数字信号处理-时域离散信号和系统的频域分析2.4
数字信号处理[第二章时域离散信号和系统的频域分析]
![数字信号处理[第二章时域离散信号和系统的频域分析]](https://img.taocdn.com/s3/m/46ecf135f78a6529647d5350.png)
X (e j ) X R (e j ) jX I (e j )
序列的共轭反对称部 分对应FT的虚部与j
17
时域离散信号和系统的频域分析
分析实因果序列h(n)的对称性
h(n) hr (n) jhi (n)
h(n) he (n) ho (n)
H (e j ) H e (e j ) Ho (e j ) H (e j ) H R (e j ) jH I (e j )
j 2 kn j 2 mn
x(n)e N [ ake N ]e N
n0
n0 k
N 1 j 2 (k m)n
ak e N
ak N
k n0
k
19
时域离散信号和系统的频域分析
周期序列的离散傅里叶级数(DFS)
ak
1
N 1 ~
j 2 kn
x(n)e N
N n0
~
令 X (k) Nak
h(n) / 2, n 0
h(n) / 2, n 0
18
时域离散信号和系统的频域分析
周期序列的离散傅里叶级数(DFS)
~
周期序列不满足 x(n) n
~
傅里叶级数:x(n)
j 2 kn
ak e N
k
N 1 j 2 (km)n N, k m
eN
n0
0,
k
m
N1 ~
j 2 mn N 1
cos 0 n
1 [e 2
j0n
e
] j0n
X
(e
j
)
FT [cos 0 n]
FT [
1 2
(e
j0n
e
数字信号处理课件第3章 时域离散信号和系统的频域分析2-DTFT的定义

例3、已知 f (n) anu(n) a 1 ,计算其DTFT。 解:
由此可以得到DTFT的幅频特性和相频特性
F (e j )
1
(1 a cos)2 (a sin )2
【随堂练习】
1.设X (e j )是 x(n)的DTFT,试求下面序列的DTFT。
(1) x(n - n0)
(2) x(n) (3) x(n)
X_abs=abs(X)
X_angle=angle(X)
subplot(211)
plot(w/pi,X_abs,'k','lineWidth',2) title('离散时间傅里叶变换幅度')
subplot(212)
plot(w/pi,X_angle,'k','lineWidth',2) title('离散时间傅里叶变换相位')
0, n q
解:
q
X(e j ) x(n)e jn a ne jn
q
(ae j )n
n
n0
n0
1
(ae j ) 1 ae j
q1
等比数列求和公式:
an a1 qn1
Sn
a1
(1 qn ) , 1 q
n 1,2,3,
q 1
X(e j ) x(n)e jn
n
1
(ae j )q 1 ae j
可引入冲激函数,一些绝对不可和的 序列的傅里叶变换可用冲激函数的形式表 示出来。在后面的章节予以介绍。
例1、计算矩形序列 x(n) R N (n) 的DTFT。
解:
X(e j ) RN (n)e jnnFra bibliotekN 1
第二章 时域离散信号和系统(数字信号处理)

第二章 时域离散信号和系统
6. 复指数序列
x(n)=e(σ+jω0)n 式中ω0为数字域频率,设σ=0,用极坐标和实部虚 部表示如下式: x(n)=e jω0n
x(n)=cos(ω0n)+jsin(ω0n)
由于n取整数,下面等式成立: e j(ω0+2πM)n= e jω0n, M=0,±1,±2…
第二章 时域离散信号和系统
图1.2.5 正弦序列
第二章 时域离散信号和系统
则要求N=(2π/ω0)k,式中k与N均取整数,且k的取
值要保证N是最小的正整数,满足这些条件,正弦序列 才是以N为周期的周期序列。
正弦序列有以下三种情况:
(1)当2π/ ω0为整数时,k=1,正弦序列是以2π/ ω0 为周期的周期序列。例如sin(π/8)n, ω0 =π/8,2π/ ω0 =16,该正弦序列周期为16。
例 设x(n)=R4(n),h(n)=R4(n),求y(n)=x(n)*h(n)。
解 按照公式,
y (n )
m
R ( m) R ( n m)
4 4
上式中矩形序列长度为4,求解上式主要是根据矩
形序列的非零值区间确定求和的上、下限,R4(m)的非
令n-k=m,代入上式得到
u( n )
n
( m)
n
第二章 时域离散信号和系统
u(n) 1 „ n 0 1 2 3
单位阶跃序列
第二章 时域离散信号和系统
3. 矩形序列RN(n) 1, RN(n)= 0, 0≤n≤N-1 其它n
上式中N称为矩形序列的长度。当N=4时,R4(n)的
