论文浅谈反证法

论文浅谈反证法
论文浅谈反证法

.

华中师范大学高等教育自学考试

本科毕业生论文评审表

论文题目:浅谈反证法

准考证号:

姓名:***

专业:数学教育

学生类型:独立本科段(助学班/独立本科段)

2011年12 月20日

华中师范大学高等教育自学考试办公室印制

. kszl

论文容摘要

目录

1引言 (3)

2反证法的定义及步骤 (4)

2.1反证法的定义 (4)

2.2反证法的步骤 (4)

3反证法的逻辑依据及分类 (5)

3.1反证法的逻辑依据 (5)

3.2反证法的分类 (5)

4反证法如何正确的作出反设 (6)

5反证法如何正确的导出矛盾 (8)

6何时宜用反证法 (9)

6.1基本命题,即学科中的起始性命题 (10)

6.2命题结构采取否定形式,结论反面却是肯定判断 (11)

6.3有关唯一性的问题 (11)

6.4命题结论是“至多”“至少”形式 (12)

6.5命题结论涉及无限集或数目不确定的对象 (12)

6.6某些起始命题 (13)

6.7难证的逆命题 (13)

6.8命题结论的反面较结论本身具体、简单、直接证明难以下手时 (13)

7在中学数学中常用的反证法思想的题型分析 (14)

7.1结论本身以否定形式出现的一类命题例 (14)

7.2有关结论是以“至多...”或“至少...”的形式出现的一类命题例. (14)

7.3关于存在性、唯一性的命题例 (14)

7.4结论的反面比原结论更具体更容易研究和掌握的命题例 (15)

7.5无穷性命题 (15)

8结论 (16)

参考文献 (17)

1引言

南方某风水先生到北方看风水,恰逢天降大雪。乃作一歪诗:“天公下雪不下雨,雪到地上变成雨;早知雪要变成雨,何不当初就下雨。”他的歪诗又恰被一牧童听到,亦作一打油诗讽刺风水先生:“先生吃饭不吃屎,饭到肚里变成屎;早知饭要变成屎,何不当初就吃屎。[1]”

实际上,小牧童正是巧妙运用了反证法,驳斥了风水先生否定事物普遍运动的规律,只强调结果,不要变化过程的形而上学的错误观点:假设风水先生说的是真理,只强调变化最后的结果,不要变化过程也可,那么,根据他的逻辑,即可得出先生当初就应吃屎的荒唐结论。风水先生当然不会承认这个事实了。那么,显然,他说的就是谬论了。

这就是反证法的威力,一个原本复杂难证的哲学问题被牧童运用了“以其人之道,还其人之身”的反证法迎刃而解了。

2反证法的定义及步骤

2.1反证法的定义

先提出于结论相反(相排斥)的假设,然后推导出和已知证明的定理或公理、定义、题设、相矛盾的结果,这样就证明了于结论相反的假设不能成立,从而肯定了原来的结论必定成立,这种间接证明的方法叫反证法[2]。

2.2反证法的步骤

用反证法证明一个命题的步骤大体上可以分为三个步骤:

(1)反设——假设待证结论不成立,亦即肯定待证结论的反面,并将其作为增加条件,添加到给定的题设中去。

(2)归谬——从题设和反设出发,通过推理和论证,最终推出矛盾。

(3)结论——说明待证命题结论的反面不能成立,再根据排中律(否定反面,肯定正面),从而肯定欲证命题的结论[3]。

例2.1.1已知:?∈?????B a B A a ,,, 求证:直线AB 和a 是异面直

线。

证明:【提出假设】假设直线AB 和a 在同一

平面内,

那么这个平面一定经过点B 和直线。

【推出矛盾】因为a B ?,经过点B 和直线 a 只能有一个平面?

所以直线AB 与a 应在平面?

所以 ?∈A ,这与已知??A 矛盾。

3反证法的逻辑依据及分类

3.1反证法的逻辑依据

反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。排中律是在同一思维过程中,两个矛盾的思想必有一个是真的[4]。

排中律常用公式排中律用公式表示为“A或者非A”,即“A∨?A”。意即∨真或?真。其中∨和?表示两个互相矛盾的概念或判断。

排中律要求人们思维有明确性,避免模柃两可。它是同一律和矛盾律的补充和发挥,进一步指明正确的思维不仅要求确定,不互相矛盾而且应该明确地表示肯定还是否定,不能模柃两可,不能含糊不清。排中律和矛盾律都不允许有逻辑矛盾,违反了排中律,同时也违反了矛盾律,所以两者是互相联系的。它们的区别在于:矛盾律指出两个互相矛盾的判断,不能同真,必有一假;排中律则指出两个矛盾判断,不能同假,必有一真。

排中律是反证法的逻辑基础,当直接证明某一判断的正确性有困难时,根据排中律,只要证明这一判断的矛盾判断是假就可以了。例如,要证明a不是有理数有困难时,只要证明a 是有理数为假就可以了。

3.2反证法的分类

按照反设所涉及到的情况的多少,反证法可以分为归谬反证法与穷举反证法。

(1)若结论的反面只有一种情况,那么,反设单一,只须驳倒这种情形,便可达到反设的目的,这叫归谬反证法。

例3.2.1已知m为整数,且m2是偶数,求证:m为偶数。

分析:本题如果用直接法来证明的话,给人一种无从下手的感觉,题目给我们的已知条件是很简单的,我们只能从反面去考虑它,由已知条件,我们知道,m为整数,且m2是偶数,所以,我们只需证当m为奇数的时候m2不是偶数就可以了。

证明:假设m不是偶数,则m为奇数。设m=2k+1(k为整数),所以

于是,m2为奇数,这与已知条件m2是偶数矛盾。故m为偶数。

(2)若结论的反面不止一种情形,那么,要将各个反面情形一一驳倒,才能肯定原命题正确,这叫穷举反证法。

4反证法如何正确的作出反设

运用反证法证明命题的第一步是:假设命题的结论不成立,即假设结论的反面成立。在这一步骤中,必须注意正确的反设,这是正确运用反证法的基础、前提,正确作出反设,是使用反证法的一大关键否则,如果错误地“否定结论”,即使推理、论证再好也都会前功尽弃。要想正确的做出反设,必须注意以下几点:

