坐标计算公式

合集下载

坐标计算程序及坐标计算公式

坐标计算程序及坐标计算公式

坐标计算程序及坐标计算公式一、坐标计算公式直线段:中桩公式:x=x1+(z-c)*cosay=y1+(z-c)*sina边桩公式:x=x1+(z-c)*cosa±d*cos(a-90)y=y1+(z-c)*sina±d*sin(a-90)说明: x1——起点x坐标,y1——起点y坐标,z——计算点桩号, c——起点桩号,a——方位角,d——距中桩距离。

“±”左边桩为“+”,右边桩为“-”。

二、方位角计算公式1、直线段方位角图纸提供。

2、若为单一圆曲线时,起点用直线段方位角图纸提供。

3、若为缓和曲线时:第一段缓和曲线方位角为直线段方位角图纸提供;第二段圆曲线起点方位角a1=a0±Ls*180/2∏r。

第三段缓和曲线方位角a2=a1±L*360/2∏r。

(a0为直线段方位角,Ls为缓和曲线长度,L为圆曲线长度,r为圆曲线半径,“±”右偏角为“+”、左偏角为“-”。

)三、5800计算器坐标程序坐标程序由1个主程序、5个子程序和1个数据库组成进入计算器编程模式(5:PROG—1:NEW新建程序名—3:EDIT),输写程序。

1、主程序adminFix 3(回车换行)Lb1 0:150→DimZ:“ZX→0,A→1,B1→2,B2→3,C→4,D→5,CR→6”?N:N→Z[149]:Prog “DAT2”:“ZS=>1,FS=>2”?N:If N=1:Then Goto 1:Else N=2=>Goto 2:IfEnd:Goto 0:Lb1 1:?S:“ANG=”?M:?Z:S=0=>Goto 0:0→N(回车换行)Lb1 5:Isz N:If S≤Z[8N+2]+Z[8N+4]:Then N→J:Prog“DAT1”:Else Goto5:IfEnd(回车换行)Abs(S-0)→W:Prog“SUB1”:“XS=”:X◢“YS=” :Y◢“FWI=”:F-M→F:If F≤360:Then F→F:Else F-360→F:IfEnd:F►DMS◢Goto4(回车换行)Lb1 2:?X:?Y:“ANG=”?M:M→Z[148]:If M<90:Then 180-M→M:IfEnd(回车换行)X-Z[4]:Y-Z[5]:X=0=>Goto 0:0→N(回车换行)Lb1 A:Isz N:N→Z[150]:Z[8N+3]-M→A:Z[8(N+1)+3]-M→B:Prog “ZX1”:If Z[6]×Z[7]≤0:Then N→J:Prog “DAT1”:Goto B:IfEnd(回车换行)Z[8N+3]+M→A:Z[8(N+1)+3]+M→B:Prog “ZX1”:If Z[6]×Z[7] ≤0:Then N→J:Prog “DAT1”:Goto B:Else Goto A: IfEnd(回车换行)Lb1 B:Prog “SUB2” (回车换行)Z[150]→N:0+W→S:If S>Z[8N+2]+Z[8N+4]+.001:Then Goto A: IfEnd(回车换行)If N>13:Then 0→N: Goto A: IfEnd(回车换行)If Z[148]>90: Then S+2Zsin(M-90) →S: IfEnd:“S=”:S◢“Z=”: Z◢“OK→2,NO→1”?N:If N=1: Then Z[150]→N: Goto A:Else Goto 2: IfEnd(回车换行)Lb1 4 :0→J:“DIST=”:Pol (X-Z[1],Y-Z[2])→I◢ J-F:If F<0:Then F+360→F:IfEnd:“FW=”: F►DMS◢ Goto 12、子程序DAT1Z[8J]→U:Z[8J+1]→V:Z[8J+2]→O:Z[8J+3]→G:Z[8J+4]→G:Z[8J+4]→H:Z[8J+5]→P:Z[8J+6]→R:Z[8J+7]→Q:1÷P→C:(P-R)÷(2HPR)→D:(180÷∏)→E:Return3、子程序ss“A”?→A:If A<0:Then 10A◢Else 9A◢IfEnd:Ans×1.05(回车)4、子程序SUB1.1184634425→A:.2393143352→B:.28444444444→N:.046910077→K:.2307653449→L:.5→Z[3]:U+W(Acos(G+QEKW(C+KWD))+Bcos(G+QELW(C+LWD))+Ncos(G+QEZ[3]W(C +Z[3]WD))+Bcos(G+QE(1-L)W(C+(1-L)WD))+Acos(G+QE(1-K)W(C+(1-K)WD)))→X:V+W(Asin(G+QEKW(C+KWD))+Bsin(G+QELW(C+LWD))+Nsin(G+QEZ[3]W(C+Z[3 ]WD))+Bsin(G+QE(1-L)W(C+(1-L)WD))+Asin(G+QE(1-K)W(C+(1-K)WD))) →Y:G+QEW(C+WD)+M→F:X+Zcos(F)→X:Y+Zsin(F)→Y: Return5、子程序SUB2G-M→T:Abs((Y-V)cos(T)-(X-U)sin(T))→W:0→Z:Lb1 0:Pros “SUB1” (回车换行)T+QEW(C+WD)→L:(Z[5]-Y)cos(L)-(Z[4]-X)sin(L)→Z:If Abs(Z)<1×10∧(-4):Then Goto 1:Else W+Z→W: Goto 0: IfEnd(回车换行)Lb1 1:0→Z:Prog“SUB1”:(Z[5]-Y)÷sin(F-2M+180)→Z:Return6、子程序ZX1(Z[5]-Z[8N+1])cos(A)-(Z[4]-z[8N])sin(A)→Z[6]:(Z[5]-Z[8(N+1)+1])C5]-Z[8(N+1)+1])cos(B)-(Z[4]-Z[8(N+1)]sin(B)→Z[7]:Return7、数据库DAT2If N=0:Then起点X坐标→Z[8]:起点Y坐标→Z[9]:起点桩号→Z[10]:起点坐标方位角→Z[11]:曲线长度→Z[12]:起点半径→Z[13]:终点半径→Z[14]:曲线转向(左转为“-1”右转为“+1”直线为“0”)→Z[15]:Return IfEnd(依次把所有平曲线要素输完)If N=1:Then起点X坐标→Z[8]:起点Y坐标→Z[9]:起点桩号→Z[10]:起点坐标方位角→Z[11]:曲线长度→Z[12]:起点半径→Z[13]:终点半径→Z[14]:曲线转向(左转为“-1”右转为“+1”直线为“0”)→Z[15]:Return IfEnd(依次把所有平曲线要素输完)说明:1、所有路线都是从Z[8]开始。

