【新人教A版】高中数学选修21教案(全套)

合集下载

新课标人教A版数学选修2-1全套教案二

新课标人教A版数学选修2-1全套教案二

世纪金榜 圆您梦想

解略。
引申: 以前, 同学们学习了很多定理、 推论, 这些定理、 推论是否是命题?同学们可否举出一些定理、
推论的例子来看看?
通过对此问的思考,学生将清晰地认识到定理、推论都是命题.
过渡:同学们都知道,一个定理或推论都是由条件和结论两部分构成(结合学生所举定理和推论的例
不是 p;非 p)
逆否命题:若¬ q,则¬ P.
6.巩固练习
写出下列命题的逆命题、否命题、逆否命题并判断它们的真假:
(1) 若一个三角形的两条边相等,则这个三角形的两个角相等;
(2) 若一个整数的末位数字是0,则这个整数能被5整除; (3) 若 x 2=1, 则 x=1;
(4) 若整数 a 是素数,则是 a 奇数。
9.怎样判断一个数学命题的真假?
( 1 ) 数学中判定一个命题是真命题,要经过证明.
( 2 ) 要判断一个命题是假命题,只需举一个反例即可.
10.练习、深化
例3:把下列命题写成“若 P,则 q”的形式,并判断是真命题还是假命题:
(1) 面积相等的两个三角形全等。
(2) 负数的立方是负数。
(3) 对顶角相等。
的否定,那么我们把这样的两个命题叫做 互为逆否命题 .其中一个命题叫做 原命题 ,另一个命题叫做原命
题的 逆否命题 .
让学生举一些互为逆否命题的例子。
小结:
(1) 交换原命题的条件和结论,所得的命题就是它的
逆命题 :
(2) 同时否定原命题的条件和结论,所得的命题就是它的
否命题 ;
(3) 交换原命题的条件和结论,并且同时否定,所得的命题就是它的
互 否
否命题


逆否命题

数学:2.2.1教案(新人教A版选修2-1)

数学:2.2.1教案(新人教A版选修2-1)

