材料力学第6章简单超静定问题习题解
《材料力学》第6章-简单超静定问题-习题解

轴力图1234-5-4-3-2-11234567N(F/4)x(a)第六章 简单超静定问题 习题解[习题6-1] 试作图示等直杆的轴力图解:把B 支座去掉,代之以约束反力B R (↓)。
设2F 作用点为C , F 作用点为D ,则:B BD R N = F R N B CD += F R N B AC 3+=变形谐调条件为:0=∆l02=⋅+⋅+⋅EA aN EA a N EA a N BD CD AC 02=++BD CD AC N N N03)(2=++++F R F R R B B B45FR B -=(实际方向与假设方向相反,即:↑) 故:45FN BD-= 445F F F N CD -=+-=47345FF F N AC=+-= 轴力图如图所示。
[习题6-2] 图示支架承受荷载kN F 10=,1,2,3各杆由同一种材料制成,其横截面面积分别为21100mm A =,22150mm A =,23200mm A =。
试求各杆的轴力。
解:以节点A 为研究对象,其受力图如图所示。
∑=0X030cos 30cos 01032=-+-N N N0332132=-+-N N N 0332132=+-N N N (1)∑=0Y030sin 30sin 0103=-+F N N2013=+N N (2)变形谐调条件:设A 节点的水平位移为x δ,竖向位移为y δ,则由变形协调图(b )可知:00130cos 30sin x y l δδ+=∆x l δ=∆200330cos 30sin x y l δδ-=∆03130cos 2x l l δ=∆-∆2313l l l ∆=∆-∆设l l l ==31,则l l 232=223311233EA l N EA lN EA l N ⋅⋅=- 22331123A N A N A N =- 15023200100231⨯=-N N N23122N N N =-21322N N N -= (3)(1)、(2)、(3)联立解得:kN N 45.81=;kN N 68.22=;kN N 54.111=(方向如图所示,为压力,故应写作:kN N 54.111-=)。
材料力学——6简单的超静定问题

M
(x)
X
1
x
X1x, P(x
x l ), 2
l 2
x
l 2
B
l 0
M
(x)M EI
( x)dx
0
如果B处支撑为弹簧 (弹簧系数K) ?
例 P
A
l
l
2
2
BA
P
B
l
l
2
2
X1
解
M
(x)
X1
x
X1x, P(x
x l ), 2
l 2
x
静定基
l 2
x
B
l 0
M (x)M EI
(x)dx
X1 K
求解 线性方程
未知力
以一例说明解法
q
12 3
X1 X2 X3
• 静定基(含未知数)
1 0, 2 0, 3 0
• 位移协调条件
建立方程的过程
以1为例说明
X1 X2 X3
1
M (x)M1(x) dx EI
(M X1 M X2 M X3 M q )M1(x) dx EI
M X1M1 dx M X2 M1(x) dx M X3 M1(x) dx M qM1(x) dx
A
P0 =1 B
M (x) x
解: 协调条件——D截面转
角为零
A
静定基
D
/2
0
M
( )M
EI
()Rd
0
DX
P 2
二、装配应力
1、静定问题无装配应力
B
C
2、静不定问题存在装配应力
1
2
A
下图,3号杆的尺寸误差为,
材料力学-第六章 简单的超静定问题

变形协调条件:
l1 l 3 cos
F N1
F N3
F N2
l3
l1
A
A
l2
例2.图示AB为刚性梁,1、2两杆的抗拉(压)
刚度均为EA,制造时1杆比原长l短,将1杆装
到横梁后,求两杆内力。
解: 装配后各杆变形 1杆伸长 l1 2杆缩短 l 2 变形协调条件
A
1
l1
4、联解方程
FN 1 F E3 A3 2 cos 2 E1 A 1 cos
FN 3
F E1 A 3 1 1 2 cos E3 A3
●装配应力的计算
装配应力:超静定结构中由于加工误差, 装 配产生的应力。 平衡方程:
FN 1 FN 2
1
3 2
A
l
FN 3 ( FN1 FN 2 ) cos
2、AC和BC材料相同,面积不同,外力作用在 连接界面处,在外力不变的情况下,要使AC上 轴力增加,错误的方法有( )。 A、 增加AC的横截面积 B、 减小BC的横截面积 C、 增加AC的长度 D、 增加BC的长度
A l1 C F B l2
3、AB为等截面杆,横截面面积为A,外力F作 用在中间,则AC和BC上应力分别( )。
2
l 2
B
2( l1 ) l 2
解: 分析AB
A
aF 1 2aF 2 0
F1l 物理方程 l1 EA 变形协调条件
FA
F1
F2
B
F2 l l 2 (缩短) EA
2( l1 ) l 2
4EA 2EA F1 (拉力) F2 (压力) 5l 5l
材料力学教学课件 第六章 简单的超静定问题

FN a EA
2qa 3 A FN 2 3a A I Z
FN a 3 FN a q2a FN 2a 8EI Z 3EI Z 3EI Z EA
4
例题 6.10
当系统的温度升高时,下列结构中的____ A 不会 产生温度应力.