坐标公式大集合

坐标公式大集合

坐标公式大集合在数学中,坐标公式是用来计算两点之间的距离或者其他相关性质的公式。

它们在几何学、物理学、工程学等领域中具有举足轻重的作用。

本文将介绍一些常用的坐标公式,并提供了详细的解释和示例。

1.两点之间的距离公式:设平面上有两个点A(x1,y1)和B(x2,y2),它们之间的距离可以用以下公式计算:d=√((x2-x1)^2+(y2-y1)^2)其中√表示开方运算。

例如,点A(1,2)和点B(4,6)之间的距离可以这样计算:d=√((4-1)^2+(6-2)^2)=√(3^2+4^2)=√(9+16)=√25=5因此,点A和点B之间的距离是52.三维空间中两点之间的距离公式:如果我们在三维空间中有两个点A(x1,y1,z1)和B(x2,y2,z2),它们之间的距离可以用以下公式计算:d=√((x2-x1)^2+(y2-y1)^2+(z2-z1)^2)例如,点A(1,2,3)和点B(4,6,8)之间的距离可以这样计算:d=√((4-1)^2+(6-2)^2+(8-3)^2)=√(3^2+4^2+5^2)=√(9+16+25)=√50因此,点A和点B之间的距离是√50。

3.两点之间的中点公式:中点是连接两个点线段的中心点。

对于两点A(x1,y1)和B(x2,y2),中点的坐标可以用以下公式计算:M=((x1+x2)/2,(y1+y2)/2)例如,点A(1,2)和点B(4,6)之间的中点可以这样计算:M=((1+4)/2,(2+6)/2)=(5/2,8/2)=(2.5,4)因此,点A和点B之间的中点是(2.5,4)。