教案:椭圆及其标准方程一、教学内容新课标人教版选修2-1第二章第二节第一课时内容:2.2.1椭圆及其标准方程二、教材分析教材的地位与作用⑴从知识上说,它是运用坐标法研究曲线的几何性质的又一次实际演练;⑵从方法上说,它为后面研究双曲线、抛物线提供了基本模式和理论基础.所以说,无论从教材内容,还是从教学方法上都起着承上启下的作用.本小节安排两课时:第一课时:椭圆的定义及标准方程的推导;第二课时:运用椭圆的定义求曲线的轨迹方程.三、课程目标⑴知识目标:①掌握椭圆的定义及其标准方程;②通过对椭圆标准方程的探求,熟悉求曲线方程的一般方法.⑵能力目标:通过自我探究、操作、数学思想(待定系数法)的运用等,从而提高学生实际动手、合作学习以及运用知识解决实际问题的能力.⑶情感目标:在教学中充分揭示“数”与“形”的内在联系,体会形数美的统一,激发学生学习数学的兴趣,培养学生勇于探索,勇于创新的精神.四、重点和难点重点:椭圆的定义及椭圆的标准方程;难点:椭圆标准方程的建立和推导.五、教学过程与方法目标(一)设置情景,导入新课1、(借助多媒体)先演示本章开头语中用一个倾斜平面截圆锥,可以得到截口曲线(椭圆);今天我们就着手研究这个内容.(进而出示本节研究的课题的教学目标)2、(借助多媒体)展示图片【设计意图】让学生明确椭圆与科研、生产以及人类生活有着紧密的关系,激发学生的求知欲.(二)尝试画图、形成感知1、动手画椭圆(1)请学生拿出课前准备的硬纸板、细线、铅笔,同桌一起合作画椭圆.(2)动画演示椭圆的形成过程.(动画1)2、同学们作完图、观察完演示后,思考下面问题:⑴.结合实验,你应如何给椭圆下定义?定义含有几个要点?⑵.在画出一个椭圆的过程中,细绳的两端的位置是固定的还是运动的?⑶.在画椭圆的过程中,绳子的长度变了没有?说明了什么?⑷.在画椭圆的过程中,绳子长度与两定点距离大小有怎样的关系?3、教师再进一步明确椭圆概念、焦点、焦距概念,强调形成椭圆的条件.(三)探究椭圆的标准方程1、复习求动点的轨迹方程的基本步骤 (由学生回答,不正确的教师给予纠正)2、椭圆标准方程的探求 ⑴建系让学生自己动手试一试如何恰当地建立坐标系.教师巡回察看各个同学的建系情况,然后让几个同学说出自己建系的依据,师生共评,寻找最佳方案.【学情预设】学生可能会建系如下几种情况: 方案一:把F 1、F 2建在x 轴上,以F 1F 2的中点为原点; 方案二:把F 1、F 2建在x 轴上,以F 1为原点; 方案三:把F 1、F 2建在x 轴上,以F 2原点;方案四:把F 1、F 2建在x 轴上,以F 1F 2与x 轴的左交点为原点; 方案五:把F 1、F 2建在x 轴上,以F 1F 2与x 轴的右交点为原点; 经过比较确定方案一.以两定点1F 、2F 所在的直线为x 轴,线段1F 2F 的垂直平分线为y 轴,建立平面直角坐标系(如图1).设c F F 221=()0>c ,则()01,c F -,()02,c F . 已知图形,建立直角坐标系的一般要求是什么?第一、充分利用图形的对称性;第二、注意图形的特殊性和一般性关系.⑵设点设()y x M ,为椭圆上的任意一点,M 与1F 、2F 的距离的和等于a 2(c a 22>).由定义得到椭圆上点M 的集合为{}a MF MF M P 221=+=. ⑶列式将条件式a MF MF 221=+代数化,得()()a y c x y c x 22222=+-+++ (*)(图1)⑷化简先让学生各自在练习本上自行化简,教师巡视.预测学生问题:①若学生采用两次平方的方法化简,最后应得到()()22222222c a a y a x c a-=+- (* *)在此过程中,教师一边巡视,一边给予指导和提示,然后选出1—2位学生的推导过程展示出来,并请学生本人作简要陈述.然后教师提出:有无较为简单的方法化简(*)式呢? 请学生观察式子()()a y c x y c x 22222=+-+++,引导学生联想等差中项的定义:“n p m ,,成等差数列p n m 2=+⇔”, 知()22y c x ++,a ,()22y c x +-成等差数列,可设 ()()⎪⎩⎪⎨⎧+=+--=++.,2222d a y c x d a y c x再设法消去d ,即可将(*)式化简为(* *)式.若学生先想到利用等差中项的概念式化简得(* *)式,则教师提出采用两次平方的方法请学生一试,也可得(* *)式.②b 的引入由椭圆的定义可知,c a 22>,022>-∴c a , 让点M 运动到y 轴正半轴上(如图2),由学生观察图形自行获得a ,c 的几何意义,进而自然引进b ,此时222c a b -=,于是得222222b a y a x b =+,两边同时除以22b a ,得椭圆的标准方程为:()012222>>=+b a by a x . ③教师对标准方程的说明ⅰ.椭圆的标准方程既简洁整齐,又对称和谐;ⅱ.上述方程表示焦点在x 轴上,中心在坐标原点的椭圆,其中222b ac -=;图2ⅲ.以上的推导过程,没有证明“以满足方程12222=+by a x 的实数对),(y x 为坐标的点都在椭圆上”,有兴趣的同学可在课后自行证明;ⅳ.如果椭圆的焦点在y 轴上,并且焦点为),0(),,0(21c F c F -,则椭圆方程为12222=+b x a y ()0>>b a ,这也是椭圆的标准方程,它可以看成将方程12222=+by a x 中的y x ,对换而得到的;ⅴ.对于给定的椭圆的标准方程,要判断焦点在哪个轴上,只需比较与2x 与2y 项分母的大小即可.若2x 项分母大,则焦点在x 轴上;若2y 项分母大,则焦点在y 轴上. ⅵ.对椭圆的两种标准方程,都有()0>>b a ,焦点都在长轴上,且a 、b 、c 始终满足222b a c -=(四)、实例演练例1 已知椭圆两个焦点的坐标分别是()2,0-,()2,0,并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程.分析:有两种解题思路:思路1:利用椭圆定义(椭圆上的点⎪⎭⎫ ⎝⎛-2523,到两个焦点()20-,、()20,的距离之和为常数2a ,求出a 值,再结合已知条件和a 、b 、c 间的关系求出2b 的值,进而写出标准方程;思路2:先根据已知条件设出焦点在y 轴上的椭圆方程的标准方程12222=+b x a y ()0>>b a ,再将椭圆上点的坐标⎪⎭⎫⎝⎛-2523,代入此方程,并结合a 、b 、c 间的关系求出2a 、2b 的值,从而得到椭圆的标准方程为161022=+x y . (五)、回顾小结,归纳提炼1、先让学生思考,然后填表.建系设点-列等式-代坐标-化简方程 3、求椭圆方程常用方法:待定系数法 (六)达标检测1、判断下列各椭圆的焦点位置,并说出焦点坐标、焦距.(1) (2)2、已知F 1、F 2是椭圆 的两个焦点,过F 1的直线交椭圆于M 、N 两点,则四边形F 1MF 2N 的周长为 .3、若方程表示焦点在x 轴上的椭圆,则m 的取值范围是 .(七)、板书设计(八)布置作业练习:第42页1、2、3、4; 作业:第49页 习题2.2 中 2、322134x y +=22341x y += 192522=+y x 1162522=++-my m x。