(1)分清命题的条件与结论,结论与反设间的逻辑关系。 例4.1.1试证合适xy+yz+zx=1的实数x 、y 、z 必不能满足x+y+z=xyz 。

分析:首先我们要弄清楚题目的意思,根据题目给我们的意思,我们很难用直接法对它进行证明,所以我们考虑用反证法,同时我们要注意正确作出反设,由题目我们知道实数x 、y 、z 能满足方程xy+yz+zx=1但不满足方程x+y+z=xyz,所以我们作出反设的时候要设实数x 、y 、z 既能满足xy+yz+zx=1,又能满足x+y+z=xyz 。我们知道实数x 、y 、z 就是方程xy+yz+zx=1和方程x+y+z=xyz 联立起来的方程组的一个实数根,我们可以根据这个特点去寻找矛盾。对于含有多个字母的给定式,在计算时尽量设法减少字母的个数,这是一个原则。

(2)结论的反面常常不止一种情形,则需反设后,分别就各种情况归谬,做到无一遗漏。 例4.1.2已知: 233=+q p ,求证:2≤+q p 。

分析:此题的结论有两种情况,其否定只有一种情况q p +>2,因此用反证法证明时,只要否定了这种情况,就能肯定2≤+q p 的这种情况了。

证明:假设q p +>2,则q >p -2

3q ∴>326128p p p -+-

33q p +∴>26128p p +- =??? ?

?++-311262p p =()2162-+p = 由此可知:233≠+q p ,这与已知矛盾。

∴2≤+q p

反证法在数学解题中的应用

反证法在数学解题中的应用 我们在解决数学问题时,一般是从正面入手,这就是所谓的正向思维,但往往也会遇到从正面入手困难,或出现一些逻辑上的困境的情形,这时就要从辩证思维的观点出发,运用逆向思维克服思维定势的消极面,从习惯思路的反方向去分析问题,运用反证法解决问题。 一、反证法的逻辑基础 证明命题“A B”时如果用这种方法:假设A∧B为真,在A且B的条件下,合乎逻辑地推出一个矛盾的结果(不论是与A矛盾还是与其他已知正确的结论矛盾或自相矛盾),从而B成立(即A B成立),这种方法就是反证法。 二、反证法的解题步骤 第一步审题,弄清命题的前提和结论; 第二步否定原命题,由假设条件及原命题构成推理的基础; 第三步由假设出发,根据公理、定义、定理、公式及命题的条件,正确逻辑推理,导出逻辑矛盾; 第四步肯定原命题的正确性。 三、什么情况下考虑应用反证法 1待证命题的结论是唯一存在性命题 例1设方程x=p sin x+a有实根(0<p<1,a是实数),求证实根唯一。 证明:假设方程存在两个不同实根x1,x2,则有 x1=p sin x1+a,x2=p sin x2+a x1-x2=p sin x1-sin x2=2p cos x1+x22sin x1-x22 由于cos x1+x22│≤1,从而有│x1-x2│≤2p│sin x1-x22│又sin x1-x22≤x1-x22,故x1-x2≤p x1-x2,但x1≠x2,于是p≥1,与0<p<1矛盾。所以方程若有实根,则根唯一。 2采取直接证法,无适宜的定理作为根据,甚至无法证明。 例2已知A、B、C、D是空间的四点,ABGN CD是导向直线,求证AC和BD、AD和BC也都是异面直线。 分析:证AC和BD是异面直线,即证明AC和BD不在同一平面内,考虑反证法。 证明:假定AC和BD不是异面直线,那么AC和BD在同一平面内,因此A、B、C、D不是异面直线,这与已知条件矛盾。所以AC和BD是异面直线。 3待证命理的结论是以“至少存在”的形式出现的,“至少存在”的反面是“必定不存在”,所以只要证明“必定不存在”不成立即可。 例3设p1p2=2(q1+q2)求证方程x2+p1x+q1=ox2+p2x+q2=0中至少有一个方程有实根。 证明:假设两方程都无实根,则 p12-4q1<0,p22-4q2<0,两式相加,有p21+p22<4(q1+q2)(1) 而p1p2=2(q1+q2)代入(1)得p21+p22<2p1p2,这与p21+p22≥2p1p2矛盾。 故假设不成立,原命题正确。 4待正命题含有涉及各种“无限形式”的结论,由于中学没有直接证明“无限”的手段。而结论的反面却是“有限”,故常常借助于反证法。 例4证明实数lg3是无理数。 证明:假设lg3是有理数。则它可以表示成lg3=mn(m,n是互质的正整数,由对数的定义,得10=3″)。但10是偶数,而3″是奇数,矛盾。因此实数lg3是无理数。

反证法_议论文的论证方法

反证法_议论文的论证方法 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 顾名思义,反证不是从正面直接来证明论点,而是从反面间接地证明论点。这是运用演绎推理形式进行论证的一种方法。先看下面一例: 假如当初诸葛亮不留人情,而是派其他可靠的将领去拦守华容道,那么,可能曹操会被擒拿;又假如从那次吸取教训,这一次秉公办事,不管马谡怎样拍胸脯,下保证,不合适就不用,那么就有可能避免失街亭的悲剧。而事实恰恰相反,诸葛亮并未从第一次失策中吸取经验教训,而是在重蹈覆辙后,才“深恨自己之不明”,流涕斩了马谡。 这段文字中“如果”之后用的便是反证法:不是从正面讲,而是从反而讲。“如果”是分析文章的好形式。袁隆平的事迹也许经常会写入你的作文中。一般的同学都只是正面来写,往往写他是个科学家,他的名字叫袁隆平,获得了什么奖。这样写不形象,不深入,不细致。学一学“如果”吧: 如果袁隆平仅仅是为了个人的生活美好,他不会穿着水鞋,戴着草帽,农民着,科学着;如果他仅仅是