A
B
C
D
例题 6.11
所有超静定结构,都是在静定结构上再加一个或几个约束,这些约束对 于特定的工程要求是必要的,但对于保证结构平衡却是多余的,故称为多余 约束。未知力个数与平衡方程数之差,称为超静定次数。
对超静定问题,可综合运用平衡条件、变形的几何相容条件和力与变形 间的物理关系等三个方面来求解。
6-2.拉压超静定问题
例题:求图 ( a ) 所示等直杆 AB 上下端的约束力,并求 C 截面的位移。 杆的拉压刚度为EA。
解: 1、有两个未知约束力FA , FB (见 图a ) , 但只有一个独立的平衡方程, 故为一次超静定问题。
FA +FB - F = 0
2、取固定端B 为“多余”约束。相应 它应满足相容条件 的静定杆如图 (b)。 ΔBF + ΔBB = 0,参见图(c) (d)。 3、补充方程为
A. 有弯矩,无剪力;
q
B
B. 有剪力,无弯矩;
C. 既有弯矩又有剪力; D. 既无弯矩又无剪力;
A
L2
C
L2
例题 6.13
等直梁受载如图所示.若从截面C截开选取基本结 构,则_____. A
A. 多余约束力为FC,变形协调条件为ωC=0; B. 多余约束力为FC,变形协调条件为θC=0; C. 多余约束力为MC,变形协调条件为ωC=0; D. 多余约束力为MC,变形协调条件为θC=0;
材料力学第5版(孙训方编)

FAy
F
(b)
5. 将上述二个补充方程与由平衡条件ΣMA=0所得平衡方程
FN1a FN3
1 2
a
FN
2
(2a)
F
(3a)
0
联立求解得
FN3
3 2F 110 2
,FN1
2FN3
6 2F 110 2
,FN2
4FN3
12 2F 110 2
17
第六章 简单的超静定问题
Ⅱ. 装配应力和温度应力 (1) 装配应力
所以这仍然是一次超静定问题。
23
第六章 简单的超静定问题
2. 变形相容条件(图c)为 l1 l3 e
这里的l3是指杆3在装配后的缩短值,不带负号。 3. 利用物理关系得补充方程:
FN1l FN3l e EA E3 A3
24
第六章 简单的超静定问题
4. 将补充方程与平衡方程联立求解得:
FN1 FN2
MA
Me
MB
Me
Mea l
M eb l
34
第六章 简单的超静定问题 (a)
4. 杆的AC段横截面上的扭矩为
TAC
M A
M eb l
从而有
C
TAC a GI p
M eab lGI p
35
第六章 简单的超静定问题
例题6-6 由半径为a的铜杆和外半径为b的钢管经紧 配合而成的组合杆,受扭转力偶矩Me作用,如图a。试求 铜杆和钢管横截面上的扭矩Ta和Tb,并绘出它们横截面上 切应力沿半径的变化情况。
而杆1和杆2中的装配内力利用图b中右侧的图可知为
FN1
FN 2
FN3
2 c os
2
孙训方材料力学06简单的超静定问题

B
DC
1
3
2
A
F
10
材料力学
第六章 简单的超静定问题
解:(1)判断超静定次数 结构为一次超静定。
(2)列平衡方程
Fx 0 FN1 FN2
Fy 0
FN1 cos FN2 cos FN3 F 0
B
D
1
3 2
l2 C
l1 A
A
B
F (6)联立平衡方程与补充方程求解
FN1 FN2 FN3 F 0 2aFN1 aFN2 0 FN1 FN3 2FN2
FN1 F / 6 FN2 F / 3 FN3 5F / 6
材料力学
Ⅱ. 装配应力
B
杆系装配好后,各杆将处于
材料力学
【例】 图示等直杆 AB 的两端分别与刚性支承连结。设两 支承的距离(即杆长)为 l,杆的横截面面积为 A,材料的弹
性模量为 E,线膨胀系数为 。试求温度升高 T 时杆内的
温度应力。
A
B
l
材料力学 A
解: 这是一次超静定问题
l
变形相容条件:杆的长度不变
A
Δl 0
杆的变形为两部分:
q B
l/2
FC
l
基本静定系 或相当系统
材料力学
第六章 简单的超静定问题
求解超静定问题的步骤
(1) 判断超静定次数:去掉多余约束,画上相应约束反力 —建立基本静定系。
(2) 列平衡方程: 在已知主动力,未知约束反力及多余约束 反力共同作用下;
(3) 列几何方程:根据变形相容条件; (4) 列物理方程:变形与力的关系; (5) 组成补充方程:物理方程代入几何方程即得。
材料力学简单的超静定问题

§6-4 简单超静定梁
