常微分方程的积分因子法

合集下载

常微分方程§2.3恰当方程与积分因子

常微分方程§2.3恰当方程与积分因子
在解决某些数学问题时,恰当方程和积分因子可以提供有效的解题思路和 方法。
在某些复杂系统中,恰当方程和积分因子可以用来描述系统的动态行为, 并预测未来的发展趋势。
05 实例分析
实例一:简单的一阶恰当方程与积分因子
总结词
通过简单的一阶恰当方程,理解积分因子的概念和作用。
详细描述
一阶恰当方程的形式为dy/dx=f(x,y),其中f(x,y)是x和y的有理函数。求解这类方程时,可以 通过引入积分因子M(x,y)的方法,将方程转化为一个全微分方程,从而简化求解过程。
形式简单
恰当方程的形式相对简单,未知函数的各阶导数都包 含在方程的右边。
可解性
由于最高阶导数的系数不为零,恰当方程可以通过解 代数方程来求解。
应用广泛
恰当方程在数学、物理、工程等领域有广泛的应用。
恰当方的判别方法
导数项系数不为零
在微分方程中,如果最高阶导数 的系数不为零,则该微分方程可 能是恰当方程。
实例三:实际问题的恰当方程与积分因子应用
总结词
通过实际问题的恰当方程,了解 积分因子的实际应用价值和意义。
详细描述
在实际问题中,许多物理、工程 和经济领域的问题都可以转化为 恰当方程的形式。通过引入积分 因子,可以简化问题求解过程, 提高求解效率。
实例展示
例如,在经济学中研究商品价格的变化时, 经常会遇到类似“商品的需求量D与价格p和 消费者的收入I有关,需求量D对价格的导数 Ddp与需求弹性有关”的问题。通过引入积 分因子并转化为全微分方程,可以更方便地 研究商品价格的变化规律和趋势。
02
[2] 丁同仁, 李承治. 常微分方程教程(第二版)[M]. 北京: 高 等教育出版社, 2004.
03

常微分方程的解

常微分方程的解

常微分方程的解是千儿的首篇笔记啦(^_−)☆这一系列笔记大概是来梳理一下各种常微分方程的解法。

证明部分暂时不会作为重点。

这篇笔记将梳理常微分方程的基本解法。

笔记主要采用的教材是丁同仁老师的《常微分方程教程》。

〇、一些名词1、常微分方程凡是联系自变量 x ,这个自变量的未知函数 y = y(x)及其直到 n 阶导数在内的函数方程f(x,y,y',y'',...,y^{(n)}) = 0 叫做常微分方程,并称 n为常微分方程的阶。

如果在上式中, f 对 y,y',...,y^{(n)} 而言都是一次的,那么我们称该方程为线性常微分方程,否则称其为非线性的。

如果未知函数是多元的,那么称之为偏微分方程。

在学习常微分方程的过程中,需要辩证地看待常微分方程和偏微分方程的关系,并及时进行转换。

这样就可以灵活地求解常微分方程。

2、解和通解若函数 y = \varphi (x) 在区间 j 内连续,且存在直到n 阶的导数。

若把 \varphi (x) 及其对应的各阶导数代入原方程,得到关于 x 的恒等式,那么我们称 y = \varphi(x)是原方程在区间 j 上的一个解。

如果解 y = \varphi(x, c_1,c_2,...,c_n) 中包含 n 个独立的任意常数c_1,c_2,...,c_n ,那么我们称其为通解。

若解中不包含任意常数,那么我们称其为特解。

3、初等积分法初等积分法是用一些初等函数或它们的积分来表示微分方程的解的方法。

这也是我们在本节中讨论的方法。

一、恰当方程对于形如 p(x,y)\text dx + q(x,y)\text dy = 0 的方程,如果存在一个可微函数 \phi (x,y) 使得 \text d \phi (x,y) = p(x,y)\text dx = q(x,y) \text dy,那么我们称其为一个恰当方程,或全微分方程。

恰当方程有解的充要条件是 \frac {\partial p(x,y)} {\partial y} = \frac{ \partial q(x,y)}{\partial x} 。