为了钱而生存,他就不会拿着500万的科技大奖还生活得那么朴素而又纯净;如果他也像普通人一样不善于思考,杂交水稻也不会靠近他。 反证法,论证更有力量。例如: 如果梭罗没有挣脱嘈杂城市的束缚,瓦尔登湖的涟漪也不会在他的心中荡漾;如果梭罗没有漫步湖畔清爽的阳光里,那么恬静的清明也不会属于他;如果梭罗倾向于那些为金钱而束缚的人们,他也不会拥有属于他的那些冷雨。 如果梭罗没有走进大自然他就不会有清新自然的文字;如果梭罗沉醉于纸醉金迷的城市生活,就不会感受到置身田园的欣慰;如果梭罗没有在烈日当空晒下辛勤地劳作,猛烈的暴风雨将不会是最好的伴侣,使他充实,他的耳朵就听不到美好的音乐。 如果贝利没有在生活中时时刻刻保持着清醒,他不会成为备受世人注目的球王;如果没有在球场上时刻保持着清醒,他也不会多次捧起“大力神”杯;如果在人们的赞美声中贝利不是每分钟都时刻保持着清醒,那么他的后代就会真的忘记了如何在困难中奋起,在贫困中胜利。 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!

反证法证明题简单

反证法证明题简单 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

反证法证明题 例1.已知A ∠,B ∠,C ∠为ABC ?内角. 求证:A ∠,B ∠,C ∠中至少有一个不小于60o . 证明:假设ABC ?的三个内角A ∠,B ∠,C ∠都小于60o , 即A ∠<60o ,B ∠<60o ,C ∠<60o , 所以O 180A B C ∠+∠+∠<, 与三角形内角和等于180o 矛盾, 所以假设不成立,所求证结论成立. 例2.已知0a ≠,证明x 的方程ax b =有且只有一个根. 证明:由于0a ≠,因此方程ax b =至少有一个根b x a = . 假设方程ax b =至少存在两个根, 不妨设两根分别为12,x x 且12x x ≠, 则12,ax b ax b ==, 所以12ax ax =, 所以12()0a x x -=. 因为12x x ≠,所以120x x -≠, 所以0a =,与已知0a ≠矛盾, 所以假设不成立,所求证结论成立. 例3.已知332,a b +=求证2a b +≤. 证明:假设2a b +>,则有2a b >-, 所以33(2)a b >-即3238126a b b b >-+-,

所以323281266(1)2a b b b b >-+-=-+. 因为26(1)22b -+≥ 所以332a b +>,与已知332a b +=矛盾. 所以假设不成立,所求证结论成立. 例4.设{}n a 是公比为的等比数列,n S 为它的前n 项和. 求证:{}n S 不是等比数列. 证明:假设是{}n S 等比数列,则2213S S S =?, 即222111(1)(1)a q a a q q +=?++. 因为等比数列10a ≠, 所以22(1)1q q q +=++即0q =,与等比数列0q ≠矛盾, 所以假设不成立,所求证结论成立. 例5.是无理数. 是有理数,则存在互为质数的整数m ,n m n =. 所以m =即222m n =, 所以2m 为偶数,所以m 为偶数. 所以设*2()m k k N =∈, 从而有2242k n =即222n k =. 所以2n 也为偶数,所以n 为偶数. 与m ,n 互为质数矛盾. 是无理数成立. 例6.已知直线,a b 和平面,如果,a b αα??,且//a b ,求证//a α。

反证法在数学中的应用

论文 反证法在数学中的应用 开封县八里湾镇第一初级中学 杨继敏

反证法在数学中的应用 摘要反证法是数学教学中所涉及的基本论证方法,它为一些从正面入手,无法使已知条件和结论找出联系的问题,提供了一条解题途径,它通过给出合理的反设,来增加演绎推理的前提,从而使那种只依靠所给前提而变的山穷水尽的局面,有了柳暗花明又一村的境地,使学生看到增加演绎推理前提的方便功效。在过去的数学学习中,许多人拘泥于传统的推理方法,常常使问题复杂化,尽管最后能达到目的,但往往费时费力,因为数学的研究往往体现一种思维转换,我们可以用一种“换位”思想来处理我们日常遇到的数学问题。 【关键词: 逆向思维;假设;归谬;数学逻辑推理;矛盾;结论。】 1.引言 反证法是数学中一种重要的解题方法,对数学解题有着重要作用。其基本思想是通过求证对立面的不成立从而推出正面的正确。因为这种方法推理严密,说服性强,所以除了在数学中应用反证法,在实际生活中的应用也比较广泛。 在不同的数学情境下,反证法的前提假设不同。因此,在数学中应用反证法,一定要具体问题提出相应具体正确的假设。这就需要熟练掌握反证法的反设词,除此,还应熟记反证法的证题步骤——假设,归谬,结论。有关这个课题的研究,以及涉及到各种文章说明其步骤,适用范围,并附以大量例题。但对反证法在数学中的应用,文字讲解与反证法适宜的数学题型的归纳总结还欠缺。本文就基于这方面的考虑,根据反证法在数学中适宜的命题应用进行了详细的文字讲解及归纳总结。 2. 反证法初探 2.1 反证法的含义及逻辑依据 含义:所谓反证法就是从反面证明命题的正确性,即欲证明“p则q”,则从反面推导出“若p非q”不能成立,从而证明“若p则q”成立。它从否定结论出发,经过正确的严格推理,得到与已知(假设)或已成立的数学命题相矛盾的结果,从而验证产生矛盾的原因,推出原命题的结论不容否定的正确结论。

