北京邮电大学电子电路基础实验报告

合集下载

北京邮电大学_电子电路实验_扩音机_实验报告

北京邮电大学_电子电路实验_扩音机_实验报告

电子电路综合设计实验扩音机电路的设计与实现实验报告信通X班XXX号XXX内容摘要本报告主要由三部分组成。

第一部分为分析设计过程,囊括了本实验的设计任务与要求,以及根据实验要求所设计出的总体的实现计划。

对各个部分进行了层次分化,重点讨论了各个基础层次所要完成的基本要求及实现方法,叙述了关键元器件设计思想和设计过程.第二部分为实验记录过程,包括实际搭载的电路板所实现的功能,一些必要的测试数据以及在实验过程中的一些记录与故障问题的分析。

最后一部分是对实验的总结与部分参考文献及资料。

关键字:前置放大音调控制功率放大 LF353 功放TDA2030A设计任务与要求1.基本要求:A)参考教程所给框图设计实现一个对话筒输出信号具有放大能力的扩音电路,设计指标以及给定条件为:1)最大输出功率不小于2W。

2)负载阻抗为83)具有音调控制功能,即用两个电位器分别调节高音和低音。

当输入信号为1KHz,输出为0dB;当输入信号为100Hz正弦时,调节低音电位器可以使输出电压增益达到10左右;当输入信号为10KHz正弦时,调节高音点位器也可以使输出电压增益达到6左右。

4)输出功率的大小连续可调,即用电位器可以调节音量大小。

2.提高要求提出其他扩音机设计方案。

设计思路及整体结构框图扩音设备的通常作用是把从话筒等音频设备输出的微弱的信号放大成能推动扬声器发声的大功率信号,故主要用到运算放大器和功率放大器。

故次电路可以分为3级。

第1级:前置放大,主要是完成对小信号无失真的放大,一般要求输入阻抗高,输出阻抗低,频带宽,噪声小。

第2级:音调控制,电路的功能不仅仅在于扩音,还有对高低音的抑制或提升。

第3级:功率放大,决定了最终电路的输出效果,要求效率高、失真尽可能小、输出功率大。

为此将本电路的整体框架图表示如下:分块电路与总体电路的设计该电路整体上分为三级,下面分块进行描述:第一级:前置放大前置放大主要运用了集成运算放大器LF353,LF353具有双运放结构 LF353输入阻抗达ΩM 410,输入偏置电流为50 *A 1210-,单位增益频率为4MHz ,转换速率为13V/us 。

电子电路测量实验(北邮)

电子电路测量实验(北邮)

北京邮电大学电子电路综合设计实验实验报告课题名称:函数信号发生器院系:电子工程学院摘要本实验的目的在于使用集成运算放大器设计一个方波—三角波—正弦波发生器。

其中,由施密特触发器组成的多谐振荡器产生方波,再经积分运算电路产生三角波。

最后,经过差分放大器,利用晶体管的非线性特性将三角波变换为正弦波。

并要求波形达到一定的幅值、频率等要求。

关键词函数信号发生器方波三角波正弦波集成运放正文一、设计任务要求1基本要求(1)信号输出频率在1~10kHz范围内连续可调,无明显失真。

(2)方波信号输出电压U opp=12V(误差≤20%),上升、下降沿小于10us,占空比范围为30%~70%。

(3)三角波信号输出电压U opp=8V(误差≤20%)。

(4)正弦波信号输出电压U opp≥1V2提高要求(1)将输出方波改为占空比可调的矩形波,占空比可挑范围为30%‐70%;(2)三种波形的输出峰峰值U opp均可在1V-10V 范围内连续可调。

3+二、实验原理及设计过程1总体思路函数信号发生器的构成方法多样。

本实验来看,可以先产生方波,由方波积分得到三角波,在由三角波经过整形得到正弦波;也可以先产生正弦波,将正弦波进行整形得到方波,在通过积分器产生三角波。

在器件使用上,可以是分立元件电路,也可以采用集成电路。

根据提供的器材和资料,选择设计由集成运算放大器和晶体管放大器构成的方波—三角波—正弦波发生电路(如下图二)。

2原理结构框图三、Multisim仿真过程及波形输出1元器件选择(1)方波—三角波发生电路(最终电路见附录)●芯片选择:对比uA741CP与LM318N的相关参数。

