一元一次不等式及一元一次不等式组全章教案-7

合集下载

不等式与不等式组全章教案

不等式与不等式组全章教案

不等式与不等式组全章教案第一章:不等式的概念与性质1.1 不等式的定义介绍不等式的基本概念,理解“大于”、“小于”、“大于等于”、“小于等于”等基本不等关系。

通过实例理解不等式的表示方法,如2x > 3。

1.2 不等式的性质探讨不等式的基本性质,如不等式两边加(减)同一个数(式子)不等号方向不变等。

通过例题演示不等式性质的应用,并进行练习。

第二章:不等式的解法2.1 简单不等式的解法介绍解简单不等式的方法,如直接解、移项、合并同类项等。

通过例题讲解解简单不等式的步骤,并进行练习。

2.2 不等式组的解法介绍解不等式组的方法,如图像法、代数法等。

通过例题讲解解不等式组的步骤,并进行练习。

第三章:不等式应用题3.1 线性不等式应用题介绍线性不等式应用题的解法,如线性不等式表示的区域内的问题。

通过例题讲解线性不等式应用题的解法,并进行练习。

3.2 不等式组应用题介绍不等式组应用题的解法,如不等式组表示的区域内的问题。

通过例题讲解不等式组应用题的解法,并进行练习。

第四章:不等式的综合应用4.1 线性不等式的图像介绍线性不等式的图像表示方法,如斜率、截距等。

通过例题讲解线性不等式图像的绘制方法,并进行练习。

4.2 不等式组的图像介绍不等式组的图像表示方法,如可行域等。

通过例题讲解不等式组图像的绘制方法,并进行练习。

第五章:不等式的拓展与应用5.1 不等式的拓展知识介绍不等式的拓展知识,如拉格朗日乘数法等。

通过例题讲解不等式拓展知识的应用,并进行练习。

5.2 不等式在实际问题中的应用介绍不等式在实际问题中的应用,如优化问题等。

通过例题讲解不等式在实际问题中的应用方法,并进行练习。

第六章:不等式的标准形式6.1 不等式的标准形式介绍不等式的标准形式,包括一元不等式和多元不等式。

通过例题演示如何将不等式转换为标准形式,并进行练习。

6.2 不等式标准形式的重要性探讨不等式标准形式在解题和分析中的重要性。

通过例题展示不等式标准形式在解题中的应用,并进行练习。

2014-2015(下)八年级数学一元一次不等式与一元一次不等式组教案汤恒星

2014-2015(下)八年级数学一元一次不等式与一元一次不等式组教案汤恒星

第一节.不等关系教学目标:1、知识与技能目标①理解不等式的意义。

②能根据条件列出不等式。

③能用实际生活背景和数学背景解释简单不等式的意义。

2、过程与方法目标经历由具体实例建立不等式模型的过程,进一步发展学生的符号感与数学化的能力。

3、情感与态度目标感受生活中存在着的大量不等关系,通过用不等式解决实际问题,使学生进一步认识数学与人类生活的密切联系,激发学生学习数学的信心和兴趣。

教学重点:①通过探寻实际问题中的不等式关系,认识不等式。

②根据实际问题建立合理的不等关系。

教学过程一. 创设情景,引入新课展示图片(目的:感受生活中的不等关系):(1)甲乙两名同学升高、体重不相等;(2)汤老师的年龄和体重基本都大于你们的(3)跷跷板二.问题提出师:相等关系是用等式表示的,不等关系呢?生:不等式师:你学过那些不等号呢?生:>,<,≤,≥,≠三.小试牛刀(学生初步感受不等式表示不等关系)1. a是负数2. m与2的和小于33. c的两倍不大于a与b的差4. x的平方是非负数师:不大于,不小于表示的含义四.不等式的定义a<0 m+2<3 2c≤a-b x²≥0五.概念辨析指出下列式子是否为不等式?(概念基本辨析)(1)a+1>3 (2)x²+y²(3)2m≠n-1 (4)x+3=2x六.随堂练习1. x 的3倍与8的和比x的5倍大2. x除以2的商加上2至少为53. a与b两数和的平方不小于34. m与4的和的20%至多为9七.实际运用(1)铁路部门对旅客随身携带的行李有如下规定:每件行李的长、宽、高三边之和不得超过160cm。

设行李的长、宽、高分别为 a cm、b cm、c cm,请你列出行李的长、宽、高满足的关系式(2)通过测量一棵树的树围(树干的周长)可以计算出它的树龄,通常规定以树干离地面1.5m的地方作为测量部位。

某树栽种时的树围为6cm,以后树围每年增加约3cm。

人教版初中数学教案(5篇)

人教版初中数学教案(5篇)