新课标人教A版高中数学选修2-1教案

新课标人教A版高中数学选修2-1教案

新课标人教A版高中数学选修2-1教案第一章常用逻辑用语1、1命题及其关系1.1.1命题(一)教学目标1、知识与技能:理解命题得概念与命题得构成,能判断给定陈述句就是否为命题,能判断命题得真假;能把命题改写成“若p,则q”得形式;2、过程与方法:多让学生举命题得例子,培养她们得辨析能力;以及培养她们得分析问题与解决问题得能力;3、情感、态度与价值观:通过学生得参与,激发学生学习数学得兴趣。

(二)教学重点与难点重点:命题得概念、命题得构成难点:分清命题得条件、结论与判断命题得真假教具准备:与教材内容相关得资料。

教学设想:通过学生得参与,激发学生学习数学得兴趣。

(三)教学过程学生探究过程:1.复习回顾初中已学过命题得知识,请同学们回顾:什么叫做命题?2.思考、分析下列语句得表述形式有什么特点?您能判断她们得真假吗?(1)若直线a∥b,则直线a与直线b没有公共点.(2)2+4=7.(3)垂直于同一条直线得两个平面平行.(4)若x2=1,则x=1.(5)两个全等三角形得面积相等.(6)3能被2整除.3.讨论、判断学生通过讨论,总结:所有句子得表述都就是陈述句得形式,每句话都判断什么事情。

其中(1)(3)(5)得判断为真,(2)(4)(6)得判断为假。

教师得引导分析:所谓判断,就就是肯定一个事物就是什么或不就是什么,不能含混不清。

4.抽象、归纳定义:一般地,我们把用语言、符号或式子表达得,可以判断真假得陈述句叫做命题.命题得定义得要点:能判断真假得陈述句.在数学课中,只研究数学命题,请学生举几个数学命题得例子. 教师再与学生共同从命题得定义,判断学生所举例子就是否就是命题,从“判断”得角度来加深对命题这一概念得理解. 5.练习、深化判断下列语句就是否为命题?(1)空集就是任何集合得子集. (2)若整数a就是素数,则就是a奇数.(3)指数函数就是增函数吗? (4)若平面上两条直线不相交,则这两条直线平行.(5)=-2. (6)x>15.让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句就是不就是命题,关键瞧两点:第一就是“陈述句”,第二就是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不就是命题.解略。

