渣油加氢裂化可研

合集下载

浆态床渣油加氢裂化石脑油加氢生产重整原料工艺研究

浆态床渣油加氢裂化石脑油加氢生产重整原料工艺研究

浆态床渣油加氢裂化石脑油加氢生产重整原料工艺研究
徐大海;陈琳;梁忻睿;代萌;牛世坤
【期刊名称】《现代化工》
【年(卷),期】2024(44)1
【摘要】分析了浆态床渣油加氢裂化石脑油馏分(以下简称浆态床石脑油)的主要性质,并开展了浆态床石脑油加氢生产重整原料的工艺试验研究。

结果表明,浆态床石脑油可以在反应压力3.5~5.0 MPa、反应温度320~325℃、氢油体积比150、体积空速1.5~2.0 h-1的工艺条件下,或在现有重整预加氢装置掺炼比不大于15%的情况下生产合格的重整装置进料,可以作为催化重整装置原料的补充来源之一。

【总页数】3页(P227-229)
【作者】徐大海;陈琳;梁忻睿;代萌;牛世坤
【作者单位】中石化(大连)石油化工研究院有限公司
【正文语种】中文
【中图分类】TE624
【相关文献】
1.浆态床加氢裂化工艺技术进展
2.浆态床加氢裂化工艺防堵技术解析
3.沸腾床渣油加氢裂化石脑油综合利用研究
4.浆态床渣油加氢裂化催化剂反应性能影响因素及其评价
因版权原因,仅展示原文概要,查看原文内容请购买。

渣油深度加氢裂化技术应用现状及新进展

渣油深度加氢裂化技术应用现状及新进展

2016年第35卷第8期 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·2309·化工进展渣油深度加氢裂化技术应用现状及新进展任文坡,李振宇,李雪静,金羽豪(中国石油石油化工研究院,北京 100195)摘要:长远来看,原油重劣质化的发展趋势不可避免,能够实现渣油清洁高效转化的深度加氢裂化技术是应对这一挑战的关键,正逐渐成为炼厂最主要的渣油加工技术手段。

本文介绍了渣油沸腾床加氢裂化和渣油悬浮床加氢裂化技术的应用现状,结合技术特点和技术经济指标进行了对比分析,进一步综述了两种渣油加氢裂化技术的研发新进展。

文中指出渣油沸腾床加氢裂化技术是目前最为成熟的渣油高效转化技术,未来仍将在渣油高效加工利用方面发挥重要作用,其中组合集成工艺以及未转化塔底油的处理工艺是其研发和应用的重点。

渣油悬浮床加氢裂化技术具有高转化率的优势,但在工业化应用方面尚不如沸腾床成熟和普遍,仍需继续开发高活性、高分散的催化剂以及着重解决装置结焦问题,未来发展前景看好。

关键词:渣油;加氢裂化;深度转化;沸腾床;悬浮床中图分类号:TE 624.4+3 文献标志码:A 文章编号:1000–6613(2016)08–2309–08DOI:10.16085/j.issn.1000-6613.2016.08.01Application situation and new progress of residuum deep hydrocrackingtechnologiesREN Wenpo,LI Zhenyu,LI Xuejing,JIN Yuhao(PetroChina Petrochemical Research Institute,Beijing 100195,China)Abstract: In the long run, the crude oil would become heavier and poorer in quality. Hydrocracking technologies are regarded as one of the key techniques in efficient and clean conversion of residuum, and have become a major upgrading process in the refineries. In this paper, the application status of residuum ebullated bed and slurry bed hydrocracking technologies were introduced. The technical characteristics and technical-economic indicator were also compared. And then, the new progress and future trend were reviewed. The ebullated bed technology is the most mature residuum high-efficient conversion technology currently, and will continue to play an important role in residuum utilization. In the future, the research is focused on combined technology and unconverted tail-oil processing technology.Although the slurry bed technology is far from mature compared with ebullated bed technology, it has its advantage of high conversion rate and great potential for future development. The technology development should resolve equipment coking problem and develop high-active and high-dispersible catalyst.Key words:residuum;hydrocracking;deep conversion;ebullated bed;slurry bed当前我国经济发展进入“新常态”,更加注重发展质量、环境保护和资源节约[1]。