4.长度比例公式:长度比例可以用来计算一条线段上任意点的坐标。

对于一条线段AB,知道了线段的长度L和点A的坐标,可以用以下公式计算点B的坐标:B=(A+λ*(B-A))其中,A和B是线段的两个端点,λ是长度比例。

例如,线段AB的长度是10,点A的坐标为(2,4),点B的坐标可以这样计算:B=(2,4)+λ((Bx-Ax),(By-Ay))(Bx,By)=(2,4)+λ((Bx-2),(By-4))对于不同的λ值,我们可以得到不同的点B的坐标。

坐标计算方法

坐标计算方法

坐标计算方法在地理信息系统(GIS)和地理定位领域,坐标计算是一项重要的技术,它涉及到地图上点的位置和距离的计算。

在本文中,我们将介绍几种常用的坐标计算方法,包括直角坐标系下的点距离计算、经纬度坐标系下的距离计算以及坐标转换方法。

1. 直角坐标系下的点距离计算。

直角坐标系是平面坐标系的一种,可以用x和y坐标值来表示平面上的点。

在直角坐标系下,两点之间的距离可以用勾股定理来计算,即d = √((x2-x1)² + (y2-y1)²)。

其中,(x1, y1)和(x2, y2)分别是两点的坐标值,d表示两点之间的距离。

举个例子,如果点A的坐标是(3, 4),点B的坐标是(7, 1),那么点A和点B之间的距离可以用上述公式计算得出。

2. 经纬度坐标系下的距离计算。

经纬度坐标系是用来表示地球表面上点的位置的坐标系。

在地图上,经度用来表示东西方向的位置,纬度用来表示南北方向的位置。

在经纬度坐标系下,两点之间的距离可以用球面三角形的余弦定理来计算,即cos(d) = sin(φ1)sin(φ2) +cos(φ1)cos(φ2)cos(Δλ),其中d表示两点之间的距离,φ1和φ2分别是两点的纬度,Δλ表示两点的经度差。

举个例子,如果点A的经纬度是(40.7128°N, 74.0060°W),点B的经纬度是(34.0522°N, 118.2437°W),那么点A和点B之间的距离可以用上述公式计算得出。

3. 坐标转换方法。

在实际应用中,我们经常需要将不同坐标系下的坐标进行转换。

例如,将经纬度坐标转换为直角坐标,或者将直角坐标转换为经纬度坐标。

这时,我们可以利用一些数学公式和算法来进行坐标转换。

对于经纬度坐标转换为直角坐标,可以利用球面坐标系下的公式进行计算;而对于直角坐标转换为经纬度坐标,可以利用逆向的球面坐标系下的公式进行计算。

总结。

在地理信息系统和地理定位领域,坐标计算是一项基础而重要的技术。

坐标计算公式

坐标计算公式

坐标计算公式一、计算公式1、圆曲线坐标计算公式β=180°/π×L/R (L= βπ R/180°)弧长公式β为圆心角△X=sinβ×R△Y=(1-cosβ)×RC= 弦长X=X1+cos (α±β/2)×CY=Y1+sin (α±β/2)×Cβ代表偏角,(既弧上任一点所对的圆心角)。

β/2是所谓的偏角(弦长与切线的夹角)△X、△Y代表增量值。

X、Y代表准备求的坐标。

X1、Y1代表起算点坐标值。

α代表起算点的方位角。

R 代表曲线半径2、缓和曲线坐标计算公式β= L2/2RLS ×180°/πC= L - L5/90R2LS2X=X1+cos (α±β/3)×CY=Y1+sin (α±β/3)×CL代表起算点到准备算的距离。