人教版初中数学教案(5篇)人教版初中数学教案大全篇一一元一次不等式组教学目标1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力;3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。

教学难点正确分析实际问题中的不等关系,列出不等式组。

知识重点建立不等式组解实际问题的数学模型。

探究实际问题出示教科书第145页例2(略)问:(1)你是怎样理解“不能完成任务”的数量含义的?(2)你是怎样理解“提前完成任务”的数量含义的?(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?师生一起讨论解决例2.归纳小结1、教科书146页“归纳”(略).2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?在讨论或议论的基础上老师揭示:步法一致(设、列、解、答);本质有区别。

(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。

人教版初中数学教案篇二掌握用因式分解法解一元二次方程。

通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题。

重点用因式分解法解一元二次方程。

难点让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便。

一、复习引入(学生活动)解下列方程:(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解。

二、探索新知(学生活动)请同学们口答下面各题。

(老师提问)(1)上面两个方程中有没有常数项?(2)等式左边的各项有没有共同因式?(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解。

因此,上面两个方程都可以写成:(1)x(2x+1)=0(2)3x(x+2)=0因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法。

《一元一次不等式组》教案

《一元一次不等式组》教案

《一元一次不等式组》教案——九年义务教育七年级下册第九章第三节执教者:性质:时间:2014年6月《一元一次不等式组》教案教材分析本节课的内容是人教版七年级下册第九章第三节《一元一次不等式组》。

本节课,是在学生学习了一元一次不等式,知道了一元一次不等式的有关概念及其解法的基础上学习的。

本节主要学习一元一次不等式组及其解法,这是学好利用一元一次不等式组解决实际问题的基础和关键。

教材通过一个实例入手,引出要解决的问题必须同时满足两个不等式,进而通过一元一次不等式的概念及其解法等,来类推学习一元一次不等式组及其相关解法。

学情分析从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。

但同时,这一阶段的学生好动,注意力易分散,善于发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

从认知状况来说,学生已经学习了一元一次不等式,并能较熟练地解一元一次不等式,能将简单的实际问题抽象为数学模型,有一定的数学化能力,这为顺利完成本节课的教学任务打下了基础,但对于不等式基本性质的理解,由于其抽象程度较高,学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

教学目标1、知识与技能:了解一元一次不等式组的概念,在了解一元一次不等式组的解集的概念的基础上会求解一元一次不等式组的解集。

2、过程与方法:经历一元一次不等式组解集的探究过程,体会不等式之间的内在联系,通过利用数轴解一元一次不等式组,培养学生数形结合的思想方法。

3、情感、态度与价值观:学生充分参与数学学习活动,从而获得成功的体验,建立良好的自信心。

教学重点:掌握一元一次不等式组的含义及其解法。

教学难点:1、将两个不等式的解表示在同一数轴上,并通过找公共部分确定不等式组的解集;2、理解不等式的解集。

浙教版数学八年级上册《第3章 一元一次不等式》全章教案

浙教版数学八年级上册《第3章 一元一次不等式》全章教案

浙教版数学八年级上册《第3章一元一次不等式》全章教案一. 教材分析《浙教版数学八年级上册》第3章《一元一次不等式》是学生在学习了有理数、整式乘法等基础知识后的进一步拓展。

本章主要通过引入一元一次不等式,让学生掌握不等式的概念、性质和运算方法,培养学生解决实际问题的能力。

本章内容在初中数学中占据重要地位,为后续学习一元二次不等式、不等式组等知识打下基础。

二. 学情分析八年级的学生已经具备了一定的数学基础,对整式、有理数等概念有一定的了解。

但部分学生在解决实际问题时,还不能很好地将数学知识运用其中。

因此,在教学过程中,要注重培养学生运用数学知识解决实际问题的能力,激发学生的学习兴趣。

三. 教学目标1.理解一元一次不等式的概念,掌握一元一次不等式的性质。

2.学会解一元一次不等式,并能运用一元一次不等式解决实际问题。

3.培养学生的逻辑思维能力和解决实际问题的能力。

四. 教学重难点1.一元一次不等式的概念和性质。

2.一元一次不等式的解法。

3.运用一元一次不等式解决实际问题。

五. 教学方法采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究、合作交流,培养学生的数学素养。

六. 教学准备1.教材、教案、PPT等教学资料。

2.练习题、测试题等。

3.教学工具(如黑板、粉笔等)。

七. 教学过程1.导入(5分钟)利用生活实例引入不等式概念,如:“小明有5个苹果,小华有3个苹果,谁的数量多?”引导学生思考,引出不等式的概念。

2.呈现(10分钟)讲解一元一次不等式的定义、性质和表示方法。

通过PPT展示一元一次不等式的图像,让学生直观理解不等式的性质。

3.操练(10分钟)让学生独立完成练习题,如解以下不等式:2x + 3 > 7。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)讲解练习题的解题思路,分析解题过程中容易出现的问题。