渣油加氢工艺的研究与应用

渣油加氢工艺的研究与应用

渣油加氢工艺的研究与应用摘要:最近几年来,伴随着国民经济的快速递增,大众物质生活能力得到了全面的提升,工业化进程持续加快,国内油品交易市场针对石化产品与车用燃油的所需展现出史无前例的热情,然而,国内原油供给匮乏,为了保证工业生产和人们生活的正常所需,中国的原油大量进口,渣油加氢技术的运用成为了业界重视问题,从组分构成我们能够看出:进口油中含有大量的硫、氮、重金属等有害杂质,国内应用炼油技术能力,使渣油达到催化裂化等二次加工工艺条件,并且符合国家有关环保要求,处理渣油为有效的工艺措施,其能够完全的去除渣油当中的硫、氮、重金属等有害杂质。

文章从对渣油加氢工艺反应原理和影响原因剖析出发,讲述了现阶段几种常见的加氢工艺步骤,并且对渣油加氢工艺的使用情况展开了简单的讲述。

关键词:渣油加氢;研究应用前言:石油是不可再生资源,从已开采资源来看,石油资源逐渐变得更加严峻,普通的加工措施已经无法适应这类的调整,然而,经济的发展对轻质油的需求呈现历年递增的情况,环保法对产品质量的要求也逐渐的严苛,进一步推动了重、渣油轻质化技术的发展。

渣油加氢在处理低质量原料油当中显示了独特的优点,从20世纪90年代开始,国内外渣油加氢工艺发展快速,获得了较为理想的效果。

渣油是原油通过蒸馏工艺加工后剩余的油非理想组分或杂质构成的石油残渣。

因为其第二次加工困难度有所递增,一般状况下,会被炼油厂当做锅炉燃料而燃烧掉。

由于残余的渣油比含量较高,展开燃烧处理,不单单导致有限资源的消耗,并且也导致周边的环境受到了一定的威胁与污染,使用加氢工艺展开渣油的处理,这类工艺方案不单单能够使公司的经济收入有所递增,将环境污染下降到最低,更为关键的是,可以使资源的运用率得到提升,真正的做到了对有限资源的完全消耗,是现阶段国内各大炼厂普遍运用以及实施的渣油处理工艺。

一、渣油加氢工艺反应原理和影响原因在渣油加氢的过程当中,时常会同时出现精制和裂化两种反应,其主要的反应方式有以下几个方面:1.脱硫反应渣油加氢处理工艺当中最为关键的化学反应则是脱硫反应,因为渣油硫化物的类别以及结构繁琐多样,因此,在实际的反应过程当中,所囊括的脱硫反应也较为繁琐。

减压渣油悬浮床加氢裂化技术_当代炼油工业的前沿技术汇编

减压渣油悬浮床加氢裂化技术_当代炼油工业的前沿技术汇编

HDHPLUS
委内瑞拉石油公司研 究 中 心 (Intevep)/ 德 国 维 巴 石 油 公 司 (Veba)
1983~1988 年 Intevep 与 Veba 合 作 开 发 HDH 技 术 , 并 在 德 国 Sholven 进 行 150bbl/d 中 型 试 验 ;1988~1994 年 在 德 国 Bottrop 进 行 3500bbl/d 工 业 示 范 装 置 试 验 ;1998~2003 年 改 进 HDH 技 术 , 在 10bbl/d 中 型 试 验 的 基 础 上 开 发 出 HDHPLUS 技 术 ;2004~2006 年 与 法 国 Axens 公 司 合作,确定在委内瑞拉建设两套大型工业装置的设计方案
简要情况
20 世 纪 80 年 代 后 期 开 始 开 发 用 微 米 级 催 化 剂 的 技 术 , 在 经 过 90 年 代 大 量 的 实 验 室 工 作 以 后 , 于 2000~2003 年 进 行 0.3bbl/d 中 型 试 验 , 为 建 设 半 工 业 示 范 装 置 提 供 依 据 ,2005 年 底 1200bbl/d 的 半 工 业 示 范 装 置 投 入 运 行 。 根 据 半 工 业 示 范 装 置 的 运 行 结 果 ,2008 年 埃 尼 公 司 决定建设两套大型工业装置,目前正在建设中
关键词 减压渣油 悬浮床加氢裂化 催化剂 转化率 沥青质 尾油 轻油收率
1 前言 石油是一种有限的战略资源,提高石油资源的
利用率是当今世界各国面临的共同任务。 提高石油 资源的利用率,关键是要把减压渣油最大限度地转 化为市场大量需要的运输燃料,特别是柴油,这是 当前炼油行业面临的一个世界级难题。 2 现有渣油加工技术的局限性
VRSH

