等。

试验材料主要为水泥、水、附加剂等。

三、国标规范要求1.试验条件试验应在恒温、恒湿的环境中进行,温度控制在20±2℃,相对湿度不低于50%。

2.试验步骤(1)配制水泥浆体:按一定比例将水泥、水、附加剂混合均匀,制成具有一定稠度的浆体。

(2)装模:将浆体倒入模具,密封模具,避免水分蒸发。

(3)养护:将模具置于恒温水浴中,保持温度20±2℃,湿度不低于50%,分别在不同时间点测定浆体体积。

(4)结果计算与分析:根据测得的浆体体积数据,计算化学收缩率,分析水泥浆体的化学收缩特性。

3.结果计算与分析(1)化学收缩率计算:根据试验数据,计算各时间点水泥浆体的体积变化,以百分比表示化学收缩率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国石油大学(钻井工程)实验报告实验日期:成绩:班级学号:姓名:教师:同组者:油井水泥浆性能实验一、实验目的1.通过实验掌握油井水泥浆密度、流变性能的测定方法,掌握有关仪器的使用方法,对油井水泥浆基本性能的指标范围有一定的认识。

2.通过实验掌握水泥浆稠化时间的测量方法及常压稠化仪的操作方法,了解常用油井水泥的稠化性能与有关标准,充分认识水泥浆稠化时间对固井作业的重要性。

二、实验原理1.YM 型钻井液密度计是不等臂杠杠测试仪器。

杠杠左端为盛液杯,右端连接平衡筒。

当盛液杯盛满被测试液体时,移动砝码使杠杠主尺保持水平的平衡位置,此时砝码左侧边所对应的刻度线就是所测试液体的密度。

2.六转速粘度计是以电动机为动力的旋转型仪器。

被测试液体处于两个同心圆筒间的环形空间内。

通过变速传动外转筒以恒速旋转,外转筒通过被测试液体作用于内筒产生一个转矩,使同扭簧连接的内筒旋转了一个相应角度。

依据牛顿定律,该转角的大小与液体的粘度成正比,于是液体粘度的测量转变为内筒转角的测量。

反应在刻度盘的表针读数,通过计算即为液体粘度、切应力。

3.水泥浆常压稠化仪中有一带固定浆叶的可旋转的水泥容器。

浆杯由电机带动以150 转/分的转速逆时针转动,浆杯中的水泥浆给予浆叶一定的阻力。

这个阻力与水泥浆的稠度变化成比例关系。

该阻力矩与指示计的弹簧的扭矩相平衡,通过指针在刻度盘上指示出稠度值。

三、实验仪器、设备1.电子天平2.恒速搅拌器3.钻井液密度计4.六速旋转粘度计5.油井水泥常压稠化仪四、实验步骤1.标定常压稠化仪指示计实验前,应当在标定装置上对指示计进行标定,将铜套圈装在指示计上方;缺口对准指示计销轴,尼龙线一端系在指示的销轴上,另一端沿铜套圈沟槽绕一周,然后再沿滑轮的沟槽引下与吊钩连接。