反证法练习题

1、用反证法证明一个命题时,下列说法正确的是 A.将结论与条件同时否定,推出矛盾 B.肯定条件,否定结论,推出矛盾 C.将被否定的结论当条件,经过推理得出的结论只与原题条件矛盾,才是反证法的正确运用 D.将被否定的结论当条件,原题的条件不能当条件 2、否定“自然数a 、b 、c 中恰有一个偶数”时的正确反正假设为 A .a 、b 、c 都是奇数 B .a 、b 、c 或都是奇数或至少有两个偶数 C .a 、b 、c 都是偶数 D .a 、b 、c 中至少有两个偶数 3、用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反证假设正确的是 A .假设三内角都不大于60° B .假设三内角都大于60° C .假设三内角至多有一个大于60° D .假设三内角至多有两个大于60° 4、设a ,b ,c ∈(-∞,0),则三数a +1b ,c +1a ,b +1c 中 A .都不大于-2 B .都不小于-2 C .至少有一个不大于-2 D .至少有一个不小于-2 5、若P 是两条异面直线l 、m 外的任意一点,则 A .过点P 有且仅有一条直线与l 、m 都平行 B .过点P 有且仅有一条直线与l 、m 都垂直 C .过点P 有且仅有一条直线与l 、m 都相交 D .过点P 有且仅有一条直线与l 、m 都异面 6、已知x 1>0,x 1≠1且x n +1=x n (x 2 n +3)3x 2n +1 (n =1,2…),试证“数列{x n }或者对任意正整数n 都满足x n x n +1”,当此题用反证法否定结论时,应为 A .对任意的正整数n ,都有x n =x n +1 B .存在正整数n ,使x n =x n +1 C .存在正整数n ,使x n ≥x n +1且x n ≤x n -1 D .存在正整数n ,使(x n -x n -1)(x n -x n +1)≥0 7、设a ,b ,c ,d 均为正数,求证:下列三个不等式①a +b <c +d ,② ()()a b c da b c d ++<+,③()() a b c d a b c d +<+中至少有一个不正确

浅谈反证法

浅谈反证法 聂震 1310300235 摘要:反证法是数学中一种应用广泛的证明方法,在许多方面都有着不可替代的作用。从最基本的性质定理,到某些难度很大的世界难题都是用反证法来证明的。反证法不仅可以单独使用,也可以结合其他方法一同使用,还可以在论证同一命题时多次使用。本文主要从什么是反证法、反证法的依据、为什么使用反证法、反证法解题步骤、适用题型及举例、如何做出正确反设六个方面浅谈反证法。 关键词:反证法归谬法矛盾假设 引言:有个很著名的“道旁苦李”的故事:从前有个名叫王戎的小孩,一天,他和小朋友发现路边的一棵树上结满了李子,小朋友一哄而上,去摘,尝了之后才知是苦的,独有王戎没动,王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的。”这个故事中王戎用了一种特殊的方法,从反面论述了李子为什么不甜,不好吃。这种间接的证法就是我们下面所要讨论的反证法。 反证法是一种应用广泛的数学证明方法,它的应用与发展历史悠久,早在古希腊,数学家就应用它证明了许多重要的数学命题,欧几里德的《几何原本》已经开始运用反证法。牛顿曾说过,反证法是“数学家最精当的武器之一”,它在许多方面都有着不可替代的作用。在现代数学中,反证法已经成为最常用最有效的解决问题的方法之一。 一.定义: 反证法(又称背理法)是一种论证方式,他首先假设某命题不成立(即在原命题的题设下,结论不成立),然后推理出明显矛盾的结果,从而下结论说原假设不成立,原命题得证。反证法与归谬法相似,但归谬法不仅包括推理出矛盾结果,也包括推理出不符事实的结果或显然荒谬不可信的结果。 二.反证法的依据: 反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。 在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是

高中数学方法解之反证法

反证法 从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明的证明方法叫反证法。它是属于“间接证明法”一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。 反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”。反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假。再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。 反证法的证题模式可以简要的概括我为“否定→推理→否定”。即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是“否定之否定”。应用反证法证

明的主要三步是:否定结论 → 推导出矛盾 → 结论成立。实施的具体步骤是: 第一步,反设:作出与求证结论相反的假设; 第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾; 第三步,结论:说明反设不成立,从而肯定原命题成立。 在应用反证法证题时,一定要用到“反设”进行推理,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。 在数学解题中经常使用反证法,牛顿曾经说过:“反证法是数学家最精当的武器之一”。一般来讲,反证法常用来证明的题型有:命题的结论以“否定形式”、“至少”或“至多”、“唯一”、“无限”形式出现的命题;或者否定结论更明显。具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆。 例1.[05.北京]设()f x 是定义在[0,1]上的函数,若存在'(0,1),x ∈使得()f x 在[0,']x 上单调递增,在[',1]x 上单调递减,则称()f x 为[0,1]上的单峰函数,'x 为峰点,包含峰点的区间为含峰区间。 对任意的[0,1]上单峰函数()f x ,下面研究缩短其含峰区间长度的方法。求证:对任意的1212,(0,1),,x x x x ∈<若12()()f x f x ≥,则2(0,)x 为含

反证法与数学归纳法

(三)、反证法 反证法证明的主要步骤是:第一步,反设:作出与求证结论相反的假设;第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;第三步,结论:说明反设不成立,从而肯定原命题成立。 【典型例题】 例1、已知a + b + c > 0,ab + bc + ca > 0,abc > 0,求证:a, b, c > 0 例2、设0 < a, b, c < 1,求证:(1 - a)b, (1 - b)c, (1 - c)a,不可能同时大于41 例3、.已知a 、b 、c 是互不相等的非零实数.求证:三个方程ax 2+2bx +c =0,bx 2+2cx +a =0,cx 2+2ax +b =0至少有一个方程有两个相异实根. 【巩固练习】 1.用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( ) A .a ,b ,c 中至少有两个偶数 B .a ,b ,c 中至少有两个偶数或都是奇数 C .a ,b ,c 都是奇数 D .a ,b ,c 都是偶数 2.设a ,b ,c 是不全相等的正数,给出下列判断:①(a -b )2+(b -c )2+(c -a )2≠0; ②a >b ,a <b 及a =b 中至少有一个成立;③a ≠c ,b ≠c ,a ≠b 不能同时成立, 其中正确判断的个数为( )A .0 B .1 C .2 D .3 3.若x 、y 、z 均为实数,且a =x 2-2y + 2π,b =y 2-2z +3π,c =z 2-2x +6 π,求证a 、b 、c 中至少有一个大于零. 4.若下列方程:x 2+4ax -4a +3=0, x 2+(a -1)x +a 2=0, x 2+2ax -2a =0至少有一个方程有实根。试求实数a 的取值范围。