渣油沸腾床加氢裂化技术特点

渣油沸腾床加氢裂化技术特点

渣油沸腾床加氢裂化技术特点作者:韩小康来源:《中国化工贸易·上旬刊》2016年第06期摘要:介绍了国外主流的渣油沸腾床加氢裂化技术,分析了渣油沸腾床加氢裂化技术的设计优点和不足、操作运行的难点。

针对此工艺技术的特点,提出了加强平稳操作、优化流程、控制未转化油沉积结焦等措施,可有效降低装置操作难度,确保装置长周期运行。

关键词:沸腾床;渣油加氢裂化;未转化油;沉积和结焦随着我国原油性质逐渐劣质化和进口原油的逐年增加,期望发展高转化率沸腾床渣油加氢技术,实现能源的清洁生产与高效利用,以解决我国炼油工业绿色清洁可持续发展面临的主要难题。

文章介绍了沸腾床渣油加氢技术(HOil,LC-Fining,)的技术特点,分析了沸腾床渣油加氢裂化技术的设计思路,讨论了沸腾床渣油加氢裂化工艺的技术特点和操作难点,并且针对各项技术的特点和操作难点,提出了优化改进措施,为发展我国的渣油沸腾床加氢技术提供技术借鉴。

1 沸腾床渣油加氢裂化工艺沸腾床加氢裂化工艺是借助于流体流速带动一定颗粒粒度的催化剂运动,形成气、液、固三相床层,使油品、氢气和催化剂充分接触而完成加氢裂化反应。

沸腾床加氢裂化工艺可以处理金属含量和残炭值较高的原料(如减压渣油、煤直接液化的煤粉颗粒悬浮液体),使重油深度转化;沸腾床渣油加氢裂化技术原油适应性广、反应器内温度均匀、催化剂在线加入和排出,装置运转周期长、有良好的传质和传热、渣油转化率高(一般转化率在50%—85%,组合工艺油收率可达90%以上)、催化剂利用率高、装置操作灵活。

典型的技术主要是Axens的H-OIL技术和CLG公LC-Fining技术。

1.1 H-OIL沸腾床渣油加氢裂化工艺H-OIL工艺是一种催化加氢裂化工艺,由IFP有限责任公司的分公司一美国烃研究公司发明,目的是进行重油和渣油的转化和改质,由于H-OIL工艺在处理性质变化范围较宽的重油方面有着独特的灵活性,且能生产出洁净的运输燃料,目前此工艺在世界减压渣油加氢裂化市场上占有率超过5O%,H-OIL工艺在收率分布和产品质量的选择方面也具有灵活性.工艺过程中未转化的减压渣油可用来生产燃料油、直接燃烧或气化制氢、去溶剂脱沥青生产沥青、去焦化装置处理。

渣油加氢技术浅析

渣油加氢技术浅析

渣油加氢技术浅析摘要:作为原油中最重的馏分,渣油是加氢裂化工艺的重要原料之一。

由于不同油田生产的原油其性质和组成相差甚远,因此,通过对渣油的性质和组成的分析,一方面,为选择适宜的加工途径,生产合适的石油产品提供必要的依据;另一方面,为加氢裂化、加氢精制等生产过程中所使用催化剂的开发及其工艺的优化提供技术支持。

关键词:渣油;加氢;工艺中图分类号:u416文献标识码: a 文章编号:近年来,随着能源危机的日益加剧,原油变劣、变重,轻质油品的需求日益增加以及环保要求越来越严格等多种因素的影响,渣油的利用越来越被人们所重视,渣油深度转化也成为炼油厂长期追求的目标。