1.基本概念: 超静定梁:支反力数目大于有效平衡方程数目的梁 多余约束:从维持平衡角度而言,多余的约束 超静定次数:多余约束或多余支反力的数目。 相当系统:用多余约束力代替多余约束的静定系统 2.求解方法: 解除多余约束,建立相当系统——比较变形,列变 形协调条件——由物理关系建立补充方程——利用 静力平衡条件求其他约束反力。
1Δ2l3cos
②
(3)代入物理关系,建立补充方程
1
N1 1 E1 A1
N1
E1 A1 cos
③
3
N3 E3 A3
13
2
A
2
1
3
A
§6-2 拉压超静定问题
(2)建立变形协调方程:如图三杆铰结, 画A节点位移图,列出变形相容条件。要 1 注意所设的变形性质必须与受力分析所 中设定的力的性质一致。由对称性知
C
(b)
F
B
F C
B
C
(c)
FBy
(c)
FBy FF
BB B
(d) (d) B
F CC C
C
(d) FBy
F(2a)2
1F 43a
(w B)F
(9a2a)
6EI
3EI
(wB)FBy
8FBya3 3EI
所以
14Fa3 8FBya3 0 3EI 3EI
FBy
7 4
F
4)由整体平衡条件求其他约束反力
M AF 2(a), F Ay 4 3F ( )
FCFFB 408.75
4.875kN
M C0 , M C2 F 4 F B 0
MC 4FB 2F
48.75240115kN.m
孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解-简单的超静定问题(圣才出品)

8 / 42
圣才电子书 十万种考研考证电子书、题库视频学习平台
Δl1=FN1l1/EA1=FN1l/(EA1cos30°) Δl2=FN2l2/EA2=FN2l/(EA2) Δl3=FN3l3/EA3=FN3l/(EA3cos30°) 代入式③可得补充方程: FN1l/(EA1sin30°·cos30°)=2FN2l/(EA2tan30°)+FN3l/(EA3sin30°·cos30°)④ (3)求解 联立式①②④,可得各杆轴力:FN1=8.45kN,FN2=2.68kN,FN3=11.55kN。
9 / 42
圣才电子书 十万种考研考证电子书、题库视频学习平台
MB = 0
FN2 Leabharlann 2 2a+
FN4
2 2
a
+
FN3
2a − F ( 2 a + e) = 0 2
②
根据结构的对称性可得 FN2=FN4③
(2)补充方程
如刚性板的位移图所示,根据几何关系可得:Δl1+Δl3=2Δl2④
由结构对称可知 Δl2=Δl4,其中,由胡克定律可得各杆伸长量:
Δl1=FN1l/EA,Δl2=FN2l/EA,Δl3=FN3l/EA
代入式④,整理可得补充方程:FN1+FN3=2FN2⑤
(3)求解
联立式①②③⑤,解得各杆轴力:
FN1
=
(1 4
−
e )F(压) 2a
FN2
=
FN4
=
F 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 简单超静定问题 习题解[习题6-1] 试作图示等直杆的轴力图解:把B 支座去掉,代之以约束反力B R (↓)。
设2F 作用点为C ,F 作用点为D ,则:B BD R N =F R N B CD +=F R N B AC 3+=变形谐调条件为:0=∆l02=⋅+⋅+⋅EA aNEA a N EA a N BD CD AC02=++BD CD AC N N N03)(2=++++F R F R R B B B45FR B -=(实际方向与假设方向相反,即:↑)故:45FN BD -=445FF FN CD -=+-=47345FF F N AC =+-=轴力图如图所示。
[习题6-2] 图示支架承受荷载kN F 10=,1,2,3各杆由同一种材料制成,其横截面面积分别为21100mm A =,22150mm A =,23200mm A =。
试求各杆的轴力。
解:以节点A 为研究对象,其受力图如图所示。
∑=0X030cos 30cos 01032=-+-N N N0332132=-+-N N N0332132=+-N N N (1)∑=0Y030sin 30sin 0103=-+F N N2013=+N N (2)变形谐调条件:设A 节点的水平位移为x δ,竖向位移为y δ,则由变形协调图(b )可知:00130cos 30sin x y l δδ+=∆x l δ=∆200330cos 30sin x y l δδ-=∆03130cos 2x l l δ=∆-∆2313l l l ∆=∆-∆设l l l ==31,则l l 232= 223311233EA l N EA l N EA l N ⋅⋅=- 22331123A N A N A N =-15023200100231⨯=-N N N 23122N N N =-21322N N N -= (3)(1)、(2)、(3)联立解得:kN N 45.81=;kN N 68.22=;kN N 54.111=(方向如图所示,为压力,故应写作:kN N 54.111-=)。