高中数学选修21教案

高中数学选修21教案

高中数学选修21教案
课题:向量的基本概念和运算
教学目标:
1. 掌握向量的定义和基本概念;
2. 熟练掌握向量的相等、加法和数乘运算;
3. 能够应用向量进行相关问题的解决。

教学重点:
1. 向量的基本概念和定义;
2. 向量的相等、加法和数乘运算;
教学难点:
1. 向量的合成与分解;
2. 向量运算在几何问题中的应用。

教学准备:
1. 教师准备课件,包括向量的定义、基本概念和运算规则;
2. 准备白板、彩色粉笔;
3. 准备相关练习题。

教学过程:
1. 导入:通过实例引入向量的概念,引发学生对向量的兴趣;
2. 讲解向量的定义和基本概念,引导学生理解向量的概念和符号表示;
3. 讲解向量的相等、加法和数乘运算规则,通过实例演示并让学生进行练习;
4. 讲解向量的合成与分解,通过实例演示向量的合成与分解过程;
5. 应用:通过几何问题引导学生运用向量进行解决,巩固所学知识;
6. 练习:布置相关练习题,让学生独立进行练习,并进行讲解和纠错。

教学评估:
1. 课堂练习:通过课堂练习检查学生的掌握程度;
2. 作业:布置作业,要求学生通过应用向量进行问题解决,评价学生的综合能力。

拓展延伸:
1. 进一步讲解向量的线性相关性和线性无关性;
2. 引导学生应用向量进行空间几何问题的解决。

高二数学选修21教案4篇

高二数学选修21教案4篇

高二数学选修21教案4篇高二数学选修21教案篇1教学目标:1、使学生理解并掌握不含括号的混合式题的运算顺序,自主、熟练的计算含有乘除混合的三步计算式题.2、培养学生的学习兴趣,养成认真审题、仔细验算的良好习惯。

教学重点:使学生掌握混合运算顺序,能熟练地进行计算。

教学难点:帮助学生利用知识的迁移,探索混合运算的运算顺序。

教学过程:一、口算引入1、计算:140×3+280 400—400÷8以上各式中都含有哪些运算它们的运算顺序是什么使学生明确:当只有加减或乘除法时,按从左到右的顺序计算;当既有乘除法又有加减法,要先算乘法或除法,再算加法或减法。

学生练习,指名板演。

2、今天我们继续学习混和运算。

板书:不带括号的混和运算。

二、教学新课1、学习例题。

媒体出示例题:一副中国象棋12元。

一副围棋15元。

购买3副中国象棋和4副围棋。

一共要付多少元(1)请学生读题,教师提问:你看出了哪些已知条件你认为要想求出一共要付的钱数,应该先求出什么你能列出综合算式吗学生列式:12×3+15×4或15×4+12×3那这样列式应该先算什么应该按怎样的运算顺序计算,才能先求出买3副中国象棋和4副围棋用去的钱(2)学生分小组讨论上述问题并汇报。

(3)师:在没有括号的混合运算中应该先算乘除,后算加减。

学生在书上完成。

2、试一试:150+120÷6×5。

学生在书上独立完成,指明说一说是怎样计算的在计算120÷6×5,为什么应该先算120÷6,而不先算6×5呢你们是按怎样的运算顺序计算的通过刚才两道混合运算的解答,你能总结一下没有括号的三步混合运算顺序是怎样的吗使学生明确:在一道既有乘除法又有加减法的混合式题里,应先算乘除法,后算加减法;乘除连在一起,或加减连在一起,要从左往右依次计算。