第二章 时域离散信号和系统
第2章 时域离散信号和系统
数字信号处理(第三版)-课后习题答案全-(原题+答案+图)

将x(n)的表示式代入上式, 得到 1 y(n)=-2δ(n+2)-δ(n+1)-0.5δ(2n)+2δ(n-1)+δ(n-2)
+4.5δ(n-3)+2δ(n-4)+δ(n-5)
第 1 章 时域离散信号和时域离散系统
8. 设线性时不变系统的单位脉冲响应h(n)和输入x(n)分别有以下三种情况,
第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]
(5)y(n)=x2(n)
(6)y(n)=x(n2)
(7)y(n)=
n
(8)y(n)=x(n)sin(ωxn(m) )
m0
解: (1) 令输入为
输出为
x(n-n0)
y′(n)=x(n-n0)+2x(n-n0-1)+3x(n-n0-2) y(n-n0)=x(n-n0)+2x(n—n0—1)+3(n-n0-2)
x(m)h(n-m)
m
第 1 章 时域离散信号和时域离散系统
题7图
第 1 章 时域离散信号和时域离散系统
y(n)={-2,-1,-0.5, 2, 1, 4.5, 2, 1; n=-2, -1, 0, 1, 2, 3, 4, 5}
数字信号处理中的时域与频域分析

数字信号处理中的时域与频域分析数字信号处理(Digital Signal Processing,简称DSP)是一门研究如何对数字信号进行处理和分析的学科。
在DSP中,时域分析和频域分析是两个重要的方法。
时域分析主要关注信号的时间特性,而频域分析则关注信号的频率特性。
本文将从理论和应用的角度,探讨时域与频域分析在数字信号处理中的重要性和应用。
一、时域分析时域分析是对信号在时间上的变化进行分析。
通过时域分析,我们可以了解信号的振幅、相位、周期以及波形等特性。
其中,最常用的时域分析方法是时域图和自相关函数。
时域图是将信号的振幅随时间的变化进行绘制的图形。
通过观察时域图,我们可以直观地了解信号的周期性、稳定性以及噪声等特性。
例如,在音频信号处理中,通过时域图我们可以判断一段音频信号是否存在杂音或者变调现象。
自相关函数是用来描述信号与其自身在不同时间点的相关性的函数。
通过自相关函数,我们可以了解信号的周期性和相关性。
在通信系统中,自相关函数常常用来估计信道的冲激响应,从而实现信号的均衡和去除多径干扰。
二、频域分析频域分析是将信号从时域转换到频域进行分析。
通过频域分析,我们可以了解信号的频率成分、频率分布以及频谱特性等。
其中,最常用的频域分析方法是傅里叶变换和功率谱密度。
傅里叶变换是将信号从时域转换到频域的数学工具。
通过傅里叶变换,我们可以将信号分解为不同频率成分的叠加。
这对于分析信号的频率特性非常有用。
例如,在音频信号处理中,我们可以通过傅里叶变换将音频信号分解为不同频率的音调,从而实现音频合成和音频特效处理。
功率谱密度是描述信号在不同频率上的功率分布的函数。
通过功率谱密度,我们可以了解信号的频率分布和频谱特性。
在通信系统中,功率谱密度常常用来估计信道的带宽和信号的功率。
同时,功率谱密度还可以用于噪声的分析和滤波器的设计。
三、时域与频域分析的应用时域与频域分析在数字信号处理中有着广泛的应用。
以下是一些常见的应用领域:1. 音频信号处理:时域与频域分析在音频信号处理中起着重要的作用。
数字信号处理(第三版)第2章习题答案

第2章 时域离散信号和系统的频域分析
2.3
求信号与系统的频域特性要用傅里叶变换。 但分析频 率特性使用Z变换却更方便。 我们已经知道系统函数的极、 零点分布完全决定了系统的频率特性, 因此可以用分析极、 零点分布的方法分析系统的频率特性, 包括定性地画幅频 特性, 估计峰值频率或者谷值频率, 判定滤波器是高通、 低通等滤波特性, 以及设计简单的滤波器(内容在教材第5 章)等。
X e (e j ) FT[xr (n)]
Hale Waihona Puke 1 1 ej2 1 e j2 1 (1 cos 2)
24
4
2
因为 所以
Xe
(e j
)
1 2
[X
(e j
)
X
(e j
)]
X(ejω)=0π≤ω≤2π
X(e-jω)=X(ej(2π-ω))=0 0≤ω≤π
第2章 时域离散信号和系统的频域分析
当0≤ω≤π时,
用留数定理求其逆变换, 或者将z=ejω代入X(ejω)中, 得到X(z)函数, 再用求逆Z变换的方法求原序列。 注意收 敛域要取能包含单位圆的收敛域, 或者说封闭曲线c可取 单位圆。
第2章 时域离散信号和系统的频域分析
例如, 已知序列x(n)的傅里叶变换为
X
(e
j
)
1
1 ae
j
a 1