论文浅谈反证法

. 华中师范大学高等教育自学考试 本科毕业生论文评审表 论文题目:浅谈反证法 准考证号: 姓名:*** 专业:数学教育 学生类型:独立本科段(助学班/独立本科段) 2011年12 月20日 华中师范大学高等教育自学考试办公室印制 . kszl

论文容摘要

目录 1引言 (3) 2反证法的定义及步骤 (4) 2.1反证法的定义 (4) 2.2反证法的步骤 (4) 3反证法的逻辑依据及分类 (5) 3.1反证法的逻辑依据 (5) 3.2反证法的分类 (5) 4反证法如何正确的作出反设 (6) 5反证法如何正确的导出矛盾 (8) 6何时宜用反证法 (9) 6.1基本命题,即学科中的起始性命题 (10) 6.2命题结构采取否定形式,结论反面却是肯定判断 (11) 6.3有关唯一性的问题 (11) 6.4命题结论是“至多”“至少”形式 (12) 6.5命题结论涉及无限集或数目不确定的对象 (12) 6.6某些起始命题 (13) 6.7难证的逆命题 (13) 6.8命题结论的反面较结论本身具体、简单、直接证明难以下手时 (13) 7在中学数学中常用的反证法思想的题型分析 (14) 7.1结论本身以否定形式出现的一类命题例 (14) 7.2有关结论是以“至多...”或“至少...”的形式出现的一类命题例. (14) 7.3关于存在性、唯一性的命题例 (14) 7.4结论的反面比原结论更具体更容易研究和掌握的命题例 (15) 7.5无穷性命题 (15) 8结论 (16) 参考文献 (17)

1引言 南方某风水先生到北方看风水,恰逢天降大雪。乃作一歪诗:“天公下雪不下雨,雪到地上变成雨;早知雪要变成雨,何不当初就下雨。”他的歪诗又恰被一牧童听到,亦作一打油诗讽刺风水先生:“先生吃饭不吃屎,饭到肚里变成屎;早知饭要变成屎,何不当初就吃屎。[1]” 实际上,小牧童正是巧妙运用了反证法,驳斥了风水先生否定事物普遍运动的规律,只强调结果,不要变化过程的形而上学的错误观点:假设风水先生说的是真理,只强调变化最后的结果,不要变化过程也可,那么,根据他的逻辑,即可得出先生当初就应吃屎的荒唐结论。风水先生当然不会承认这个事实了。那么,显然,他说的就是谬论了。 这就是反证法的威力,一个原本复杂难证的哲学问题被牧童运用了“以其人之道,还其人之身”的反证法迎刃而解了。

反证法证明题(简单)(可编辑修改word版)

反证法证明题 例1. 已知∠A ,∠B ,∠C 为?ABC 内角. 求证:∠A ,∠B ,∠C 中至少有一个不小于60o. 证明:假设?ABC 的三个内角∠A ,∠B ,∠C 都小于60o,即∠A <60o,∠B <60o,∠C <60o, 所以∠A +∠B +∠C < 180O, 与三角形内角和等于180o矛盾, 所以假设不成立,所求证结论成立. 例2. 已知a ≠ 0 ,证明x 的方程ax =b 有且只有一个根. 证明:由于a ≠ 0 ,因此方程ax =b 至少有一个根x =b . a 假设方程ax = b 至少存在两个根, 不妨设两根分别为x1 , x2 且x1 ≠x2 , 则ax1=b, ax2=b , 所以ax1=ax2, 所以a(x1-x2 ) = 0 . 因为x1 ≠x2 ,所以x1 -x2 ≠ 0 , 所以a = 0 ,与已知a ≠ 0 矛盾, 所以假设不成立,所求证结论成立. 例3. 已知a3+b3= 2, 求证a +b ≤ 2 . 证明:假设a +b > 2 ,则有a > 2 -b , 所以a3> (2 -b)3即a3> 8 -12b + 6b2-b3, 所以a3> 8 -12b + 6b2-b3= 6(b -1)2+ 2 . 因为6(b -1)2+ 2 ≥ 2 所以a3+b3> 2 ,与已知a3+b3= 2 矛盾. 所以假设不成立,所求证结论成立. 例4. 设{a n}是公比为的等比数列,S n为它的前n 项和. 求证:{S n}不是等比数列. 证明:假设是{S }等比数列,则S 2=S ?S , n 2 1 3

2 2 2 2 1 1 1 即 a 2 (1+ q )2 = a ? a (1+ q + q 2 ) . 因为等比数列 a 1 ≠ 0 , 所以(1+ q )2 = 1+ q + q 2 即 q = 0 ,与等比数列 q ≠ 0 矛盾, 所以假设不成立,所求证结论成立. 例 5. 证明 是无理数. m 证明:假设 是有理数,则存在互为质数的整数 m ,n 使得 = . n 所以 m = 2n 即 m 2 = 2n 2 , 所以 m 2 为偶数,所以m 为偶数. 所以设 m = 2k (k ∈ N *) , 从而有4k 2 = 2n 2 即 n 2 = 2k 2 . 所以n 2 也为偶数,所以 n 为偶数. 与 m ,n 互为质数矛盾. 所以假设不成立,所求证 是无理数成立. 例 6. 已知直线 a , b 和平面,如果 a ? , b ?,且 a / /b ,求证a / /。 证明:因为 a / /b , 所以经过直线 a , b 确定一个平面。 因为 a ? ,而 a ? , 所以 与是两个不同的平面. 因为b ?,且b ? , 所以 = b . 下面用反证法证明直线 a 与平面没有公共点.假设 直线 a 与平面 有公共点 P ,则 P ∈ = b , 即点 P 是直线 a 与 b 的公共点, 这与 a / /b 矛盾.所以 a / /. 例 7.已知 0 < a , b , c < 2,求证:(2 - a )c , (2 - b )a ,(2 - c )b 不可能同时大于 1 证明:假设(2 - a )c , (2 - b )a ,(2 - c )b 都大于 1, 即 (2 - a )c>1, (2 - b )a>1, (2 - c )b>1,