如何深度加工产量日益增长的重质原油和其中的大量高硫减压渣油,以满足经济发展对清洁燃料和低硫锅炉燃料油的需要和环保法规的要求,已经成为21世纪世界炼油工业开发的重点。

1渣油原料的主要特点渣油是原油中最重的馏分,包括常压渣油和减压渣油。

常压渣油是原油在常压蒸馏装置中蒸馏后的塔底剩余物,而减压渣油是常压渣油在减压蒸馏装置中进一步蒸馏后的塔底剩余物。

原油中大部分的硫、氮、残炭和金属等杂质均富集浓缩于渣油中,渣油原料具有自身独特的特点。

从化学组成看,渣油含有较大量的金属、硫和氮等杂质元素以及胶质、沥青质等非理想组分。

从化学性质看,渣油平均分子量大、氢碳比低,在反应中易结焦物质多。

从物理性质看,渣油粘度大、密度高。

不同原油的渣油有其各自的特点,如有的渣油镍高、钒低,有的渣油硫高、氮低,而有的则相反。

2渣油加氢的发展背景2.1世界原油资源有限世界原油资源十分有限,以目前开采速度计算,世界原油储量可采40年左右,因此,原油资源十分紧张,应合理、充分利用宝贵的石油资源。

2.2原油变重、变劣世界原油质量总变化趋势为:含硫和高硫原油比例逐年增加,含酸和高酸原油的产量也逐年增加。

含硫原油和高硫原油的产量约占75%o同时,世界高酸原油 (酸值大于1.0mgkoh/g)产量和稠油产量也在不断增加,到20世纪末,世界稠油产量占到了原油总产量的30%,因此,重质原油的加工日益受到石油工业的重视。

渣油加氢处理-催化裂化双向组合(RICP)技术

渣油加氢处理-催化裂化双向组合(RICP)技术

渣油加氢处理-催化裂化双向组合(RICP)技术中国石化石油化工科学硏究院开发的渣油加氢-催化裂化双向组合(RICP)技术是将催化裂化装置中回炼的重循环油(HCO)掺入渣油加氢原料中,作为渣油加氢原料的稀释油,和渣油一起加氢后作为催化裂化原料。

RICP技术对渣油加氢和催化裂化两套装置均有改善效果:对渣油加氢装置,高芳香性的HCO促进了渣油加氢反应;对催化裂化装置,因HCO加氢后再作为催化裂化原料,轻油收率可提高1~3百分点,焦炭收率下降。

本技术已获授权专利13件。

♦RICP技术将传统工艺中RFCC装置原本自身回炼的HCO改为输送到渣油加氢装置,和渣油一起加氢后再作为RFCC原料。

高芳香性的HCO掺入到渣油加氢原料中,促进了渣油加氢反应并抑制了渣油加氢催化剂结焦;加氢后的HCO再回催化裂化装置作为原料,提高了催化裂化处理量和轻油收率。

♦通过改变HCO抽出位置并增设精密过滤器除去HCO中催化剂颗粒,避免了HCO中催化剂颗粒对渣油加氢装置的影响。

♦装置改造费用低,工业上易实施。

氢气减压渣油固定床渣油加氢>350°C加氢渣油渣油催化裂化―干气―液化气―汽油―柴油HCO▲RICP技术工艺流程示意4气体»石脑油»柴油4油浆主要技术指标:♦渣油加氢装置进料中可掺入5%〜30%的HCO作为稀释油,相应可顶替同样比例的直馏蜡油。

♦RICP技术与常规渣油加氢-重油催化裂化组合工艺相比,催化裂化装置处理能力可提高4%〜5%,轻质油收率增加1〜3百分点,油浆产率下降1〜3百分点,焦炭产率降低0.1〜0.5百分点。

▲中国石化齐鲁分公司1.5Mt/a年渣油加氢和0.8Mt/a催化裂化装置与传统的渣油加氢-催化裂化单向组合技术(现有技术)相比,RICP技术的轻油收率高1〜3百分点,催化裂化处理量和掺渣量也有所提高,因此具有更高的经济和社会效益。