选择转换速度较快的LM318N作为矩形波发生电路的芯片,uA741CP作为三角波发生电路的芯片。

●稳压管选择:根据方波U opp =12V,方波幅度限制在-(U Z+U D)~+(U Z+U D),故选择稳压值为U Z =6V的稳压管。

查阅资料,在Multisim中选择1N4734A单稳压管,放置为稳压对管。

北京邮电大学电路实验报告-(小彩灯)

北京邮电大学电路实验报告-(小彩灯)

北京邮电大学电路实验报告-(小彩灯)电子电路综合实验报告课题名称:基于运算放大器的彩灯显示电路的设计与实现姓名:班级:学号:一、摘要:运用运算放大器设计一个彩灯显示电路,通过迟滞电压比较器和反向积分器构成方波—三角波发生器,三角波送入比较器与一系列直流电平比较,比较器输出端会分别输出高电平和低电平,从而顺序点亮或熄灭接在比较器输出端的发光管。

关键字:模拟电路,高低电平,运算放大器,振荡,比较二、设计任务要求:利用运算放大器LM324设计一个彩灯显示电路,让排成一排的5个红色发光二极管(R1~R5)重复地依次点亮再依次熄灭(全灭→R1→R1R2→R1R2R3→R1R2R3R4→R1R2R3R4R5→R1R2R3R4→R1R2R3→R1R2→R1→全灭),同时让排成一排的6个绿色发光二极管(G1~G6)单光三角波振荡电路可以采用如图2-28所示电路,这是一种常见的由集成运算放大器构成的方波和三角波发生器电路,图2-28中运放A1接成迟滞电压比较器,A2接成反相输入式积分器,积分器的输入电压取自迟滞电压比较器的输出,迟滞电压比较器的输入信号来自积分器的输出。

假设迟滞电压比较器输出U o1初始值为高电平,该高电平经过积分器在U o2端得到线性下降的输出信号,此线性下降的信号又反馈至迟滞电压比较器的输入端,当其下降至比较器的下门限电压U th-时,比较器的输出发生跳变,由高电平跳变为低电平,该低电平经过积分器在U o2端得到线性上升的输出信号,此线性上升的信号又反馈至迟滞电压比较器的输入端,当其上升至比较器的上门限电压U th+时,比较器的输出发生跳变,由低电平跳变为高电平,此后,不断重复上述过程,从而在迟滞电压比较器的输出端U o1得到方波信号,在反向积分器的输出端U o2得到三角波信号。

假设稳压管反向击穿时的稳定电压为U Z,正向导通电压为U D,由理论分析可知,该电路方波和三角波的输出幅度分别为:式(5)中R P2为电位器R P动头2端对地电阻,R P1为电位器1端对地的电阻。

北京邮电大学电路与电子学基础实验报告

北京邮电大学电路与电子学基础实验报告

《电路与电子学基础》实验报告实验名称班级学号姓名实验3交流电路的性质实验3.1 串联交流电路的阻抗 一、实验目的1.测量串联RL 电路的阻抗和交流电压与电流之间的相位,并比较测量值与计算值。

2.测量串联RC 电路的阻抗和交流电压与电流之间的相位,并比较测量值与计算值。

3.测量串联RLC 电路的阻抗和交流电压与电流之间的相位,并比较测量值与计算值。

二、实验器材双踪示波器 1台 信号发生器 1台 交流电流表 1个 交流电压表 1个 0.1µF 电容 1个 100mH 电感 1个 1K Ω电阻 1个三、实验准备两个同频率周期函数(例如正弦函数)之间的相位差,可通过测量两个曲线图之间及曲线一个周期T 的波形之间的时间差t 来确定。

因为时间t 与周期T 之比等于相位差θ(单位:度)与一周相位角的度数(360°)之比θ/360°=t/T所以,相位差可用下式计算θ=t(360°)/T在图3-1,图3-2和图3-3中交流电路的阻抗Z 满足欧姆定律,所以用阻抗两端的交流电压有效值V Z 除以交流电流有效值I Z 可算出阻抗(单位:Ω)IzVz Z =在图3-1中RL 串联电路的阻抗Z 为电阻R 和感抗XL 的向量和。