常微分方程小结

常微分方程小结

常微分方程小结姓名:邱俊铭学号:2010104506姓名:李林学号:2010104404姓名:曾治云学号: 2010104509初等积分法:变量分离形式一、一阶微分程:dy/dx=h(x)g(y) ,其中函数h(x)在区间(a,b)上连续,g(y)在区间(c,d)上连续且不等于0.经过分离变量得: dy/g(y)=h(x)dx 两端积分得:G(y)=H(x)+c ,其中c任意的常数且G(y)= ∧dy/g(y),H(x)= ∧h(x)®x,所以G’(y)=1/g(y)不为0,故G存在逆函数,从而得到:y= (H(x)+c).例1. dy /dx=2xy解:当y ≠0时,分离变量后得:dy/ y =2xdx ,两边积分得:ln|y|=x^2+c1 ,此外y=0也是方程的解,从而方程的解为y=Ce^(x^2),g(y)=0,则y=是方程的解,其中C为任意的常数。

初值问题的解,即y取任意一个数得到的结果,代入通解中,求出具体y 值。

例2.y(1+x^2)dy=x(1+y^2)dx,y(0)=1;解:这是变量分离的方程,分离变量后得:y/(1+y^2)dy=x/(1+x^2),两边积分得其通解为:1+y^2=C(1+x^2),其中C为任意常数,代入初值条件得:C=2.。

故所给的初值问题的解为y=.二、常数变易法一阶非线性方程:dy/dx=a(x)y+f(x).(1)当f(x)=0时,方程为齐次线性方程,解法和上述的一样,通解为y=C ,C为任意的常数。

现在求齐次线性方程的通解,常数C换成x的函数c(x),得到:y= c(x),对x 求导,然后代入(1)中化简,两端积分,得:y=C +f x e ..例3. dy/dx-2xy=x.解:dy/dx=2xy+x ,这里a(x)=2x,f(x).从而可求出原方程的通解为: Y=exp(2 ∧x ®x)(c+ ∧xexp(-2∧x ®x)®x)=-1/2+ce^(x^2),即-1/2+ce^(x^2),其中c 为任意的常数。

一阶常微分方程解法总结

一阶常微分方程解法总结

第 一 章 一阶微分方程的解法的小结⑴、可分离变量的方程: ①、形如)()(y g x f dxdy= 当0)(≠y g 时,取得dx x f y g dy)()(=,两边积分即可取得结果; 当0)(0=ηg 时,那么0)(η=x y 也是方程的解。

例1.1、xy dxdy= 解:当0≠y 时,有xdx ydy=,两边积分取得)(2ln 2为常数C C x y +=因此)(11212C x e C C eC y ±==为非零常数且0=y 显然是原方程的解;综上所述,原方程的解为)(1212为常数C eC y x =②、形如0)()()()(=+dy y Q x P dx y N x M当0)()(≠y N x P 时,可有dy y N y Q dx x P x M )()()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=)x P 时,0x x =为原方程的解。

例1.二、0)1()1(22=-+-dy x y dx y x 解:当0)1)(1(22≠--y x 时,有dx x xdy y y 1122-=-两边积分取得 )0(ln 1ln 1ln 22≠=-+-C C y x ,因此有)0()1)(1(22≠=--C C y x ;当0)1)(1(22=--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(22为常数C C y x =--。

⑵可化为变量可分离方程的方程:①、形如)(xyg dx dy = 解法:令x y u =,那么udx xdu dy +=,代入取得)(u g u dxdux=+为变量可分离方程,取得)(0),,(为常数C C x u f =再把u 代入取得)(0),,(为常数C C x xyf =。

②、形如)0(),(≠+=ab by ax G dxdy解法:令by ax u +=,那么b du adx dy +=,代入取得)(1u G badx du b =+为变量可分离方程,取得)(0),,(为常数C C x u f =再把u 代入取得)(0),,(为常数C C x by ax f =+。