1 求其反变换x(n)。 将z=ejω代入X(ejω)中, 得到 X (z) 1 az 1
三种变换互有联系, 但又不同。 表征一个信号和系统 的频域特性是用傅里叶变换。 Z变换是傅里叶变换的一种推 广, 单位圆上的Z变换就是傅里叶变换。
第2章 时域离散信号和系统的频域分析
时域离散信号和系统的频域分析
时域离散信号和系统的频域分析信号与系统的分析方法有两种:时域分析方法和频域分析方法。
在连续时间信号与系统中,信号一般用连续变量时间t 的函数表示,系统用微分方程描述,其频域分析方法是拉普拉斯变换和傅立叶变换。
在时域离散信号与系统中,信号用序列表示,其自变量仅取整数,非整数时无定义,系统则用差分方程描述,频域分析方法是Z变换和序列傅立叶变换法。
Z变换在离散时间系统中的作用就如同拉普拉斯变换在连续时间系统中的作用一样,它把描述离散系统的差分方程转化为简单的代数方程,使其求解大大简化。
因此,对求解离散时间系统而言,Z变换是一个极重要的数学工具。
2.2序列的傅立叶变换(离散时间傅立叶变换)一、序列傅立叶变换:正变换:DTFT[x(n)]=(2.2.1)反变换:DTFT-1式(2.2.1)级数收敛条件为||= (2.2.2)上式称为x(n)绝对可和。
这也是DTFT存在的充分必要条件。
当遇到一些绝对不可和的序列,例如周期序列,其DTFT可用冲激函数的形式表示出来。
二、序列傅立叶变换的基本性质:1、DTFT的周期性,是频率ω的周期函数,周期为2π。
∵ = 。
问题1:设x(n)=R N(n),求x(n)的DTFT。
====设N为4,画出幅度与相位曲线。
2、线性设=DTFT[x1(n)],=DTFT[x2(n)],则:DTFT[a x1(n)+b x2(n)]= = a+b3、序列的移位和频移设 = DTFT[x(n)],则:DTFT[x(n-n0)] ==DTFT[x(n)] == =4、DTFT的对称性共轭对称序列的定义:设序列满足下式则称为共轭对称序列。
共轭对称序列的性质:共轭对称序列的实部是偶函数,虚部是奇函数证明:=+j(实部加虚部)∵∴+j=-j∴=(偶函数)∴=-(奇函数)一般情况下,共轭对称序列用表示:共轭反对称序列的定义:设序列满足下式则称为共轭反对称序列。
共轭反对称序列的性质:共轭反对称序列的实部是奇函数,虚部是偶函数证明:=+j(实部加虚部)∵∴+j=+j∴=(奇函数)∴=(偶函数)一般情况下,用来表示一个序列可用共轭对称序列与共轭反对称序列之和表示。
数字信号处理知识点
《数字信号处理》辅导一、离散时间信号和系统的时域分析 (一) 离散时间信号(1)基本概念信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。
连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。
模拟信号:是连续信号的特例。
时间和幅度均连续。
离散信号:时间上不连续,幅度连续。
常见离散信号——序列。
数字信号:幅度量化,时间和幅度均不连续。
(2)基本序列(课本第7——10页)1)单位脉冲序列 1,0()0,0n n n δ=⎧=⎨≠⎩ 2)单位阶跃序列 1,0()0,0n u n n ≥⎧=⎨≤⎩3)矩形序列 1,01()0,0,N n N R n n n N ≤≤-⎧=⎨<≥⎩ 4)实指数序列 ()n a u n5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。
注意正弦周期序列周期性的判定(课本第10页)2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即()()i x n x n iL ∞=-∞=-∑当L N ≥时,()()()N x n x n R n = 当L N <时,()()()N x n x n R n ≠(4)序列的分解序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即()()(),e o x n x n x n n =+-∞<<∞并且1()[()()]2e x n x n x M n *=+- 1()[()()]2o x n x n x M n *=--(4)序列的运算 1)基本运算2)线性卷积:将序列()x n 以y 轴为中心做翻转,然后做m 点移位,最后与()x n 对应点相乘求和——翻转、移位、相乘、求和定义式: 1212()()()()()m y n x m x n m x n x n ∞=-∞=-=*∑线性卷积的计算:A 、图解 B 、解析法C 、不进位乘法(必须掌握)3)单位复指数序列求和(必须掌握)/2/2/2/2/2/21/2/2/2/2/2/2(1)/21()()/(2)1()()/(2)sin(/2)sin(/2)j