让学生互相讨论,加深对一元一次不等式的理解。

5.拓展(10分钟)引导学生运用一元一次不等式解决实际问题,如:“一个数的平方大于另一个数,求这个数的范围。

浙教版数学八年级上册3章:《一元一次不等式组》参考教案

浙教版数学八年级上册3章:《一元一次不等式组》参考教案

浙教版数学八年级上册3章:《一元一次不等式组》参考教案一. 教材分析《一元一次不等式组》是浙教版数学八年级上册第3章的内容,这部分内容是在学生已经掌握了不等式的基本性质和一元一次不等式的解法的基础上进行教学的。

通过这部分的学习,使学生能够理解不等式组的含义,掌握解一元一次不等式组的方法,提高学生解决实际问题的能力。

二. 学情分析学生在学习这部分内容时,已经有了一定的数学基础,但对于不等式组的解法可能会感到困惑。

因此,在教学过程中,需要关注学生的学习情况,针对学生的困惑进行讲解,帮助学生理解和掌握不等式组的解法。

三. 教学目标1.让学生理解不等式组的含义,掌握解一元一次不等式组的方法。

2.培养学生解决实际问题的能力,提高学生的数学思维能力。

3.培养学生合作学习、积极探究的学习习惯。

四. 教学重难点1.教学重点:让学生掌握解一元一次不等式组的方法。

2.教学难点:对于不等式组的解法的理解和应用。

五. 教学方法采用问题驱动法、案例分析法、合作学习法等教学方法,引导学生通过自主学习、讨论交流,掌握解一元一次不等式组的方法。

六. 教学准备1.准备相关的教学案例和练习题。

2.准备多媒体教学设备,制作课件。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾不等式的基本性质和一元一次不等式的解法,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过课件展示不等式组的含义和解法,让学生直观地感受不等式组的特点和解法。

3.操练(10分钟)学生分组进行讨论,每组解答一个不等式组,教师巡回指导,帮助学生解决解答过程中遇到的问题。

4.巩固(10分钟)学生独立完成一些关于不等式组的练习题,教师选取部分题目进行讲解,巩固学生对不等式组的解法的掌握。

5.拓展(10分钟)教师提出一些实际问题,引导学生运用不等式组的知识解决问题,提高学生的实际应用能力。

6.小结(5分钟)教师引导学生总结本节课所学的内容,加深学生对不等式组的解法的理解。

一元一次不等式组教案

一元一次不等式组教案

一元一次不等式组教案【篇一:《一元一次不等式组》教学设计】一元一次不等式组一、课表解读在初中数学课程标准,第三学段数与代数对一元一次不等式组部分是这样描述的:1.充分感受生活中存在着大量的不等式关系,了解不等式组的意义;2.会解简单的一元一次不等式组,并会用数轴确定解集。

二、教材分析1、教材的地位和作用《一元一次不等式组》的主要内容是一元一次不等式组的解法及其简单应用。

是在学习了有理数的大小比较、等式及其性质、一元一次方程的基础上,开始学习简单的数量之间的不等关系,进一步探究现实世界数量关系的重要内容,是继一元一次方程和二元一次方程组之后,又一次数学建模思想的学习,也是后继学习一元二次方程、函数及进一步学习不等式的重要基础,具有承前启后的重要作用。

《一元一次不等式组》是本章的最后一节,是一元一次不等式知识的综合运用和拓展延伸,是进一步刻画现实世界数量关系的数学模型,是下一节利用一元一次不等式组解决实际问题的关键。

2、教学目标设计依据《课程标准》对7—9年级《不等式》学段的目标要求和本班学生实际情况,特确定如下目标:1.通过实例体会一元一次不等式组是研究量与量之间关系的重要模型之一。

2.了解一元一次不等式组及解集的概念。

3.会利用数轴解较简单的一元一次不等式组。

4.培养学生分析、解决实际问题的能力。

5.通过实际问题的解决,体会数学知识在生活中的应用,激发学生的学习兴趣。

培养学生认真倾听,大胆回答,勤于思考、善于反思的良好学习习惯。

3、教学重点、难点:重点:理解一元一次不等式组的有关概念,会解简单的一元一次不等式组;难点:正确理解一元一次不等式组的解集。

三、学情分析1、学生特点从学生学习的心理基础和认知特点来说,学生已经学习了一元一次不等式,并能较熟练地解一元一次不等式,能将简单的实际问题抽象为数学模型,有一定的数学化能力。