三、巩固练习1、“想想做做”1。

人教版高中数学选修2-1全套教案

人教版高中数学选修2-1全套教案

1.1.1命题(一)教学目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若 p,则 q”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

(二)教学重点与难点重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假教具准备:与教材内容相关的资料。

教学设想:通过学生的参与,激发学生学习数学的兴趣。

(三)教学过程学生探究过程:1.复习回顾初中已学过命题的知识,请同学们回顾:什么叫做命题?2.思考、分析下列语句的表述形式有什么特点?你能判断他们的真假吗?(1)若直线 a∥ b,则直线 a 与直线 b 没有公共点.(2) 2+4=7.(3)垂直于同一条直线的两个平面平行.(4)若x2=1, 则 x=1.(5)两个全等三角形的面积相等.(6)3能被2整除.3.讨论、判断学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。

其中(1)(3)( 5)的判断为真,( 2)( 4)( 6)的判断为假。

教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。

4.抽象、归纳定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句.在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.5.练习、深化判断下列语句是否为命题?(1)空集是任何集合的子集.(2)若整数 a 是素数,则是 a 奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5) ( 2)2=-2.(6) x>15.让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假” ,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.解略。

新课标人教A版数学选修2-1全套教案二


的判断为真, ( 2)( 4)( 6)的判断为假。
教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。
4.抽象、归纳
定义: 一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.
命题的定义的要点:能判断真假的陈述句.
在数学课中,只研究数学命题,请学生举几个数学命题的例子.
9.怎样判断一个数学命题的真假?
( 1 ) 数学中判定一个命题是真命题,要经过证明.
( 2 ) 要判断一个命题是假命题,只需举一个反例即可.
10.练习、深化
例3:把下列命题写成“若 P,则 q”的形式,并判断是真命题还是假命题:
(1) 面积相等的两个三角形全等。
(2) 负数的立方是负数。
(3) 对顶角相等。
创造性地解决问题的能力;培养学生抽象概括能力和思维能力.
◆ 情感、态度与价值观 :通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及
培养他们的分析问题和解决问题的能力.
(二)教学重点与难点
重点:( 1)会写四种命题并会判断命题的真假; ( 2)四种命题之间的相互关系.
难点:( 1)命题的否定与否命题的区别;
能力;
3、 情感、态度与价值观 :通过学生的参与,激发学生学习数学的兴趣。
(二)教学重点与难点
重点:命题的概念、命题的构成
难点:分清命题的条件、结论和判断命题的真假
教具准备: 与教材内容相关的资料。
教学设想: 通过学生的参与,激发学生学习数学的兴趣。
(三)教学过程
学生探究过程:
1.复习回顾
初中已学过命题的知识,请同学们回顾:什么叫做命题?
子,让学生分辨定理和推论条件和结论,明确所有的定理、推论都是由条件和结论两部分构成)

新课标人教A版数学选修2-1全套教案二

第一章常用逻辑用语1.1命题及其关系1.1.1 命题(一)教学目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

(二)教学重点与难点重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假教具准备:与教材内容相关的资料。

教学设想:通过学生的参与,激发学生学习数学的兴趣。

(三)教学过程学生探究过程:1.复习回顾初中已学过命题的知识,请同学们回顾:什么叫做命题?2.思考、分析下列语句的表述形式有什么特点?你能判断他们的真假吗?(1)若直线a∥b,则直线a与直线b没有公共点.(2)2+4=7.(3)垂直于同一条直线的两个平面平行.(4)若x2=1,则x=1.(5)两个全等三角形的面积相等.(6)3能被2整除.3.讨论、判断学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。

其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。

教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。

4.抽象、归纳定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句.在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.5.练习、深化判断下列语句是否为命题?(1)空集是任何集合的子集.(2)若整数a是素数,则是a奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)2)2(=-2.(6)x>15.让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.解略。