RICP技术于2006年5月在中国石化齐鲁分公司1.5Mt/a渣油加氢装置和0.8Mt/a催化裂化装置进行了工业应用试验。

浆态床渣油加氢催化剂研究进展

浆态床渣油加氢催化剂研究进展

2015年9月第23卷第9期 工业催化INDUSTRIALCATALYSIS Sept.2015Vol.23 No.9综述与展望收稿日期:2015-02-03;修回日期:2015-05-05 作者简介:王明进,1963年生,湖南省岳阳市人,硕士,高级工程师,研究方向为化工催化剂研究开发。

通讯联系人:童凤丫,博士。

浆态床渣油加氢催化剂研究进展王明进1,童凤丫2(1.中国石化催化剂有限公司长岭分公司,湖南岳阳414012;2.中国石化石油化工科学研究院,北京100083)摘 要:渣油加氢技术主要有固定床、沸腾床、移动床和浆态床。

浆态床技术不存在催化剂的失活问题,几乎能处理各种性质的原料,是近年来的研究热点。

浆态床技术通过加入催化剂达到劣质渣油改质的目的,使用的催化剂可分为不具有加氢活性的添加剂和具有加氢活性的催化剂两大类,添加剂的作用在渣油高转化率下较明显,所起的作用是阻隔生焦中间相的聚集以减少生焦;催化剂主要通过提供活性氢抑制大分子自由基的缩合和生焦并改质劣质渣油。