但学生将两个一元一次不等式的解集在同一数轴上表示会产生一定的困惑。

这个年龄段的学生,以感性认识为主,并向理性认知过渡,所以,我对本节课的设计是通过两个学生所熟悉的问题情境,让学生独立思考,合作交流,从而引导其自主学习。

一元一次不等式组教学设计

一元一次不等式组教学设计

一元一次不等式组教学设计一元一次不等式组教学设计(通用10篇)教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

下面是店铺收集整理的一元一次不等式组教学设计,希望大家喜欢。

一元一次不等式组教学设计篇1一、学习目标:1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义,掌握求一元一次不等式组的解集的常规方法;2、经历知识的拓展过程,感受学习一元一次不等式组的必要性;3、逐步熟悉数形结合的思想方法,感受类比与化归的思想。

二、学习难点:1、重点:一元一次不等式组的解集和解法。

2、难点:一元一次不等式组解集的理解。

三、学习过程:问题情境:现有两根木条a和b,a长10 cm,b长3 cm。

如果再找一根木条。

,用这三根木条钉成一个三角形木框,那么对木条的长度有什么要求?如果设木条长x cm,那么x仅有小于两边之和还不够,仅有大于两边之差也不行,必须同时满足x10+3和x10—3。

类似于方程组引出一元一次不等式组的概念和记法。

探究新知:解下列不等式组解:解不等式(1),得x1,解不等式(2),得x—4。

在同一条数轴上表示不等式(1)、(2)的解集如图:所以,原不等式组的解是x1巩固新知:P140,1,P141,1归纳总结:不等式解集取值法则同大取大,同小取小,大小取中,矛盾无解。

若ab:①当时,•则不等式的公共解集为;②当时,不等式的公共解集为;③当时,不等式的公共解集为;④当时,不等式组。

作业:1、P141,22、解不等式组:(1);(2)(3);(4)3、若不等式组无解,求m的取值范围。

4、解不等式组,并将解集在数轴上表示出来。

5、解不等式组:(1);(2)6、解不等式:(1);(2)7、若关于x的不等式组的解集是,则下列结论正确的是()A、B、C、D、8、若方程组的解是负数,则的取值范围是()A、B、C、D、无解9、若,则x为()A、B、C、或 D、10、已知方程组的解为负数,求m的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一课时回顾与思考(1)
教学目标
知识与技能运用问题的形式帮助学生整理全章的知识,建立知识体系;在独立思考的基础上,鼓励学生开展小组交流,使学生通过交流和反思加强对所学知识的理解和掌握,并逐步建立知识体系。

过程与方法通过问题情景的设立,使学生再现已学知识,锻炼抽象、概括能力;结合具体的问题来体会知识间的联系和本章所采用的主要思想方法。

情感态度和价值观通过独立思考获取学习数学的成功体验,通过小组交流培养合作意识,通过大胆发表自己的观点,增强自信心。

重点对一元一次不等式基本性质的掌握;理解不等式(组)解及解集的含义;会解简单的一元一次不等式(组),并会在数轴上表示其解集;会用不等式(组)解决实际问题。

难点建立相关的知识体系
教学过程:
(1)不等式有那些基本性质?它与等式的基本性质有什么相同和不同之处?
(2)解一元一次不等式和解一元一次方程有什么异同
(3)举例说明在数轴上表示一元一次不等式(组)的解集。

(4)说一说运用不等式(组)解决实际问题的基本过程。

(5)举例说明不等式、函数、方程的联系。

(6)本章学过的主要数学思想
不等式的建模思想:将实际问题数学化,建立不等关系,列出不等式(或不等式组)
类比的思想:类比相关旧知识,学习新知识本章的学习多次运用类比的方法,如不等式的基本性质的学习类比等式的基本性质;一元一次不等式的定义和解法类比一元一次方程的定义和解法;一元一次不等式组的应用类比一元一次方程的应用。

数形结合思想:求不等式的解集的过程是代数内容,用数轴表示不等式(组)的解集的过程是将代数问题几何化的过程。

分类讨论的思想:在比较两个代数式的大小的时候,先得出它们的差,然后分类讨论得出差的正负,进而得到两个代数式的大小。

二、例题讲解
例1. 解不等式(组),并把它们的解集在数轴上表示出来。

(1))3(532-≤-x x ; (2)
4
2
3212-≤+x x ; (3) x
x x x 28)2(35
)2(2>+-+<+
(4)
4
2
33225
351-+>--<
+x x x x
x KEY :(1)4≥x ;(2)4-≤x ;(3)12<<-x ;(4)无解; 例2. 求不等式x x 228)2(5+≤-的正整数解。

三、课堂练习:P33。

A 组1。

3。

B1。

C
1。

2。

4。

四、作业:P33。

A 组。

2。

4。

7。

相关文档
最新文档