高中数学中的常微分方程知识点

高中数学中的常微分方程知识点

高中数学中的常微分方程知识点一、引言常微分方程是数学中的一个重要分支,它在自然科学、社会科学和工程技术等领域有着广泛的应用。

高中数学中的常微分方程知识点主要包括一阶微分方程、二阶微分方程和常微分方程的解法等内容。

二、一阶微分方程1. 概念一阶微分方程是指形如dy/dx + P(x)y = Q(x)的方程,其中P(x)和Q(x)是关于自变量x的已知函数。

2. 解法(1)分离变量法:将方程中的y和x分离,化为y = f(x)的形式,然后对两边进行积分。

(2)积分因子法:找出一个函数μ(x),使得原方程两边乘以μ(x)后,可以化为dy/dx + μP(x)y = μQ(x)的形式,然后利用积分因子公式求解。

(3)变量替换法:选择一个合适的变量替换,将原方程化为简单的一阶微分方程,然后求解。

3. 例子求解方程dy/dx + 2y = e^x。

(1)分离变量法:dy/y = e^x dx∫ dy = ∫ e^x dxy = e^x + C其中C是积分常数。

(2)积分因子法:μ(x) = e^(-∫ 2dx) = e^(-2x)μ(dy/dx + 2y) = μQ(x)e^(-2x)dy/dx + 2e^(-2x)y = e(-2x)e x(-dy/dx + 2y)e^(2x) = 1-dy/dx + 2y = e^(-2x)利用积分因子公式求解,得到:y * e^(2x) = -∫ e^(-2x) dx + Cy = (-1/2)e^(-2x) + C/e^(2x)三、二阶微分方程1. 概念二阶微分方程是指形如d²y/dx² + P(x)dy/dx + Q(x)y = R(x)的方程,其中P(x)、Q(x)和R(x)是关于自变量x的已知函数。

2. 解法(1)常数变易法:假设y = e^(αx),代入原方程,得到关于α的二次方程,求解得到α的值,进而求出y的解。

(2)待定系数法:假设y = e^(αx)的系数为待定系数,代入原方程,得到关于待定系数的方程,求解得到待定系数的值,进而求出y的解。

一阶常微分方程解法总结

一阶常微分方程解法总结

v 2dv 2u - v u ,令 t = v ,有 dv = tdu + udt ,代入得到 t + u dt = 2 - t ,化简 = = du u - 2v 1 - 2 v u du 1 - 2t u
得到,
du 1 - 2t d (1 - t + t 2 ) ln(1 - t + t 2 ) = dt = ln u = +C , 有 u 2 - 2t + 2t 2 2(1 - t + t 2 ) 2
2 2
y x dy = 2 dx 两边积分得到 2 1- y x -1
ln x 2 - 1 + ln y 2 - 1 = ln C
2 2
(C ¹ 0) ,所以有 ( x 2 - 1)( y 2 - 1) = C
(C ¹ 0) ;
当 ( x - 1)( y - 1) = 0 时,也是原方程的解; 综上所述,原方程的解为 ( x - 1)( y - 1) = C
¶M ¶N j ( x ) dx ¶y ¶x = j ( x) ,原方程有只与 x 有关的积分因子,且为 µ ( x, y ) = e ò ①当且仅当 , N
两边同乘以 µ ( x, y ) ,化为恰当方程,下同(4)。
¶M ¶N f ( y ) dy ¶y ¶x = f ( y ) ,原方程有只与 y 有关的积分因子,且为 µ ( x, y ) = e ò ②当且仅当 , -M
-n
du + (1 - n) P( x)u = (1 - n)Q( x) ,下 dx
dy y = 6 - xy 2 dx x
-1 -2
解:令 u = y ,有 du = - y dy ,代入得到 有 µ ( x) = e ò