高中数学选修2一1教案

高中数学选修2一1教案
教学目标:
1. 掌握数列的定义和基本性质,理解数列的概念和实质。

2. 学习并掌握等差数列和等比数列的求和公式,能够熟练应用。

3. 能够解决实际问题中的数列应用题。

教学重点:
1. 等差数列和等比数列的定义和性质。

2. 等差数列和等比数列的求和公式和应用。

3. 实际应用中的数列问题解决。

教学难点:
1. 等差数列和等比数列的应用题目解决。

2. 能够灵活运用求和公式解决问题。

教学过程:
一、导入:
通过一个生活中的例子引入数列的概念,让学生理解数列的定义和基本性质。

二、讲解:
1. 等差数列和等比数列的概念和基本性质。

2. 等差数列的通项公式和求和公式。

3. 等比数列的通项公式和求和公式。

三、练习:
1. 让学生完成一些基础的等差数列和等比数列的题目。

2. 练习应用题目,让学生灵活运用求和公式解决实际问题。

四、拓展:
引导学生思考更复杂的数列问题,如特殊数列、递归数列等,拓展数列应用的范围。

五、总结:
总结本节课的重点内容,强化学生对数列的理解和应用能力。

六、作业:
布置相关的数列练习题作为课后作业,以巩固学生对数列的掌握。

七、反馈:
下节课开始前对上节课的内容进行复习和总结,及时纠正学生的错误和提出问题。

以上为本教案的主要内容,希望老师们在教学过程中能灵活运用,使学生真正理解数列的概念和应用。

新课标人教A版数学选修2-1全套教案二

第一章常用逻辑用语1.1命题及其关系1.1.1 命题(一)教学目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

(二)教学重点与难点重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假教具准备:与教材内容相关的资料。

教学设想:通过学生的参与,激发学生学习数学的兴趣。

(三)教学过程学生探究过程:1.复习回顾初中已学过命题的知识,请同学们回顾:什么叫做命题?2.思考、分析下列语句的表述形式有什么特点?你能判断他们的真假吗?(1)若直线a∥b,则直线a与直线b没有公共点.(2)2+4=7.(3)垂直于同一条直线的两个平面平行.(4)若x2=1,则x=1.(5)两个全等三角形的面积相等.(6)3能被2整除.3.讨论、判断学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。

其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。

教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。

4.抽象、归纳定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句.在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.5.练习、深化判断下列语句是否为命题?(1)空集是任何集合的子集.(2)若整数a是素数,则是a奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)2)2(=-2.(6)x>15.让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.解略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【新人教A版】高中数学选修2-1教案第一章常用逻辑用语1.1命题及其关系1.1.1 命题(一)教学目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

(二)教学重点与难点重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假教具准备:与教材内容相关的资料。

教学设想:通过学生的参与,激发学生学习数学的兴趣。

(三)教学过程学生探究过程:1.复习回顾初中已学过命题的知识,请同学们回顾:什么叫做命题?2.思考、分析下列语句的表述形式有什么特点?你能判断他们的真假吗?(1)若直线a∥b,则直线a与直线b没有公共点.(2)2+4=7.(3)垂直于同一条直线的两个平面平行.(4)若x2=1,则x=1.(5)两个全等三角形的面积相等.(6)3能被2整除.3.讨论、判断学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。

其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。

教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。

4.抽象、归纳定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句.在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.5.练习、深化判断下列语句是否为命题?(1)空集是任何集合的子集.(2)若整数a是素数,则是a奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)2)2(=-2.(6)x>15.让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.解略。

引申:以前,同学们学习了很多定理、推论,这些定理、推论是否是命题?同学们可否举出一些定理、推论的例子来看看?通过对此问的思考,学生将清晰地认识到定理、推论都是命题.过渡:同学们都知道,一个定理或推论都是由条件和结论两部分构成(结合学生所举定理和推论的例子,让学生分辨定理和推论条件和结论,明确所有的定理、推论都是由条件和结论两部分构成)。