因此阻抗的大小为22LXRZ +=阻抗两端的电压VZ 与电流IZ 之间的相位差可由下式求出⎪⎭⎫⎝⎛=RXLarctan θ图3-1 RL 串联电路的阻抗在图3-2中RC 串联电路的阻抗Z 为电阻R 和容抗Xc 的向量和,所以阻抗的大小为CXR Z 22+=阻抗两段的电压Vz 和电流Iz 之间的相位差为⎪⎭⎫⎝⎛-=R X C arctan θ 当电压落后于电流时,相位差为负。

图3-2 RC 串联电路的阻抗在图3-3中RLC 串联电路的阻抗Z 为电阻 R 和电感与电容的总电抗X 之向量和,总电抗X 等于感抗XL 与容抗Xc 的向量和。

因此感抗与容抗之间有180°的相位差,所以总电抗X 为C LX XX -=这样,RLC 串联电路的阻抗大小可用下式求出22XRZ +=阻抗两端的电压Vz 与电流Iz 之间的相位差为⎪⎭⎫⎝⎛=R X arctan θ图3-3 RLC 串联电路的阻抗感抗X L 和容抗Xc 是正弦交流电频率的函数。

北京邮电大学电子电路实验报告

北京邮电大学电子电路实验报告

北京邮电大学电子电路实验报告实验一:函数信号发生器的设计与调测院系:信息与通信工程学院班级:2009211129姓名:班内序号:学号:指导教师:王老师课题名称:函数信号发生器的设计与调测摘要:本实验由两个电路组成,方波—三角波发生电路和三角波—正弦波变换电路。

方波—三角波发生电路采用运放组成,由自激的单线比较器产生方波,通过积分电路产生三角波,在经过差分电路可实现三角波—正弦波变换。

该电路振荡频率和幅度用电位器调节,输出方波幅度的大小有稳压管的稳压值决定;而正弦波幅度和电路的对称性也分别由两个电位器调节,以实现良好的正弦波输出图形。

关键词:方波、三角波、正弦波、频率调节、幅度调节,占空比调节设计任务要求:基本要求:a)设计一个设计制作一个可输出方波、三角波、正弦波信号的函数信号发生器。

1,输出频率能在1—10KHz范围内连续可调,无明显失真;2,方波输出电压Uopp = 12V,上升、下降沿小于10us,占空比可调范围30%—70%;3,三角波Uopp = 8V;4,正弦波Uopp≥1V。

b)用PROTEL软件绘制完整的电路原理图(SCH)设计思路:1,原理框图:2,系统的组成框图:分块电路和总体电路的设计:函数发生器是指能自动产生方波、三角波和正弦波的电压波形的电路或者仪器。

电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数发生器。

根据用途不同,有产生三种或多种波形的函数发生器,本课题采用由集成运算放大器与晶体差分管放大器共同组成的方波—三角波、三角波—正弦波函数发生器的方法。

本课题中函数信号发生器电路组成如下:第一个电路是由比较器和积分器组成方波—三角波产生电路。

单限比较器输出的方波经积分器得到三角波;第二个电路是由差分放大器组成的三角波—正弦波变换电路。

差分放大器的特点:工作点稳定,输入阻抗高,抗干扰能力较强等。

特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波波形变换的原理是利用差分放大器的传输特性曲线的非线性。