LS代表缓和曲线总长。

X1、Y1代表起算点坐标值。

3、直线坐标计算公式X=X1+cosα×LY=Y1+sinα×LX1、Y1代表起算点坐标值α代表直线段方位角。

L代表起算点到准备算的距离。

4、左右边桩计算方法X边=X中+cos(α±90°)×LY边=Y中+sin(α±90°)×L在计算左右边桩时,先求出中桩坐标,在用此公式求左右边桩。

如果在线路方向左侧用中桩方位角减去90°,线路右侧加90°,乘以准备算的左右宽度。

二、例题解析例题:直线坐标计算方法α(方位角)=18°21′47″DK184+714.029求DK186+421.02里程坐标X1=84817.831 Y1=352.177 起始里程解:根据公式X=X1+cosα×LX=84817.831+COS18°21′47″×(86421.02—84714.029)=86437.90 1Y=Y1+sinα×LY=352.177+sin18°21′47″×(86421.02—84714.029)=889.943 求DK186+421.02里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=86437.901+cos(18°21′47″- 90°)×3.75=86439.082Y边=Y中+sin(α±90°)×LY边=889.943+sin(18°21′47″- 90°)×3.75=886.384线路右侧计算:X边=X中+cos(α±90°)×LX边=86437.901+cos(18°21′47″+ 90°)×7.05=86435.680Y边=Y中+sin(α±90°)×LY边=889.943+sin(18°21′47″+90°)×7.05=896.634例题:缓和曲线坐标计算方法α(ZH点起始方位角)=18°21′47″ X1=86437.901 Y1=889.941 起始里程DK186+421.02曲线半径2500 缓和曲线长120m求HY点坐标,也可以求ZH点到HY点任意坐标解:根据公式β=L2/2RLS×180°/πβ={1202/(2×2500×120)}×(180°/π)= 1°22′30.36″C=L-L5/90R2LS2C=120-1205/(90×25002×1202)=119.997X=X1+cos(α±β/3)×CX=86437.901+cos(18°21′47″-1°22′30.36″/3)×119.997=86552.086 Y=Y1+sin(α±β/3)×CY=889.941+sin(18°21′47″-1°22′30.36″/3)×119.997=926.832 求DK186+541.02里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=86552.086+cos{(18°21′47″-1°22′30.36″)- 90°}×3.75=86553.182 Y边=Y中+sin(α±90°)×LY边=926.832+sin{(18°21′47″-1°22′30.36″)- 90°}×3.75=923.246 线路右侧计算:X边=X中+cos(α±90°)×LX边=86552.086+cos{(18°21′47″-1°22′30.36″)+ 90°}×7.05=86550.026 Y边=Y中+sin(α±90°)×LY边=926.832+sin{(18°21′47″-1°22′30.36″)+ 90°}×7.05=933.574 缓和曲线方位角计算方法α=(起始方位角±β偏角)= 18°21′47″-1°22′30.36″=16°59′16.64″注:缓和曲线在计算坐标时,此公式只能从两头往中间推,只能从ZH点往HY点推,HZ点往YH点推算,如果YH往HZ点推算坐标,公式里的β为β2/3.例题:圆曲线坐标计算方法α(HY点起始方位角)= 16°59′16.64″ X1=86552.086 Y1=926.832 曲线半径2500 曲线长748.75 起始里程DK186+541.02求YH点坐标,也可以求QZ点坐标或任意圆曲线一点坐标.解:根据公式β=180°/π×L/Rβ= 180°/π×748.75/2500=17°09′36.31″△X=sinβ×R△X=sin17°09′36.31″×2500=737.606△Y=(1-cosβ)×R△Y=(1-cos17°09′36.31″)×2500=111.290C= 弦长C=745.954X=X1+cos(α±β/2)×CX= 86552.086 +cos(16°59′16.64″+360°-17°09′36.31″/2)×745.954=87290.023 Y=Y1+sin(α±β/2)×CY=926.832+ sin(16°59′16.64″+360°-17°09′36.31″/2)×745.954=1035.905圆曲线方位角计算方法α=(起始方位角±β偏角)=16°59′16.64″+360°-17°09′36.31″=359°49′40.33″求DK187+289.77里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=87290.023+cos(359°49′40.33″-90°)×3.75=87290.012 Y边=Y中+sin(α±90°)×LY边=1035.905+sin(359°49′40.33″-90°)×3.75=1032.155线路右侧计算:X边=X中+cos(α±90°)×LX边=87290.023+cos(359°49′40.33″+90°)×7.05=87290.044 Y边=Y中+sin(α±90°)×LY边=1035.905+sin(359°49′40.33″+90°)×7.05=1042.955三、公式解析公式解析一.坐标转换X =A +NCOSα-ESINαY =B +NSINα+ECOSα N=(X-A) COSα±(Y-B)SINα E=(Y-B)COSα±(X-A)SINαA,B为施工坐标系坐标原点α为施工坐标系与北京坐标系X轴的夹角(旋转角)即大地坐标系方位角X,Y为北京坐标值N,E为施工坐标值二.方位角计算1.直线段方位角: α=tanˉ¹ [(Yb-Ya)/(Xb-Xa)]2.交点转角角度: α=2 tanˉ¹ (T/R)计算结果①为﹢且<360,则用原数;②为﹢且>360,则减去360;③为﹣,则加上180.3.缓和曲线上切线角: α=ƟZH±90°*Lo²/(π*R* Ls)α= Lo/(2ρ)=Lo²/(2 A²)=Lo²/(2R*Ls)ρ—该点的曲率半径4.圆曲线上切线角: α=ƟHY±180°*Lo/(π*R)ƟZH—直缓点方位角, ƟHY—缓圆点方位角,注:以计算方向为准,左偏,取"﹣";右偏,取"﹢"。