常微分方程积分因子法的求解

常微分方程积分因子法的求解

用积分因子法解常微分方程摘要:每一个微分方程通过转化为恰当方程之后,可以运用恰当方程的公式进行求解,因此非恰当微分方程转化成恰当方程是求解微分方程的重要步骤,转化成恰当方程需要求解出积分因子,因此积分因子的求解变得非常重要.此论文主要研究几类微分方程积分因子,从而使微分方程的求解变得较简便.关键词:微分方程恰当微分方程积分因子通解Abstract:After each differential equation through into the appropriate equation, can use the appropriate equations for solving non appropriate formula, the differential equation is transformed into an appropriate equation is an important step in solving differential equations, into the appropriate equation requires the solution of the integral factor, thus solving the integral factor becomes very important. This paper mainly research for several kinds of differential equation of integral factor, to make it easy for solving differential equations.Key Words:Differential equation Exact differential equation Integrating factor General solution自变量只有一个的微分方程称为常微分方程.常微分方程是数学分析或基础数学的一个组成部分,在整个数学大厦中占据着重要位置.本文通过运用求微分方程的积分因子来将微分方程转化为恰当微分方程求解.常微分方程是解决实际问题的重要工具[1].1 恰当微分方程1.1 常微分方程联系自变量、未知函数以及未知函数的某些导数(或微分)之间的关系式称为微分方程. 未知函数是一元函数的微分方程称为常微分方程,未知函数是多元函数的微分方程称为偏微分方程.方程2(),2d y dy b cy f t dt dt++= (1.1) 20dy dy t y dt dt ⎛⎫ ⎪⎝⎭++= (1.2) 就是常微分方程的例子,这里y 是未知数,t 是自变量. 1.2 恰当微分方程考虑一阶方程(,)(,)0M x y dx N x y dy += (1.3) 这里假设(,)M x y dx ,(,)N x y dy 在某矩形区域内是x ,y 的连续函数且具有连续的一阶偏导数.若方程(1.3)的左端恰好是某个二元函数(,)u x y 的全微分,即(,)(,)(,)M x y dx N x y dy du x y += (1.4) 则称(1.3)为恰当微分方程(全微分方程).恰当微分方程(1.3)的通解就是(,),u x y c = (1.5) 这里c 是任意常数.定理1[2] 设函数(,)M x y dx 和(,)N x y dy 在一个矩形区域R 中连续且有连续的一阶偏导数,则称(2.1)为恰当微分方程的充要条件是(,)(,).M x y N x y x y∂∂=∂∂ (1.6) 1.3 恰当微分方程的解法方法1 凑微分法:利用熟知的二元函数微分公式,重新分组组合,分块凑成全微分式 方法2 不定积分法:利用关系式:(,)(,)(,)M x y dx N x y dy du x y +=由此,函数(,)u x y 应适合方程组(,),(,)u u M x y N x y x y∂∂==∂∂对(,)u M x y x∂=∂关于x 积分得 (,)()u M x y dx y ϕ=+⎰两端关于y 求导数,并利用恰当微分方程的充要条件,得''()()(,)u M N dx y dx y N x y y y xϕϕ∂∂∂=+=+=∂∂∂⎰⎰ 通过对方程'()(,)N dx y N x y xϕ∂+=∂⎰ 关于y 积分,解出()y ϕ,从而可得(,)()u M x y dx y ϕ=+⎰的表达式,令 (,)()M x y dx y c ϕ+=⎰即得方程的通解. 如果对(,)u N x y x∂=∂关于y 积分,同理可得方程的通解为 (,)()N x y dx x c ψ+=⎰其中()x ψ可类似于()y ϕ求解的方法得到.方法3 公式法:方程的通解为000(,)(,)x y x y M x y dx N x y dy c +=⎰⎰ 或 000(,)(,)x y x y M x y dx N x y dy c +=⎰⎰ 其中c 是任意常数[3].例1 求2()(2)0x y dx x y dy ++-=的通解解 这里2,2M x y N x y =+=-,在xy 平面上有连续偏导数,这时 1,1,M N yx∂∂==∂∂ 因此方程为恰当微分方程. 方法1(不定积分法) 现在求u ,使它同时满足如下两个方程:2u x y x∂=+∂, (1)2u x y y ∂=-∂. (2) 由(1)对x 积分,得到31()3u x xy y ϕ=++, (3) 将(3)对y 求导数,并使它满足(2),即得()2ud y x x y y dy ϕ∂=+=-∂,于是()2,d y y dy ϕ=-积分后得2(),y y ϕ=-将()y ϕ代入(3),得到321.3u x xy y =+-因此,方程的通解为321,3x xy y c +-=这里c 是任意常数.方法2 (公式法) 取00(,)(0,0)x y =因此00(,)(,)(,)xy u x y M x y dx N x y dy=+⎰⎰200()(2)x yx y dx x y dy =++-⎰⎰321()003x y x xy y =+- 3213x xy y =+- 因此,方程的通解为321,3x xy y c +-= 这里c 是任意常数.方法3(凑微分法) 将方程重新“分项组合”,得到220x dx ydx xdy ydy ++-=即32103d x dxy dy +-= 或者写成321()03d x xy y +-= 因此,方程的通解为321,3x xy y c +-= 这里c 是任意常数.2 用积分因子法解常微分方程恰当微分方程可通过积分求出它的通解,但并非所有的微分方程均为恰当微分方程。