N j N j N j N j N j N j N N j nj j j j j j j n j N e e e e e e e j ee e e e e e e j N e ωωωωωωωωωωωωωωωωωω------------=-----===---=∑如果2/k N ωπ=,那么根据洛比达法则有sin(/2)(0)(0)(()())sin(/2)N N k N N k N ωδδω===或可以结合作业题3.22进行练习(5)序列的功率和能量能量:2|()|n E x n ∞=-∞=∑功率:21lim |()|21NN n NP x n N →∞=-=+∑ (6)相关函数——与随机信号的定义运算相同(二) 离散时间系统1.系统性质 (1)线性性质定义:设系统的输入分别为1()x n 和2()x n ,输出分别为1()y n 和2()y n ,即1122()[()],()[()]y n T x n y n T x n ==统的输对于任意给定的常数a 、b ,下式成立1212()[()()]()()y n T ax n bx n a y n by n =+=+则该系统服从线性叠加原理,为线性系统,否则为非线性系统。
数字信号处理第2章 时域离散信号和系统的频率分析实验报告
成绩:《数字信号处理》作业与上机实验(第二章)班级:学号:姓名:任课老师:完成时间:信息与通信工程学院2014—2015学年第1 学期第2章 时域离散信号和系统的频率分析1、设计两个数学信号处理系统:系统初始状态为零。
分别用这两个系统对数字信号:1.020.5cos(2/8/4)0140()0n n n x n ππ++≤≤⎧=⎨⎩其它 进行处理。
该信号为缓慢变化的指数信号(1.02n )上叠加了一个正弦干扰噪声序列,我们希望通过该系统对()x n 进行处理来消除这个正弦干扰噪声。
1).应用dtft 子程序分析信号()x n 的频谱,并用MATLAB 工具画出0π频率范围的频谱图,并在图中标记噪声的频谱。
(1)matlab 代码如下: %dtft 函数function [ X,w ] = dtft( x,n,dw,k )X=x*(exp(-1j*dw)).^(n'*k); w=dw*k; end%应用dtft 子程序分析信号x(n)的频谱 n=0:140;x=1.02.^n+0.5*cos(2*pi*n/8+pi/4); dw=pi/500; k=-1500:1500;[ X,w ] = dtft( x,n,dw,k ); %调用dtft 函数 magX=abs(X); %信号x(n)的幅度谱 angX=angle(X); %信号x(n)的相位谱701()()8() 1.3576(1)0.9216(2)() 1.4142(-1)(2)i y n x n i y n y n y n x n x n x n ==---+-=-+-∑系统一:系统二:subplot(2,1,1); plot(w/pi,magX); axis([0,1,0,800]); title('信号x(n)幅频特性'); xlabel('w'); ylabel('幅度'); subplot(2,1,2); plot(w/pi,angX); axis([0,1,-4,4]);title('信号x(n)相频特性'); xlabel('w'); ylabel('相位');(2)信号()x n 的频谱图见图一:图一 信号()x n 的频谱图2). 应用Hmp 子程序分析系统一与系统二的频谱特性,画出频谱图(0ωπ=)。
数字信号处理高西全课后答案
1.4
1. 用单位脉冲序列δ(n)及其加权和表示题1图所示的序列。
题1图
第 1 章 时域离散信号和时域离散系统
解:
x(n)=δ(n+4)+2δ(n+2)-δ(n+1)+2δ(n)+δ(n-1)
+2δ(n-2)+4δ(n-3)+0.5δ(n-4)+2δ(n-6)
第 1 章 时域离散信号和时域离散系统
解法(二) 采用解析法。 按照题7图写出x(n)和h(n)的表达式分别为
x(n)=-δ(n+2)+δ(n-1)+2δ(n-3)
h(n)=2δ(n)+δ(n-1)+ δ(n-2)
由于
x(n)*δ(n)=x(n)
1
x(n)*Aδ(n-k)=Ax(n-k)
2
故
第 1 章 时域离散信号和时域离散系统
第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]
还和x(n)的将来值有关。
第 1 章 时域离散信号和时域离散系统
(4)假设n0>0, 系统是因果系统, 因为n时刻输出只和n时刻以后的输入 有关。 如果|x(n)|≤M, 则|y(n)|≤M,