浅谈中学数学中的反证法

本科生毕业论文 浅谈中学数学中的反证法 院系:数学与计算机科学学院 专业:数学与应用数学 班级: 2008级数学与应用数学(2)班 学号: 200807110211 姓名:黎康乐 指导教师:陈志恩 完成时间: 2012年5月26日

浅谈中学数学中的反证法 摘要: 数学命题的证明分直接证法和间接证法两种.在间接证法中,最常见的是反证法.虽然平时我们接触了相关方面的知识,但比较零散,对其概念、应用步骤、使用范围等没有系统的认识,并且由于数学命题的多样性、复杂性,哪些命题适宜用反证法很难给出确切的回答.本课题通过查阅资料和自己在学习数学过程中的发现就中学数学中反证法的概念、反证法的逻辑依据、种类及步骤,解题过程中怎样由假设出发寻找矛盾、以及哪些类型的问题适宜从反证法出发进行证明的问题进行了归纳.并总结出在学习反证法的过程中应注意的三个方面,通过对以上提出的所有问题进行系统归纳,这有利于帮助学生系统的学习反证法,提高学生利用反证法进行解题的技巧从而达到预期效果. 关键词:反证法假设矛盾结论

Abstract:The mathematical proof points directly proofs proposition and indirect proof two. In indirect proof, the most common is required. Although peacetime we contact with the related knowledge, but is scattered, of the concept, application procedures, the scope of use of not understanding of the system, and the mathematical proposition the diversity and complexity, which is suitable for proposition is very difficult to give the exact with reduction to answer. This subject will be required in the middle school mathematics concept, apagoge is logical basis, types and steps, problem solving process of how a hypothesis of contradictions, and looking for what types of questions appropriate counter-evidence method from the proof of the set out on the induction. And summed up in the process of learning be should be paid attention in the three aspects, through all the questions put to the above system induce, this will help the students to learn the required system, improve the students use to problem solving skills required to achieve the expected effect. Key words:Counter-evidence method hypothesis contradiction conclusion

反证法在证明题中的应用-高考数学解题模板

【高考地位】 反证法是高中数学的一种重要的证明方法,在不等式和立体几何的证明中经常用到,在高考题中也经常出现。它是数学学习中一种很重要的证题方法. 反证法证题的步骤大致分为三步:(1)反设:作出与求证的结论相反的假设;(2)归谬:由反设出发,导出矛盾结果;(3)作出结论:证明了反设不能成立,从而证明了所求证的结论成立.其中,导出矛盾是关键,通常有以下几种途径:与已知矛盾,与公理、定理矛盾,与假设矛盾,自相矛盾等. 【方法点评】 类型一 证明“至多”或“至少”问题 使用情景:证明“至多”或“至少”问题. 解题模板:第一步 首先假设命题不成立; 第二步 然后根据已知或者规律推导出矛盾; 第三步 最后得出结论. 例1. 若,x y ∈{正整数},且2x y +>。求证:12x y +<或12y x +<中至少有一个成立。 【变式演练1】若下列方程:x 2+4ax -4a +3=0, x 2+(a -1)x +a 2=0, x 2 +2ax -2a =0至少有一个方程有实根。则实数a 的取值范围为________。 类型二 证明“不可能”问题 使用情景:证明“不可能”问题. 解题模板:第一步 首先假设命题不成立; 第二步 然后根据已知或者规律推导出矛盾; 第三步 最后得出结论.

例2.给定实数0a a ≠,,且1a ≠,设函数11()1x y x x ax a -= ∈≠-R ,且,求证:经过这个函数图象上任意两个不同的点的直线不平行于x 轴. 【变式演练2】如图,设SA 、SB 是圆锥SO 的两条母线,O 是底面圆心,C 是SB 上一点。求证:AC 与平面SOB 不垂直。 类型三 证明“存在性”或“唯一性”问题 使用情景:证明“存在性”或“唯一性”问题. 解题模板:第一步 首先假设命题不成立; 第二步 然后根据已知或者规律推导出矛盾; 第三步 最后得出结论. 例3.求证:方程512x =的解是唯一的. 【变式演练3】用反证法证明数学命题时,首先应该做出与命题结论相反的假设.否定“自然数c b a ,,中恰有一个偶数”时正确的假设为() A .自然数c b a ,,都是奇数 B .自然数c b a ,,都是偶数 C .自然数c b a ,,中至少有两个偶数 D .自然数c b a ,,中至少有两个偶数或都是奇数

反证法练习题

2.2.2反证法 双基达标(限时20分钟) 1.实数a,b,c不全为0等价于 ().A.a,b,c均不为0 B.a,b,c中至多有一个为0 C.a,b,c中至少有一个为0 D.a,b,c中至少有一个不为0 解析不全为0即至少有一个不为0,故选D. 答案 D 2.下列命题错误的是 ().A.三角形中至少有一个内角不小于60° B.四面体的三组对棱都是异面直线 C.闭区间[a,b]上的单调函数f(x)至多有一个零点 D.设a、b∈Z,若a、b中至少有一个为奇数,则a+b是奇数 解析a+b为奇数?a、b中有一个为奇数,另一个为偶数,故D错误.答案 D 3.设x,y,z都是正实数,a=x+1 y,b=y+ 1 z,c=z+ 1 x,则a,b,c三个数 (). A.至少有一个不大于2 B.都小于2 C.至少有一个不小于2 D.都大于2 解析若a,b,c都小于2,则a+b+c<6①, 而a+b+c=x+1 x+y+ 1 y+z+ 1 z≥6②, 显然①,②矛盾,所以C正确. 答案 C 4.命题“△ABC中,若A>B,则a>b”的结论的否定应该是________.答案a≤b