[习题6-3] 一刚性板由四根支柱支撑,四根支柱的长度和截面都相同,如图所示。
如果荷载F 作用在A 点,试求这四根支柱各受多少力。
解:以刚性板为研究对象,则四根柱子对它对作用力均铅垂向上。
分别用4321,,,N N N N 表示。
由其平衡条件可列三个方程:0=∑Z04321=-+++F N N N NF N N N N =+++4321 (1)0=∑x M 0222242=-⋅a N a N 42N N = (2)0=∑y M 0222231=⋅-⋅+⋅a N e F a N a Fe N N 231-=-…………(3) 由变形协调条件建立补充方程EA N EA l N EA l N 2312=+2312N N N =+。
(4)(1)、(2)、(3)、(4)联立,解得:442F N N == F ae N )241(1-= F ae N )241(3+= [习题6-4] 刚性杆AB 的左端铰支,两根长度相等、横截面面积相同的钢杆CD 和EF 使该刚性杆处于水平位置,如所示。
如已知kN F 50=,两根钢杆的横截面面积21000mm A =,试求两杆的轴力和应力。
解:以AB 杆为研究对象,则: 0=∑A M0350221=⨯-⋅+⋅a a N a N150221=+N N (1)变形协调条件:122l l ∆=∆EAl N EA l N 122= 122N N = (2)(1)、(2)联立,解得:kN N 301=kN N 602=MPa mm N A N 30100030000211===σ MPa mm N A N 60100060000222===σ [习题6-5] 图示刚性梁受均布荷载作用,梁在A 端铰支,在B 点和C 点由两根钢杆BD 和CE 支承。
已知钢杆BD 和CE 的横截面面积22200mm A =和21400mm A =,钢杆的许用应力MPa 170][=σ,试校核该钢杆的强度。
解:以AB 杆为研究对象,则:0=∑A M023)330(3121=⨯⨯-⨯+⨯N N 135321=+N N (1)变形协调条件: 3121=∆∆l l 123l l ∆=∆112238.1EA l N EA l N ⨯=⋅ 40032008.112N N =⋅ 212.1N N = (2)(1)、(2)联立,解得:kN N 571.381=(压);kN N 143.322=(拉)故可记作:kN N 571.381-=;kN N 143.322=强度校核: MPa MPa mm N A N 170][4275.9640038571||||2111=<===σσ,符合强度条件。
MPa MPa mm N A N 170][715.160200321432122=<===σσ,符合强度条件。
[习题6-6] 试求图示结构的许可荷载[F]。
已知杆AD ,CE ,BF 的横截面面积均为A ,杆材料的许用应力为][σ,梁AB 可视为刚体。
解:以AB 杆为研究对象,则:∑=0Y0321=-++F N N NF N N N =++321 (1)∑=0A M0232=⋅-⋅+⋅a F a N a NF N N =+322 (2)变形协调条件:2132l l l ∆+∆=∆ EAl N EA l N EA l N 21322+=⋅ 2134N N N += (3)(1)(2)(3)联立,解得: 5221F N N ==;53F N = 强度条件: ][5221σσσ≤==AF A A F ][5.22][5σσ=≤ ][53σσ≤=A F ][5σA F ≤故:A F ][5.2][σ=[习题6-7] 横截面积为mm mm 250250⨯的短木柱,用四根mm mm mm 54040⨯⨯的等边角钢加固,并承受压力F ,如图所示。
已知角钢的许用应力MPa s 160][=σ,弹性模量GPa E s 200=;木材的许用应力MPa w 12][=σ,弹性模量GPa E w 10=。