《电路基础》实验报告

《电路基础》实验报告

实验一 基尔霍夫定律一、实验目的1.用实验数据验证基尔霍夫定律的正确性; 2.加深对基尔霍夫定律的理解; 3.熟练掌握仪器仪表的使用方法。

二、实验原理基尔霍夫定律是电路的基本定律之一,它规定了电路中各支路电流之间和各支路电压之间必须服从的约束关系,即应能分别满足基尔霍夫电流定律和电压定律。

基尔霍夫电流定律(KCL ):在集总参数电路中,任何时刻,对任一节点,所有各支路电流的代数和恒等于零。

即∑I=0通常约定:流出节点的支路电流取正号,流入节点的支路电流取负号。

基尔霍夫电压定律(KVL ):在集中参数电路中,任何时刻,沿任一回路内所有支路或元件电压的代数和恒等于零。

即∑U=0通常约定:凡支路电压或元件电压的参考方向与回路绕行方向一致者取正号,反之取负号。

三、实验内容实验线路如图1.1所示。

1. 实验前先任意设定三条支路的电 流参考方向,如图中的I 1、I 2、I 3所示。

2. 分别将两路直流稳压电源接入电 路,令u 1=6V ,u 2 =12V ,实验中调好后保 持不变。

3.用数字万用表测量R 1 ~R 5 电阻元 图 1.1基尔霍夫定律线路图 件的参数取50~300Ω之间。

4.将直流毫安表分别串入三条支路中,记录电流值填入表中,注意方向。

5.用直流电压表分别测量两路电源及电阻元件上的电压值,记录电压值填入表中。

四、实验注意事项1.防止在实验过程中,电源两端碰线造成短路。

2.用指针式电流表进行测量时,要识别电流插头所接电流表的“+、-”极性。

倘若不换接极性,则电表指针可能反偏(电流为负值时),此时必须调换电流表极性,重新测量,R 4R 5u 1u 2此时指针正偏,但读得的电流值必须冠以负号。

五、实验报告内容1、根据实验数据,选定实验电路中的任一个节点,验证KCL的正确性。

2、根据实验数据,选定实验电路中的任一个闭合回路,验证KVL的正确性。

3、实测值与计算结果进行比较,说明产生误差的原因。

六、预习思考根据图1.1的电路参数,计算出待测电流I1、I2、I3和各电阻上的电压值,记入表中,以便实验测量时,可正确选定毫安表和电压表的量程。

北邮电子电路实验函数信号发生器实验报告

北邮电子电路实验函数信号发生器实验报告

北邮电⼦电路实验函数信号发⽣器实验报告北京邮电⼤学电⼦电路综合设计实验实验报告实验题⽬:函数信号发⽣器院系:信息与通信⼯程学院班级:姓名:学号:班内序号:⼀、课题名称:函数信号发⽣器的设计⼆、摘要:⽅波-三⾓波产⽣电路主要有运放组成,其中由施密特触发器多谐振荡器产⽣⽅波,积分电路将⽅波转化为三⾓波,差分电路实现三⾓波-正弦波的变换。

该电路振荡频率由第⼀个电位器调节,输出⽅波幅度的⼤⼩由稳压管的稳压值决定;正弦波幅度和电路的对称性分别由后两个电位器调节。

关键词:⽅波三⾓波正弦波频率可调幅度三、设计任务要求:1.基本要求:设计制作⼀个⽅波-三⾓波-正弦波信号发⽣器,供电电源为±12V。

1)输出频率能在1-10KHZ范围内连续可调;2)⽅波输出电压Uopp=12V(误差<20%),上升、下降沿⼩于10us;3)三⾓波输出信号电压Uopp=8V(误差<20%);4)正弦波信号输出电压Uopp≥1V,⽆明显失真。

2.提⾼要求:1)正弦波、三⾓波和⽅波的输出信号的峰峰值Uopp均在1~10V范围内连续可调;2)将输出⽅波改为占空⽐可调的矩形波,占空⽐可调范围30%--70%四、设计思路1.结构框图实验设计函数发⽣器实现⽅波、三⾓波和正弦波的输出,其可采⽤电路图有多种。

此次实验采⽤迟滞⽐较器⽣成⽅波,RC积分器⽣成三⾓波,差分放⼤器⽣成正弦波。

除保证良好波形输出外,还须实现频率、幅度、占空⽐的调节,即须在基本电路基础上进⾏改良。

由⽐较器与积分器组成的⽅波三⾓波发⽣器,⽐较器输出的⽅波信号经积分器⽣成三⾓波,再经由差分放⼤器⽣成正弦波信号。

其中⽅波三⾓波⽣成电路为基本电路,添加电位器调节使其频率幅度改变;正弦波⽣成电路采⽤差分放⼤器,由于差分放⼤电路具有⼯作点稳定、输⼊阻抗⾼、抗⼲扰能⼒较强等优点,特别是作为直流放⼤器时,可以有效地抑制零点漂移,因此可将频率很低的三⾓波变换成正弦波。

2.系统的组成框图五、分块电路与总体电路的设计1.⽅波—三⾓波产⽣电路如图所⽰为⽅波—三⾓波产⽣电路,由于采⽤了运算放⼤器组成的积分电路,可得到⽐较理想的⽅波和三⾓波。