(5) 系统是因果系统, 因为系统的输出不取决于x(n)的未来值。 如果
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
jtdt
[[c12((o1212[se[[2eje2j2j222ff00tftf00eftft00e[))jeetj(d212tjj2f2([0(te]ff0e0jtt22]]eejf220tftdjj0t)ttfdfde00tt))]]j2(f0t
xa(t)和 x~^aX(Xta)a(的(jj傅))里F叶FTXT变[[axx(a换aj((tt以))])] 及FxT([nx)a的(t)F]T。
Xa(
j)
FT[
xcaco(otss)2]2ff00tteejjcttoddstt
2
f0te
x~^aa((tt))
cos(2 f0nT ) (t nT )
X(Xaa(a)(jj根…))据TT1FTT采1FkkTkkT样[Xxn[ax信a[(Xa(t[(X号)ajt(]()as(](和j)2jπ模fTTk10Fk0拟kkTjkXs^2TjX[aπk信s(axj(ΩjfΩaπ0s2)号[()X)s2t))sa(的]f(0fj)0F)Tk之(j间(ks…的s2k)Ω关kfs系0s) ,22可(f0f得)0])到]k:s 2
时的XXX ((a(ω将ee(aj)jj值f))s=),2TT0TTω1Fk0TkkkT=Hk2[zxπ[,[a[(X(kt([f)±a(]0(f=(sfπj5s20πk/kfk20Hk2,0jz2ksX,^2Xasfπ(asj(因Ωfjfs代2Ωπ0s))2)2此入f20Xff上)00())fe0式)jω(,()(用(f求s下kfkΩs括k式s弧ks2表2中2示f2s公f:f0sf2)式0])]2为f0)]零f0)]
(b )
2
2
Ω
- Ωs
2π f0 0 2π f0
Ωs
2019/9/30
X a ( j) FT[xa (t)]
第二章 时域离散信号和系统的频域分析
(序3列) 由x(采n)样的信FTT1号,k得只到要X的将a (序Ωj列=ωxj(k/nT)=s,ω) xf(sn代)=入xa:(nT)=cos(2πf0nT),
X (e j )…
[ s 2
(
T
2
k2s
)
(…
Ω
2
k
)]
(b )
T-Ωk s
2π f0 0 2π f0
2 Ωs
2
X(ejω)
π
… (c )
2π
2019/9/30
π 0 π
2
2
… ω
2π
]e jt
2
dt f 0 )]
Xa(jΩ
)
[
(
2
f0)
(Xa(2jΩf 0 ))]是Ω=±2πf0处
π
的单位冲激函数,强度为
2019/9/30
2π f0 0 2π f0 ^
Ω
π
第二章 时域离散信号和系统的频域分析
(2) 以fs=200 Hz 对xa(t)进行采样得到采样信号 x~^a (t) ,根 据 x~^a (t)与xa(t)的关系式:
2
Ts
)
对比下式:
Ωs
2π Ts
Xˆ a ( j)
结论:
1 Ts
X a ( j
k
jks )
(1)离散信号可看作模拟信号的采样序列 x(n) xa (nT )
(2)数字域频率与模拟域频率呈线性关系: T
(3Байду номын сангаас 序列的傅立叶变换与模拟信号傅立叶变换的关系,与
第二章 时域离散信号和系统的频域分析
2.4 时域离散信号的傅里叶变换与模拟信号傅里叶变
换之间的关系
模拟信号
X a ( j)
xa
(t
)e
jt
dt
1
xa (t ) 2
Xa
(
j)e
jt d
时域离散信号
X (e j ) x(n)e jn n
Xˆ a (
j)
1 Ts
X a ( j
k
jks )
x(n) xa (nTs )
1
2
X
a
(
j)e
jnTs
d
Ts
2019/9/30
第二章 时域离散信号和系统的频域分析
推得结果:
X (e j )
1 Ts
Xa(
r
j Ts
jr
采样信号、模拟信号各傅立叶变换一样,都是
期
Ωs
2π Ts
进行周期延拓。
Xa(
j)
以周
2019/9/30
第二章 时域离散信号和系统的频域分析
设 xa(t)=cos(2πf0t) , f0=50Hz , 以 采 样 频 率 fs=200Hz 对
xa(t)进行采样,得到采样信号
~
x^ a
(t)
和时域离散信号x(n),求
提出问题:
x(n) 1 π X (e jω )e jωndω 2π π
(1) 序列的傅里叶变换X(ejω)与模拟信号的傅里叶变换
Xa(jΩ)之间有什么关系。
(2) 数字频率ω与模拟频率Ω(f)之间有什么关系。
2019/9/30
利用采样定理
第二章 时域离散信号和系统的频域分析
xˆa (t) xa (t) T (t) xa (nT ) (t nT ) n