常微分方程积分因子

常微分方程积分因子

常微分方程积分因子
微分方程积分因子是指给定方程,采用特定的积分因子来解决的偏
微分方程的解。

它是一种有效的数学モーメント,用于解决非线性对
偶变换以及求解偏微分方程等问题。

一般来说,存在许多的不同的微分方程积分因子,包括补充积分因子、延伸积分因子、反射积分因子以及旋转积分因子等。

局部补充积分因
子又分为独立积分因子和共用积分因子。

独立积分因子指的是某一种
方程,不受其它方程影响,在求解改方程时直接用于求解。

而共用积
分因子则指一种方程与另一种方程时有关联,求解某一方程时也得考
虑到另一方程,才能有效利用积分因子求解。

另外,两种方程可以相
互关联来求解,也称作相互补充的积分因子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常微分方程的积分因子法
在数学中,常微分方程是一种描述动态系统的重要工具。

在实际应用中,常微分方程模型广泛应用于物理、化学、生物学等领域,用于研究自然界中各种现象的演化规律。

常微分方程除了数值解法外,还有一种有力的解法——积分因子法。

积分因子法是通过引入一个特殊的乘数,将常微分方程转化为可积分的形式,从而求出它的通解。

1. 常微分方程与积分因子
首先,我们需要了解什么是常微分方程。

简单来说,常微分方程是描述一个未知函数与其导数之间关系的方程。

比如,一阶常微分方程可以写成:
$$\frac{dy}{dx}=f(x,y)$$
其中,$y=y(x)$ 是未知函数,$f(x,y)$ 是已知函数。

解此方程的一般方法是使用分离变量法或者变量代换法,但是有些方程并不方便通过这些方法求解。

这时候,就需要借助积分因子法。

积分因子法是常微分方程中的一种特殊解法,通过引入一个特殊的函数,将原方程乘上这个函数,使它变为可积分的形式。

其必要条件是,乘上这个函数后,原方程满足以下形式:
$$\mu(x,y,z)\frac{\partial f(x,y,z)}{\partial
x}+\mu(x,y,z)\frac{\partial g(x,y,z)}{\partial
y}+\mu(x,y,z)\frac{\partial h(x,y,z)}{\partial
z}+\mu(x,y,z)P(x,y,z)=0$$
其中,$\mu(x,y,z)$ 是引入的积分因子。

这时,我们可以通过将这个新方程改写成完全微分形式来求解,从而得到原方程的通解。

2. 积分因子法的应用举例
下面,我们来看一个实际的例子,说明积分因子法的应用。

考虑以下常微分方程:
$$\frac{dy}{dx}+2y=xe^{-x}$$
这是一个一阶线性非齐次微分方程,我们可以使用常见的解法——待定系数法或变量分离法,但这里我们要演示积分因子法的应用。

首先,我们需要找到这个方程的积分因子。

根据前面的公式,我们可以设
$$\mu(x)=e^{2x}$$
然后,将原方程两边同时乘上积分因子:
$$e^{2x}\frac{dy}{dx}+2e^{2x}y=xe^{-x}e^{2x}$$
这时,我们发现左边的式子可以改写为:
$$\frac{d}{dx}\left(e^{2x}y\right)=xe^x$$
进一步地,我们可以将右边的式子积分一次:
$$\int xe^xdx=x e^x-\int e^xdx=x e^x-e^x+C$$
其中,$C$ 为常数。

将上面的结果带入最开始的方程,我们得到:
$$e^{2x}y=\frac{1}{2}(x-1)e^x+C$$
化简后,就可以得到方程的通解:
$$y=\frac{1}{2}(x-1)+Ce^{-2x}$$
在这个例子中,我们使用积分因子法解决了一个一阶线性非齐
次微分方程,结果比待定系数法或变量分离法更加直接,清晰。

3. 总结
积分因子法是常微分方程中一个非常实用的解法。

通过引入积
分因子,我们可以把原微分方程转化为完全微分形式,从而更快、更直接地求解。

当然,对于某些特定的常微分方程,积分因子法
可能没有其他方法更好,但这种方法仍然是求解微分方程的重要
工具之一。

相关文档
最新文档