北京邮电大学 计算机学院 电子电路基础

北京邮电大学   计算机学院   电子电路基础

《电路与电子学基础》实验目录实验1 戴维南和诺顿等效电路 (4)实验2 一阶电路的过渡过程 (6)实验2.1 电容器的充电和放电 (6)实验2.2 电感中的过渡过程 (9)实验3交流电路的性质 (12)实验3.1 串联交流电路的阻抗 (12)实验3.2 串联谐振 (17)实验4 桥式整流电路 (21)实验5 基本放大电路电路 (23)实验5.1 NPN三极管分压偏置电路 (23)实验5.2 射极跟随器 (25)实验6 差动放大器 (28)实验7 集成运算放大器应用 (32)实验7.1 反相比例放大器 (32)实验7.2 加法电路 (34)实验1 戴维南和诺顿等效电路一、实验目的1.对一个已知网络,求出它的戴维南等效电路。

2.对一个已知网络,求出它的诺顿等效电路。

3.确定戴维南定理的真实性。

4.确定诺顿定理的真实性。

5.对一个已知网络,确定它的戴维南等效电路。

6.对一个已知网络,确定它的诺顿等效电路。

二、实验器材直流电压电源 1个直流电压表 1个直流电流表 1个电阻数个三、实验准备1.戴维南定理任何一个具有固定电阻和电压源的线性二端网络,都可以用一个串联电阻的等效电压源来代替。

这个等效电压源的电压可称为戴维南电压V th,它等于原网络开路时的端电压V oc,如图1-1所示。

串联电阻可称为戴维南电阻R eq,它等于原网络两端的开路电压V oc除以短路电流I sc。

所以V th=V ocReq=V oc/I sc短路电流Isc可在原网络两端连接一个电流表来测量,如图1-2所示(注:电流表具有很小的内阻,可视为短路。

)短路电流Isc也可在原网络的输出端连接一短路线来计算。

确定戴维南电阻Req的另一个方法是,将源网络中所有的电压源用短路线代替,把所有的电流源短路,这时输出端的等效电阻就是Req。

在实验室里对一个未知网络确定其戴维南电阻Req的最好方法是,在未知网络两端连接一个可变电阻,然后调整阻值直至端电压等于开路电压Voc的一半,这时可变电阻的阻值就等于戴维南电阻Req。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子电路基础实验报告
——晶体管β值检测电路的设计
2012211117班2012210482号
信通院17班01号张仁宇一、摘要:
晶体管β值测量电路的功能是利用晶体管的电流分配特性,将放大倍数β值的测量转化为对晶体管电流的测量,同时实现用发光二极管显示出被测晶体管的放大倍数β值。

该电路主要由晶体管类型判别电路、β-V转换电路、晶体管放大倍数档位判断电路、显示电路、报警电路及电源电路六个基本部分组成。

首先通过LED发光二极管的亮灭实现判断三极管类型,并将β值的变化转化为电压的变化从而利用电压比较器及LED管实现β值档位(<150、150~200、200~250、>250)的判断与显示、并在β>250时通过LED管闪烁报警。

二、关键字:
β值;晶体管;档位判断;闪烁报警
三、实验目的
1、加深对晶体管β值意义的理解
2、了解掌握电压比较器的实际使用
3、了解发光二极管的使用
4、提高电子电路综合设计能力
四、设计任务要求
1、基本要求
设计一个简易的晶体管放大倍数β值检测电路,该电路能够实现对放大倍数β值大小的初步测定
1)电路能够测出NPN,PNP三极管的类型
2)电路能将NPN晶体管的β值分别为大于250,大于200小于250,大于150小于200和小于150共四个档位进行判断
3)用发光二极管指示被测三极管的放大倍数β值在哪一个档位
4)在电路中可以用手动调节四个档位值得具体大小
5)当β值大于250时可以光闪报警
2、扩展要求
1)电路能将PNP晶体管的β值分别为大于250,大于200小于250,大于150小于200和小于150共四个档位进行判断在电路中可以用手动调节四个档位值得具体大小。