试求短木柱的许可荷载[F]。
解:(1)木柱与角钢的轴力由盖板的静力平衡条件:(1)由木柱与角钢间的变形相容条件,有(2) 由物理关系:(3)式(3)代入式(2),得(4)解得:代入式(1),得:(2)许可载荷由角钢强度条件由木柱强度条件:故许可载荷为:[习题6-8] 水平刚性横梁AB 上部由于某1杆和2杆悬挂,下部由铰支座C 支承,如图所示。
由于制造误差,杆1和长度短了mm 5.1=δ。
已知两杆的材料和横截面面积均相同,且GPa E E 20021==,A A A ==21。
试求装配后两杆的应力。
解:以AB 梁为研究对象,则:0=∑C M0145sin 2021=⨯+⋅-N N2142N N =…………(1) 变形协调条件: 11AA l -=∆δ1222BB l =∆ 2111212l l BB AA ∆∆-==δ 2122l l ∆=∆-δEAl N EA l N 22221⋅=-δ EAl N EA l N 214=-δ………...(2) (1)、(2)联立,解得: lEA N )162(21+=δ;l EA N )162(42+=δ MPa mm mm MPa lE 242.161500)162(5.1102002)162(231=⨯+⨯⨯⨯=+=δσ MPa mm mm MPa l E 939.451500)162(5.1102004)162(432=⨯+⨯⨯⨯=+=δσ[习题6-9] 图示阶梯状杆,其上端固定,下端与支座距离mm 1=δ。
已知上、下两段杆的横截面面积分别为2600mm 和2300mm ,材料的弹性模量GPa E 210=。
试作图示荷载作用下杆的轴力图。
解:设装配后,支座B 的反力为B R (↓),则:B BC R N = 40+=B CD R N (D 为60kN 集中力的作用点)100+=B AD R N变形协调条件:δ=∑=n i i l1m R R m m kN m kN R B B B 36666262610110600102102.1)100(10600102104.2)40(10300/102102.1----⨯=⨯⨯⨯⋅++⨯⨯⨯⋅++⨯⨯⨯⋅1261202.1964.24.2=++++B B B R R R906-=B R)(15kN R B -=。
故:kN N BC 15-= ; kN N CD 25= ; kN N AD 85=。
轴力图如下图所示。
[习题6-10] 两端固定的阶梯状杆如图所示。
已知AC 段和BD 段的横截面面积为A ,CD 段的横截面面积为2A ;杆的弹性模量为GPa E 210=,线膨胀系数106)(1012--⨯=C l α。
试求当温度升高C 030后,该杆各部分产生的应力。
解:变形协调条件: 0=∆l0=∆+∆t N l l04)2(22=⋅∆⋅++a t A E a N EA Na l α 043=⋅∆⋅+a t EANa l α 043=⋅∆⋅+t EAN l α )(100800/1021030)(101234342260106kN A Am m kN C c tEA N l -=⋅⨯⨯⨯⨯⨯-=∆-=--α MPa kPa AN BD AC 8.100)(100800-=-===σσ MPa kPa AN CD 4.50)(504002-=-==σ [习题6-11] 图示为一两端固定的阶梯状圆轴,在截面突变处承受外力偶矩e M 。
若212d d =,试求固定端的支反力偶矩A M 和B M ,并作扭矩图。
解:把B 支座去掉,代之以约束反力偶 ,其矩为B M ,转向为逆时针方向,则:B BC M T =e B CA M M T -=变形协调条件:A 、B 为两固定端支座,不允许其发生转动,故:0=+=CB AC AB ϕϕϕ02)(21=+-P B P e B GI a M GI a M M 0221=+-P B P e B I M I M M式中,241414111632116)2(321321P P I d d d I =⋅===πππ,故: 021622=+-P B P e B I M I M M 0216=+-B e B M M M 33e B M M = 333233e e e A M M M M -=-= (顺时针方向转动) 33e B BC M M T == 3332e e B CA M M M T -=-= AB 轴的轴力图如下:[习题6-12] 图示一两端固定的钢圆轴,其直径mm d 60=。