5.命题“三角形中最多只有一个内角是直角”的结论的否定是________.答案至少有两个内角是直角 6.设SA、SB是圆锥SO的两条母线,O是底面圆心,C是SB上一点,求证:AC与平面SOB不垂直. 证明假设AC⊥平面SOB,如图, ∵直线SO在平面SOB内, ∴SO⊥AC. ∵SO⊥底面圆O,∴SO⊥AB. ∴SO⊥平面SAB. ∴平面SAB∥底面圆O. 这显然出现矛盾,所以假设不成立,即AC与平面SOB不垂直. 综合提高(限时25分钟) 7.已知α∩β=l,a?α,b?β,若a,b为异面直线,则 ().A.a,b都与l相交 B.a,b中至少有一条与l相交 C.a,b中至多有一条与l相交 D.a,b都不与l相交 解析逐一从假设选项成立入手分析,易得B是正确选项,故选B. 答案 B 8.以下各数不能构成等差数列的是 ().A.3,4,5 B.2,3, 5 C.3,6,9 D.2,2, 2 解析假设2,3,5成等差数列,则23=2+5,即12=7+210,此等式不成立,故2,3,5不成等差数列. 答案 B 9.“任何三角形的外角都至少有两个钝角”的否定应是________.解析“任何三角形”的否定是“存在一个三角形”,“至少有两个”的否

反证法证明题

反证法证明题 例1. 已知A ∠,B ∠,C ∠为ABC ?内角. 求证:A ∠,B ∠,C ∠中至少有一个不小于60o . 证明:假设ABC ?的三个内角A ∠,B ∠,C ∠都小于60o , 即A ∠<60o ,B ∠<60o ,C ∠<60o , 所以O 180A B C ∠+∠+∠<, 与三角形内角和等于180o 矛盾, 所以假设不成立,所求证结论成立. 例2. 已知0a ≠,证明x 的方程ax b =有且只有一个根. 证明:由于0a ≠,因此方程ax b =至少有一个根b x a =. 假设方程ax b =至少存在两个根, 不妨设两根分别为12,x x 且12x x ≠, 则12,ax b ax b ==, 所以12ax ax =, 所以12()0a x x -=. 因为12x x ≠,所以120x x -≠, 所以0a =,与已知0a ≠矛盾, 所以假设不成立,所求证结论成立. 例3. 已知3 3 2,a b +=求证2a b +≤. 证明:假设2a b +>,则有2a b >-, 所以3 3 (2)a b >-即323 8126a b b b >-+-, 所以3 2 3 2 81266(1)2a b b b b >-+-=-+. 因为2 6(1)22b -+≥ 所以332a b +>,与已知33 2a b +=矛盾. 所以假设不成立,所求证结论成立. 例4. 设{}n a 是公比为的等比数列,n S 为它的前n 项和. 求证:{}n S 不是等比数列. 证明:假设是{}n S 等比数列,则2 213S S S =?,

即222 111(1)(1)a q a a q q +=?++. 因为等比数列10a ≠, 所以2 2 (1)1q q q +=++即0q =,与等比数列0q ≠矛盾, 所以假设不成立,所求证结论成立. 例5. 证明2是无理数. 证明:假设2是有理数,则存在互为质数的整数m ,n 使得2m n =. 所以2m n = 即222m n =, 所以2 m 为偶数,所以m 为偶数. 所以设* 2()m k k N =∈, 从而有2 2 42k n =即2 2 2n k =. 所以2 n 也为偶数,所以n 为偶数. 与m ,n 互为质数矛盾. 所以假设不成立,所求证2是无理数成立. 例6. 已知直线,a b 和平面,如果,a b αα??,且//a b ,求证//a α。 证明:因为//a b , 所以经过直线a , b 确定一个平面β。 因为a α?,而a β?, 所以 α与β是两个不同的平面. 因为b α?,且b β?, 所以b αβ=I . 下面用反证法证明直线a 与平面α没有公共点.假 设直线a 与平面α有公共点P ,则P b αβ∈=I , 即点P 是直线 a 与b 的公共点, 这与//a b 矛盾.所以 //a α. 例7.已知0 < a , b , c < 2,求证:(2 a )c , (2 b )a ,(2 c )b 不可能同时大于1 证明:假设(2 a )c , (2 b )a ,(2 c )b 都大于1,

反证法的有关题型

1.用反证法证明“至多有两个解”的说法中,正确的第一步是假设() A.有一个解B.有两个解 C.至少有三个解D.至少有两个解 2.否定“自然数a、b、c中恰有一个偶数”时的正确假设为()A.a、b、c都是奇数 B.a、b、c或都是奇数或至少有两个偶数 C.a、b、c都是偶数 D.a、b、c中至少有两个偶数 3.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,假设正确的是() A.假设三内角都不大于60° B.假设三内角都大于60° C.假设三内角至多有一个大于60° D.假设三内角至多有两个大于60° 4.用反证法证明命题:正整数X、Y、Z的和为偶数,那么X、Y、Z中至少有一个是偶数”时,下列假设正确的是()A.假设a,b,c都是偶数B.假设a、b,c都不是偶数 C.假设a,b,c至多有一个偶数 D.假设a,b,c至多有两个偶数 5.命题“△ABC中,若∠A>∠B,则a>b”的结论的否定应该是() A.a180°,这与三角形内角和为180°相矛盾,则∠A=∠B=90°不成立; ②所以一个三角形中不能有两个直角; ③假设∠A,∠B,∠C中有两个角是直角,不妨设∠A=∠B=90°.正确顺序的序号排列为____________,故只有a+b≥0.逆命题得证.7.用反证法证明命题“ab C.a=b D.a=b或a>b 8.用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设()A.a不垂直于c B.a,b都不垂直于c C.a⊥b D.a与b相交 9.用反证法证明命题“在一个三角形中,如果两条边不相等,那么它们所对的角也不相等”时,应假设___________. 10.用反证法证明“若│a│<2,则a<2”时,应假设. 11.如下左图,直线AB,CD相交,求证:AB,CD 只有一个交点. 证明:假设AB,CD相交于两个交点O与O′,那么过O,O′两点就有_____条直线,这与“过两点”矛盾,所以假设不成立,则. 12.完成下列证明:如上右图,在△ABC中,若∠ C是直角,那么∠B一定是锐角. 证明:假设结论不成立,则∠B是 ______或______. 当∠B是____时,则_________,这 与________矛盾; 当∠B是____时,则_________,这 与________矛盾. 综上所述,假设不成立. ∴∠B一定是锐角. 13.若用反证法证明命题“在直角三角形中,至少有一个锐角不大于45?°”时,应假设_______________. 14.下列语句中,属于命题的是().A.直线AB 和CD垂直吗 B.过线段AB的中点C画AB的垂线C.同旁内角不互补,两直线不平行 D.连结A,B 两点 15.下列命题中,属于假命题的是() A.若a⊥c,b⊥c,则a⊥b B.若a∥b,b∥c,则a∥c C.若a⊥c,b⊥c,则a∥b D.若a⊥c,b∥a,则b⊥c 16.下列四个命题中,属于真命题的是().A.互补的两角必有一条公共边 B.同旁内角互补C.同位角不相等,两直线不平行 D.一个角的补角大于这个角 17.命题“垂直于同一条直线的两条直线互相平行”的题设是().A.垂直 B.两条直线 C.同一条直线 D.两条直线垂直于同一条直线18.“两直线平行,同位角互补”是______命题(填“真”或“假”). 19.?把命题“等角的补有相等”改写成“如果…… 那么……”的形式是结果_________,那么 __________. 20.命题“直角都相等”的题设是________,结论是____________. 21.判断下列命题的真假,若是假命题,举出反例.(1)若两个角不是对顶角,则这两个角不相等;(2)若a+b=0,则ab=0; (3)若ab=0,则a+b=0.