2)NPN,PNP三极管β值的档位的判断可以通过手动或自动切换
3)用PROTEL软件绘制该电路及其电源电路的印制电路版图。

五、设计思路与总体结构框图
晶体管类型判别电路β-V转
换电路
放大倍数档
位判断电路
显示
电路
报警
电路
电源电路
三极管类型判别电路的功能是利用NPN 型和PNP 型三极管的电流流向相反的特性判别晶体管的类型。

β-V 转换电路的功能是利用三极管的电流分配特性,将β值的测量转化为对三极管电流的测量,进而转换为电压量,同时实现对档位的手动调节。

三极管放大倍数档位判断电路利用电压比较器的原理,实现档位的判断。

显示电路的功能是利用发光二极管将测量结果显示出来。

报警电路的功能是当所测三极管的β值超出测量范围时能够进行报警提示。

电源电路的功能是为各模块提供直流电源。

六、分块电路和总体电路设计
1、晶体管类型判别电路
mA k V V V R 31300/)1.27.012(/V -V -V I 1LED BE CC B ≈Ω--≈=)(
由于其中
对于NPN 管,)(V R I -V V 2CC C C CC C P B R R I +-==β 对于PNP 管,)(V 2P B C C C R R I R I +==β
如需设计用同一β-V 转换电路可测量不同类型PNP 管的β值,则需要使上述两式中的V C 取相同值,因此三个电压标准值的中间一个应该取电源电压的一半即6V 。

且由于PNP 管集电极电压值与β值成正比,而标准β值为150、200、250(3:4:5),所以可确定分压电路所得的三个标准电压值为4.5V 、6V 、7.5V 。

标准R P 值为500Ω。

2、β-V 转换电路
当分压电阻值取33k Ω、11k Ω、11k Ω、33k Ω时,即3:1:1:3时,则可满足对于晶体管类型判别电路的要求。

与LED 串联的电阻取1k
Ω即可。

3、报警电路
报警频率121)2/(44.1f C R R +=约为16Hz
占空比)2/()R R (D 2121R R ++=约为0.69
4、整体电路
七、功能实现
1、当电路接为NPN管类型检测电路时,如接NPN管则判别类型的LED灯亮起,接PNP管则LED不亮;反之接为PNP管类型检测电路时,接NPN管灯不亮,接NPN管灯亮。

因此此LED的亮灭即可指示后续电路是否正常工作。

2、对于NPN管及电路,当手动调节电位器时,随着电位器接入阻值的增大,V C减小,档位判断的4个LED灯由低档位至高档位依次点亮熄灭。

3、当第四个档位的LED亮时同时伴随着报警LED的闪烁(人眼可识别)。

4、将电位器的接入阻值调为500Ω时,接入不同的NPN型三极管,可以根据不同指示灯亮来判断其β值的范围。

5、只对三极管类型判别电路进行小幅改变,使之接为PNP型,在不改变后续电路的前提下取其集电极电压即可对PNP管的β值进行测量,并通过改变电位器的接入阻值使得四个档位的LED灯依次点亮熄灭。

6、将电位器的接入阻值调为500Ω时,接入不同的PNP型三极管,可以根据不同指示灯亮来判断其β值的范围。

八、问题分析
本实验中,我并没有采用提供的7V稳压二极管,原因是如果在三极管类型判别电路中加入稳压管,则不能保证对于NPN型和PNP 型的档位标准电压相同,因而舍去。

九、所用元器件及测量仪表
数字万用表、稳压电源、集成运算放大器LM358、NE555定时器、发光二极管、电位器、NPN型及PNP型三极管、电阻电容。

十、参考文献
《电子测量与电子电路实验》科学出版社
十一、实验总结
通过对于指定功能电路的设计,我们既更加清楚地了解了相关的理论知识,又提高了电路综合设计的能力,其中包括创意设计的能力、查阅相关资料的能力、实际动手操作的能力、发现问题解决问题的能力,这种综合能力的提升不是理论课或者老师手把手教着的实验课就能带给我们的。

这种由自己选题设计的实验不仅仅可以锻炼我们严谨
的理工科思维,更可以让我们在亲自动手的过程中找到自己的不足,做实验的过程中每一步都要小心谨慎,不然一点点错误都可能要我们花好久的时间去发现错误的地方,甚至发生小危险。

总之,这此的实验课圆满完成了,我所涉及的实验电路也达到了预期的效果,自己也收获了很多。

相关文档
最新文档