紧接着提出问题:命题是否也是由条件和结论两部分构成呢?6.命题的构成――条件和结论定义:从构成来看,所有的命题都具由条件和结论两部分构成.在数学中,命题常写成“若p,则q”或者“如果p,那么q”这种形式,通常,我们把这种形式的命题中的p叫做命题的条件,q 叫做命题结论.7.练习、深化指出下列命题中的条件p和结论q,并判断各命题的真假.(1)若整数a能被2整除,则a是偶数.(2)若四边行是菱形,则它的对角线互相垂直平分.(3)若a>0,b>0,则a+b>0.(4)若a>0,b>0,则a+b<0.(5)垂直于同一条直线的两个平面平行.此题中的(1)(2)(3)(4),较容易,估计学生较容易找出命题中的条件p和结论q,并能判断命题的真假。

其中设置命题(3)与(4)的目的在于:通过这两个例子的比较,学更深刻地理解命题的定义——能判断真假的陈述句,不管判断的结果是对的还是错的。

此例中的命题(5),不是“若P,则q”的形式,估计学生会有困难,此时,教师引导学生一起分析:已知的事项为“条件”,由已知推出的事项为“结论”.解略。

过渡:从例2中,我们可以看到命题的两种情况,即有些命题的结论是正确的,而有些命题的结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题.8.命题的分类――真命题、假命题的定义.真命题:如果由命题的条件P通过推理一定可以得出命题的结论q,那么这样的命题叫做真命题.假命题:如果由命题的条件P通过推理不一定可以得出命题的结论q,那么这样的命题叫做假命题.强调:(1)注意命题与假命题的区别.如:“作直线AB”.这本身不是命题.也更不是假命题.(2)命题是一个判断,判断的结果就有对错之分.因此就要引入真命题、假命题的的概念,强调真假命题的大前提,首先是命题。

9.怎样判断一个数学命题的真假?(1)数学中判定一个命题是真命题,要经过证明.(2)要判断一个命题是假命题,只需举一个反例即可.10.练习、深化例3:把下列命题写成“若P,则q”的形式,并判断是真命题还是假命题:(1)面积相等的两个三角形全等。

(2)负数的立方是负数。

(3)对顶角相等。

分析:要把一个命题写成“若P,则q”的形式,关键是要分清命题的条件和结论,然后写成“若条件,则结论”即“若P,则q”的形式.解略。

11、巩固练习:P42、312.教学反思师生共同回忆本节的学习内容.1.什么叫命题?真命题?假命题? 2.命题是由哪两部分构成的?3.怎样将命题写成“若P,则q”的形式.4.如何判断真假命题.教师提示应注意的问题:1.命题与真、假命题的关系.2.抓住命题的两个构成部分,判断一些语句是否为命题.3.判断假命题,只需举一个反例,而判断真命题,要经过证明.13.作业:P9:习题1.1A组第1题(一)教学目标◆知识与技能:了解原命题、逆命题、否命题、逆否命题这四种命题的概念,掌握四种命题的形式和四种命题间的相互关系,会用等价命题判断四种命题的真假.◆过程与方法:多让学生举命题的例子,并写出四种命题,培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力;培养学生抽象概括能力和思维能力.◆情感、态度与价值观:通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及培养他们的分析问题和解决问题的能力.(二)教学重点与难点重点:(1)会写四种命题并会判断命题的真假;(2)四种命题之间的相互关系.难点:(1)命题的否定与否命题的区别;(2)写出原命题的逆命题、否命题和逆否命题;(3)分析四种命题之间相互的关系并判断命题的真假.教具准备:与教材内容相关的资料。