标定时,在吊钩上装上砝码,读出指示计数值。

然后将吊钩、砝码用手托起,使指示计指针回到零。

接着松手让吊钩、砝码慢慢落下,读数。

如此反复几次,取平均值。

2.配制水泥浆配制水泥浆之前必须确定水灰比。

合理的水灰比是保证水泥环具有足够的抗压强度和水泥浆良好的可泵性的前提。

当水灰比过大时,水泥浆难以搅拌和泵送,在环空流动将产生很高的摩擦阻力。

如遇渗透性好的低压井段,则产生压差滤失,使水渗入地层,造成憋泵事故。

水灰比过小,水泥环将达不到要求的抗压强度。

API 标准推荐的水灰比见表1。

表1 API 的水灰比(W/C)标准①按实验时要求的水灰比计算水泥和水的重量(如水灰比)。

②在天平上称取 600 克水泥,用量筒取相应的水量300 克。

③加入促凝剂氯化钙24克,放入水中搅拌。

④将量出的水倒入搅拌器的杯内,启动搅拌机,调节转数为 4000 转/分。

将称出的干水泥在15 秒内加入水中。

然后调节搅拌器转数为12000 转/分,继续搅拌35秒。

3.测定水泥浆的稠化时间①将浆杯轻轻放入杯套内,使浆杯、杯套的缺口对齐。

②打开总电源开关。

按照实验中升温方案的初始值,设置温度拨码式调节器的下一排数字。

然后接通加热器电源。

在温度完全稳定后,再进行下列步骤。

③将调整好的指示计倒置,装上浆叶。

④将配好的水泥浆小心的倒入浆杯,直到水泥浆与杯内壁上的刻线相平。

⑤接通电机电源,电机带动浆杯转动。

同时记住开机时间。

⑥每隔一定时间记录时间和稠度值。

当指示计指针指到100Bc的时候,关闭电机电源。

⑦关闭加热器电源。

取出指示计和浆杯,注意浆杯温度较高,切勿烫伤。

⑧将水泥浆倒入桶内。

用水冲洗浆杯和浆叶,擦干并涂上油脂,放在仪器右侧。

4.测定水泥浆的密度①按2配置的水泥浆倒入样品杯,边倒边搅拌;倒满后再搅拌 25 次除去气泡。

②盖好盖子并洗净从盖中间小孔溢出的水泥浆。

③用滤纸或面巾纸将密度计上的水擦干净。

④然后将密度计放在支架上,移动游码,使支架内气泡居中。

⑤读出游码左侧所示的水泥浆密度值。

⑥测定完毕,将样品杯中的水泥浆倒掉,用水彻底清洗各部件并将其擦干净。

5.测定水泥浆的流变参数液体的流变性是指液体在外力作用下所产生的流动和变形特性。

①检查仪器各转动部件、电器及电源插头是否安全可靠。

②向左旋转外转筒,取下外转筒。

将内筒逆时针方向旋转并向上推与内筒轴锥端配合。

向右旋转外转筒,转上外转筒。

③接通电源。

④拉动三位开关,调至高速或低速挡。

⑤仪器转动时,轻轻拉动变速杠杠的红色手柄,根据标示变换所需要的转速。

⑥将仪器以300r/min 和600r/min 转动,观察外转筒不得有摆动。

如有摆动应停机重新安装外转筒。

⑦以300r/min转动,检查刻度盘指针零位是否摆动。

如指针不在零位,应参照仪器校验的“空载零位校验”。

⑧ 将刚搅拌过的钻井液倒入样品杯内至刻度线处(350ml ),立即置于托盘上,上升托盘使杯内液面达到外筒刻度线处。

⑨ 由高速到低速:300、200、100、6、3r/min 连续测量,待刻度盘的读数稳定后,分别记录各速度梯度下的读数。

对其他触变性流体应在固定速度梯度下,剪切一定时间,取最小的读数为准;也可以采用在快速搅拌后,迅速转为低速进行读数的方法。

⑩ 样品的粘度、切应力等测试和计算参照“数据测试及计算”进行。

⑪ 测试完毕后,关闭电源,松开扳板手轮,移开样品杯。

⑫ 轻轻卸下外转筒,并将内筒逆时针方向旋转垂直向下用力,取下内筒。

⑬ 清洗外转筒,并擦干,将外转筒安装在仪器上,清洗内筒时应用手指堵住锥孔,以免脏物和液体进入腔内,内筒单独放置在箱内固定位置。

五、数据处理1.水泥浆配方(1)水泥400克+水灰比(2)水泥500克+氯化钙3%+水灰比 2.水泥浆密度为:cm 3(常温常压下进行)。

3.流变参数计算(1)水泥浆的流变性能:实验温度及压力条件:常温、常压。

实验所测粘度计读数如表2所示:表2 粘度计度数20010030010058420.590.50.036942F θθθθ--===≠±--所以选用幂律模式,有:300100692.092lg2.092lg 0.45142n θθ=⨯=⨯=300n0.451690.5110.511 2.117511511K θ==⨯=4.水泥浆的稠化时间实验温度及压力条件:750C 、常压。

实验所测数据如表2所示:表3 不同时刻的水泥浆稠度时间(min ) 510 15 20 2530 35 稠度(Bc )由上表作水泥浆稠化曲线如下图:图1 水泥浆稠化曲线由上图可知:38分钟以后,曲线近似为直线,作趋势线得到水泥浆稠度达到100Bc 时的时间为75min ,故该实验所用的水泥浆稠化时间为75min 。

六、思考题1、除了以上测定的水泥浆密度、流变参数和稠化时间外,还有其它哪些参 数来表征水泥浆的性能答:水泥浆的失水、水泥浆的凝结时间、水泥石的强度和水泥石的炕蚀性也能表征水泥浆的性能。

2.除实验中所选用的两种流变模式外,调研现场使用的其它流变模式并对比分析各流变模式的优缺点试结合资料推导流变参数的计算公式3.查阅1~2篇油井水泥浆研制及应用方面的文献,理解水泥浆体系的研制方法和过程,比较不同类型水泥浆所评价的性能参数的差异(1)硅酸盐水泥比重和容重、细度、稠度用水量、凝结时间(2)普通硅酸盐水泥普通硅酸盐水泥与硅酸盐水泥的差别、仅在于其中台有少量混合材料,而绝大部分仍是硅吱盐水泥熟料,故其基本性能与硅酸盐水泥相同(3)矿渣硅酸盐水泥由硅酸盐水泥熟料和粘化高炉矿渣,加入适量石膏磨细制成的水硬性胶凝材料称为矿渣硅酸盐水泥。

水泥中版化高炉矿渣掺加量按重量百分比1t—为20一70%,矿渲硅酸盐水泥的纫度、凝结时间及体积安定性的要求与硅酸盐水泥相同。

(4)火山灰质硅酸盐水泥在硅酸盐水泥熟料中,按水泥成品重量加入20一50%火山灰质混合材料和适量石膏,磨细后制成。

(5)粉媒友硅酸盐水泥在硅酸盐水泥熟料中,按水泥成品重量加入20一40%的勒煤灰和适量石膏,磨细后制成。

4、以下不同的水泥浆稠化曲线,哪种所代表的水泥浆性能好,为什么答:水泥浆的调成之后,随着水化反应的进行,水泥浆变稠,流动性变差。

在注水泥时用泵注入及顶底过程中,可能会出现水泥浆流动越来越困难,直到不能被泵入,,此时,虽然还没有达到水泥的凝固,但已无法用泵注入基顶替了。

所以,对于施工周期长的深井注水泥,就应当有较长的水泥稠化时间为保证。

因此,③的泥浆性能好一些。

图2 不同水泥浆稠化曲线七、实验总结通过本次实验我掌握了油井水泥浆密度、流变性能的测定方法,掌握了有关仪器的使用方法,对油井水泥浆基本性能的指标范围有一定的认识。

同时,我掌握了水泥浆稠化时间的测量方法及常压稠化仪的操作方法,了解了常用油井水泥的稠化性能与有关标准,充分认识了水泥浆稠化时间对固井作业的重要性。

本次实验操作较为复杂,我们组各组员分工明确,于是顺利完成实验。

本次实验锻炼了我们的团队合作能力。

最后,感谢老师的悉心指导!。

相关文档
最新文档