高数论文-反证法

高等数学结课论文之反证法 反证法又称归谬法、背理法,是一种论证方式,他首先假设某命题不成立(即在原命题的条件下,结论不成立),然后推理出明显矛盾的结果,从而下结论说原假设不成立,原命题得证。 反证法的原理:反证法是“间接证明法”一类,是从反方向证明的证明方法,即:肯定题设而否定结论,从而得出矛盾。法国数学家阿达玛对反证法的实质作过概括:“若肯定定理的假设而否定其结论,就会导致矛盾”。具体地讲,反证法就是从反论题入手,把命题结论的否定当作条件,使之得到与条件相矛盾,肯定了命题的结论,从而使命题获得了证明。 在应用反证法证题时,一定要用到“反设”,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。 反证法在数学中经常运用。当论题从正面不容易或不能得到证明时,就需要运用反证法,此即所谓"正难则反"。牛顿曾经说过:“反证法是数学家最精当的武器之一”。一般来讲,反证法常用来证明正面证明有困难,情况多或复杂,而逆否命题则比较浅显的题目,问题可能解决得十分干脆。 反证法的逻辑原理:反证法的证题可以简要的概括为“否定→得出矛盾→否定”。即从否定结论开始,得出矛盾,达到新的

否定,可以认为反证法的基本思想就是辩证的“否定之否定”。应用反证法的是:欲证“若P则Q”为真命题,从相反结论出发,得出矛盾,从而原命题为真命题。 反证法的证明:反证法的证明主要用到“一个命题与其逆否命题同真假”的结论,为什么?这个结论可以用穷举法证明: 某命题:若A则B,则此命题有4种情况: 1.当A为真,B为真,则A→B为真,﹁B→﹁A为真; 2.当A为真,B为假,则A→B为假,﹁B→﹁A为假; 3.当A为假,B为真,则A→B为真,﹁B→﹁A为真; 4.当A为假,B为假,则A→B为真,﹁B→﹁A为真; ∴一个命题与其逆否命题同真假 即关于〉=〈的问题: 大于 -〉反义:小于或等于 都大于-〉反义:至少有一个不大于 小于 -〉反义:大于或等于 都小于-〉反义:至少有一个不小于 即反证法是正确的。 与若A则B先等价的是它的逆否命题若﹁B则﹁A 假设﹁B,推出﹁A,就说明逆否命题是真的,那么原命题也是真的. 但实际推证的过程中,推出﹁A是相当困难的,所以就转化为了推出与﹁A相同效果的内容即可,这个相同效果就是与A(已知条件)

用反证法证明几何问题

65yttrgoi 用反证法证明几何专题 对于一个几何命题,当用直接证法比较困难时,则可采用间接证法,反证法就是一种间接证法,它不是直接去证明命题的结论成立,而是去证明命题结论的反面不能成立。从而推出命题的结论必然成立,它给我们提供了一种可供选择的新的证题途径,掌握这种方法,对于提高推理论证的能力、探索新知识的能力都是非常必要的。下面我们对反证法作一个简单介绍。 一、反证法的概念: (又称归谬法、背理法)是一种论证方式,不直接从题设推出结论,而是从命题结论的反面出发,引出矛盾,从而证明命题成立,这样的证明方法叫做反证法。 二、反证法的基本思路: 首先假设所要证明的结论不成立,然后再在这个假定条件下进行一系列的正确逻辑推理,直至得出一个 矛盾的结论来,并据此否定原先的假设,从而确认所要证明的结论成立。这里所说的矛盾是指与题目中所给的已知条件矛盾,或是与数学中已知定理、公理和定义相矛盾,还可以是与日常生活中的事实相矛盾,甚至还可以是从两个不同角度进行推理所得出的结论之间相互矛盾(即自相矛盾)。 三、反证法的一般步骤: (1)假设命题的结论不成立; (2)从这个假设出发,经过推理论证得出矛盾; (3)由矛盾判定假设不正确,从而肯定命题的结论正确。 简而言之就是“反设-归谬-结论”三步曲。 在应用反证法证题时,一定要用到“反设”,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。 四、适用范围 “反证法”宜用于证明否定性命题、唯一性命题、“至少”“至多”命题和某些逆命题等,一般地说“正难则反”凡是直接法很难证明的命题都可考虑用反证法。 五、反证法在平面几何中的应用 例1.已知:AB 、CD 是⊙O 内非直径的两弦(如图1),求证AB 与CD 不能互相平分。 (1) 证明:假设AB 与CD 互相平分于点M 、则由已知条件AB 、CD 均非⊙O 直径, 可判定M 不是圆心O ,连结OA 、OB 、OM 。 ∵OA =OB ,M 是AB 中点 ∴OM ⊥AB (等腰三角形底边上的中线垂直于底边) 同理可得:OM ⊥CD ,从而过点M 有两条直线AB 、CD 都垂直于OM 这与已知的定理相矛盾。故AB 与CD 不能互相平分。 归缪法 穷举法

相关文档
最新文档