教学设想:通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及培养他们的分析问题和解决问题的能力.(三)教学过程学生探究过程:1.复习引入初中已学过命题与逆命题的知识,请同学回顾:什么叫做命题的逆命题?2.思考、分析问题1:下列四个命题中,命题(1)与命题(2)、(3)、(4)的条件与结论之间分别有什么关系?(1)若f(x)是正弦函数,则f(x)是周期函数.(2)若f(x)是周期函数,则f(x)是正弦函数.(3)若f(x)不是正弦函数,则f(x)不是周期函数.(4)若f(x)不是周期函数,则f(x)不是正弦函数.3.归纳总结问题一通过学生分析、讨论可以得到正确结论.紧接结合此例给出四个命题的概念,(1)和(2)这样的两个命题叫做互逆命题,(1)和(3)这样的两个命题叫做互否命题,(1)和(4)这样的两个命题叫做互为逆否命题。

4.抽象概括定义1:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆命题.让学生举一些互逆命题的例子。

定义2:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,那么我们把这样的两个命题叫做互否命题.其中一个命题叫做原命题,另一个命题叫做原命题的否命题.让学生举一些互否命题的例子。

定义3:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么我们把这样的两个命题叫做互为逆否命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆否命题.让学生举一些互为逆否命题的例子。

小结:(1)交换原命题的条件和结论,所得的命题就是它的逆命题:(2)同时否定原命题的条件和结论,所得的命题就是它的否命题;(3)交换原命题的条件和结论,并且同时否定,所得的命题就是它的逆否命题.强调:原命题与逆命题、原命题与否命题、原命题与逆否命题是相对的。

5.四种命题的形式让学生结合所举例子,思考:若原命题为“若P,则q”的形式,则它的逆命题、否命题、逆否命题应分别写成什么形式?学生通过思考、分析、比较,总结如下:原命题:若P,则q.则:逆命题:若q,则P.否命题:若¬P,则¬q.(说明符号“¬”的含义:符号“¬”叫做否定符号.“¬p”表示p的否定;即不是p;非p)逆否命题:若¬q,则¬P.6.巩固练习写出下列命题的逆命题、否命题、逆否命题并判断它们的真假:(1)若一个三角形的两条边相等,则这个三角形的两个角相等;(2)若一个整数的末位数字是0,则这个整数能被5整除;(3)若x2=1,则x=1;(4)若整数a是素数,则是a奇数。

7.思考、分析结合以上练习思考:原命题的真假与其它三种命题的真假有什么关系?通过此问,学生将发现:①原命题为真,它的逆命题不一定为真。

②原命题为真,它的否命题不一定为真。

③原命题为真,它的逆否命题一定为真。

原命题为假时类似。

,逆命题与否命题也总是具有相同的真假性.由此会引起我们的思考:一个命题的逆命题、否命题与逆否命题之间是否还存在着一定的关系呢?让学生结合所做练习分析原命题与它的逆命题、否命题与逆否命题四种命题间的关系. 学生通过分析,将发现四种命题间的关系如下图所示: 8.总结归纳若P ,则q . 若q ,则P .由于逆命题和否命题也是互为逆否命题,因此四种命题的真假性之间的关系如下: (1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.由于原命题和它的逆否命题有相同的真假性,所以在直接证明某一个命题为真命题有困难时,可以通过证明它的逆否命题为真命题,来间接地证明原命题为真命题. 9.例题分析例4: 证明:若p 2 + q 2=2,则p + q ≤ 2.分析:如果直接证明这个命题比较困难,可考虑转化为对它的逆否命题的证明。

将“若p 2 + q 2=2,则p + q ≤ 2”视为原命题,要证明原命题为真命题,可以考虑证明它的逆否命题“若p + q >2,则p 2 + q 2≠2”为真命题,从而达到证明原命题为真命题的目的. 证明:若p + q >2,则 p 2+ q2=21[(p -q )2+(p +q )2]≥21(p +q )2>21×22=2 所以p 2+ q 2≠2.这表明,原命题的逆否命题为真命题,从而原命题为真命题。

相关文档
最新文档