对浆态床渣油加氢催化剂和添加剂的使用情况与机理进行总结,对未来发展进行展望,认为低成本有加氢活性的催化剂是未来浆态床渣油加氢催化剂的研究重点。

关键词:石油化学工程;渣油;浆态床;加氢催化剂;添加剂doi:10.3969/j.issn.1008 1143.2015.09.001中图分类号:TE624.9+3;TQ426.95 文献标识码:A 文章编号:1008 1143(2015)09 0659 07Developmentinthecatalystsforresidualoilhydrocrakinginslurry bedWangMingjin1,TongFengya2(1.ChanglingBranchofSinopecCatalystCo.,Ltd.,Yueyang414012,Hunan,China;2.SinopecPetrochemicalResearchInstitute,Beijing100083,China)Abstract:Thetechnologiesforresidualoilupgradingmainlyincludethetechniquesoffix bed,ebullated bed,moving bedandslurry bed.Withthehighflexibilitytorawmaterialsandwithoutthecatalystdeacti vationproblem,theslurry bedtechnologyhasbeenthehotspotofresearch.Inordertoachieveresidueupgrading,catalysthastobeusedinslurrybedtechnology.Thehydrocrakingcatalystsusedintheslurrybedscanbedividedintotwokinds:theadditiveswhichhadnohydrogenationactivityandcatalystswhichhadcatalyticactivity.Theadditivepossessedobviousinfluenceontheresidualoilhydrogenationprocessundertheconditionofhighresidueconversion,andplayedaroleofprohibitingphysicaladsorptionofthecokemesophaseduringthecokingformationprocess.Thecatalystsmainlypreventedtheaggregationofmacromolecularfreeradicalbyofferingactivehydrogenatom,andfinallyreducedthecokeformation.Inthisarticle,theapplicationstatusandmechanismsofthecatalystsandtheadditivesusedforresidualoilhydrogenationinslurry bedprocesseswerereviewed,andtheirdevelopmentprospectsinthefuturewereoutlined.Itispointedoutthattheresearchonresidualoilhydrotreatingcatalystsusedfortheslurrybedswillbefocusedonthecatalystswithlow costandhydrogenationactivity.Keywords:petrochemicaltechnology;residualoil;slurry bed;hydrogenationcatalyst;additivedoi:10.3969/j.issn.1008 1143.2015.09.001CLCnumber:TE624.9+3;TQ426.95 Documentcode:A ArticleID:1008 1143(2015)09 0659 07Copyright ©博看网. All Rights Reserved. 660 工业催化 2015年第9期  2013年的IEA预测数据表明,在未来的20年,化石能源仍将占据全球能源构成中的最大板块,约为30%,石油需求将从2011年的4.52亿吨增加到2035年的5.29亿吨[1]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万吨/年炼化项目可行性研究报告
536061F0000
1 概述 中国中化集团公司(以下简称中化)为了完善石油产业链,提升中化持续发展的能
力和市场竞争能力,实现由贸易服务型向生产服务型转变的总体发展战略,中化实业公 司炼化部拟在浙江舟山建设 1200 万吨/年炼化项目,根据项目总流程安排,需建设一套 200 万吨/年沸腾床渣油加氢裂化装置,该装置设计处理重质高酸原油的减压渣油,经过 加氢脱硫、脱氮、烯烃饱和及加氢裂化反应,生产轻质油品和中间馏份产品,部分加氢 尾油以及少量含硫干气,然后进入其它装置进行深加工。 1.1 编制原则 1.1.1 满足全厂总流程对该装置加工目标的要求。 1.1.2 采用成熟、可靠的工艺及催化剂,确保产品质量。 1.1.3 装置采用DCS集散型控制系统,对全过程实施在线实时自动数据采集和数据处理、 自动控制、超限报警以及自动联锁安全保护。为了确保装置以及重要的工艺设备和机组 的安全,保护生产操作人员人身安全,装置内设置独立的安全仪表系统。 1.1.4 采用高效、可靠的工艺、设备,以确保装置长周期安全稳定运转。 1.1.5 认真贯彻国家有关环保、职业安全卫生、消防法规的要求,做到三废治理、安全 卫生等保障措施与工程建设同时进行,达到国家及地方有关法规规定的指标要求。 1.1.6 采用新型、高效传质和传热设备,以及优化换热网络,综合运用节能新技术,合 理用能,有效降低装置能耗,增加经济效益,使装置达到国内外先进水平。 1.1.7 在保证装置三年一检修的前提下,最大限度实现设备国产化,降低装置投资。 1.1.8 在满足工艺要求前提下,采用流程式布置。 1.1. 9 尽量减少定员,节约用地,节省投资。 1.2 装置规模及开工时数
536061F0000
2 原料及产品性质 2.1 原料 2.1.1 原料油
根据总流程安排,该装置原料油为常减压蒸馏装置的减压渣油。进装置温度为 110 ℃,压力 0.7MPa(G),原料油性质见表 2-1。
II
8.1 公用工程消耗 ...................................................................................................32 8.2 催化剂消耗.......................................................................................................33 9 环境保护 .............................................................................................................34 9.1 设计执行的标准规范.........................................................................................34 9.2 主要污染源及主要污染物 .................................................................................34 9.3 环保治理措施 ...................................................................................................35 附图: 1、H-Oil 工艺流程图和工艺设备表 2、装置平面布置图
主 编:张 光 黎 主要参编人员: 工艺系统 :马 书 涛 李 合 刚 薛 皓 管道设计 :王 京 红 自 控 :高 福 祥 设 备 :柴 祥 东 工 业 炉 :王 德 瑞 机 械 :范 立 民 环保安全 :闫 葵
I
目录
1 概述.......................................................................................................................1 1.1 编制原则 ............................................................................................................1 1.2 装置规模及开工时数...........................................................................................1 1.3 装置组成 ............................................................................................................1 2 原料及产品性质.....................................................................................................2 2.1 原料....................................................................................................................2 2.2 产品及其流向 .....................................................................................................3 3 工艺技术路线选择 .................................................................................................4 3.1 渣油加氢技术概况 ..............................................................................................4 3.2 沸腾床渣油加氢工艺技术 ...................................................................................5 3.3 工艺技术选择 ...................................................................................................10 3.4 工艺流程简述 ...................................................................................................12 3.5 工艺技术特点 ...................................................................................................15 4 物料平衡 .............................................................................................................16 5 主要设备选择 ......................................................................................................17 5.1 设备概况 ..........................................................................................................17 5.2 静设备选择.......................................................................................................17 5.3 压缩机选择.......................................................................................................18 6 平面布置及管道选材............................................................................................20 6.1 装置布置 ..........................................................................................................20 6.2 管道选材 ..........................................................................................................20 7 自动控制 .............................................................................................................23 7.1 采用的标准和规范 ............................................................................................23 7.2 控制规模和控制水平.........................................................................................23 7.3 仪表选型 ..........................................................................................................24 7.4 主要安全技术措施 ............................................................................................25 7.5 主要设备清单 ...................................................................................................26 8 消耗指标 .............................................................................................................32
相关文档
最新文档