坐标万能计算公式

坐标万能计算公式

万能坐标计算公式X=起点x+(待求点桩号-起点桩号)*【0.1184634425*COS(起始方位角/180*3.14159265+起点曲率*(待求点桩号-起点桩号)*0.046910077+0.5*(终点曲率-起点曲率)/(终点桩号-起点桩号)*(待求点桩号-起点桩号)*(待求点桩号-起点桩号)*0.046910077^2)+0.2393143352*COS(起始方位角/180*3.14159265+起点曲率*(待求点桩号-起点桩号)*0.2307653449+0.5*(终点曲率-起点曲率)/(终点桩号-起点桩号)*(待求点桩号-起点桩号)*(待求点桩号-起点桩号)*0.2307653449^2)+0.2844444444*COS(起始方位角/180*3.14159265+起点曲率*(待求点桩号-起点桩号)*0.5+0.5*(终点曲率-起点曲率)/(终点桩号-起点桩号)*(待求点桩号-起点桩号)*(待求点桩号-起点桩号)*0.5^2)+0.2393143352*COS(起始方位角/180*3.14159265+起点曲率*(待求点桩号-起点桩号)*0.7692346551+0.5*(终点曲率-起点曲率)/(终点桩号-起点桩号)*(待求点桩号-起点桩号)*(待求点桩号-起点桩号)*0.7692346551^2)+0.1184634425*COS(起始方位角/180*3.14159265+起点曲率*(待求点桩号-起点桩号)*0.953089923+0.5*(终点曲率-起点曲率)/(终点桩号-起点桩号)*(待求点桩号-起点桩号)*(待求点桩号-起点桩号)*0.953089923^2))+边距*COS(偏角+起始方位角/180*3.14159265+起点曲率*(待求点桩号-起点桩号)+0.5*(终点曲率-起点曲率)/(终点桩号-起点桩号)*(待求点桩号-起点桩号)*(待求点桩号-起点桩号)】Y=起点Y+(待求点桩号-起点桩号)*【0.1184634425*SIN(起始方位角/180*3.14159265+起点曲率*(待求点桩号-起点桩号)*0.046910077+0.5*(终点曲率-起点曲率)/(终点桩号-起点桩号)*(待求点桩号-起点桩号)*(待求点桩号-起点桩号)*0.046910077^2)+0.2393143352*SIN(起始方位角/180*3.14159265+起点曲率*(待求点桩号-起点桩号)*0.2307653449+0.5*(终点曲率-起点曲率)/(终点桩号-起点桩号)*(待求点桩号-起点桩号)*(待求点桩号-起点桩号)*0.2307653449^2)+0.2844444444*SIN(起始方位角/180*3.14159265+起点曲率*(待求点桩号-起点桩号)*0.5+0.5*(终点曲率-起点曲率)/(终点桩号-起点桩号)*(待求点桩号-起点桩号)*(待求点桩号-起点桩号)*0.5^2)+0.2393143352*SIN(起始方位角/180*3.14159265+起点曲率*(待求点桩号-起点桩号)*0.7692346551+0.5*(终点曲率-起点曲率)/(终点桩号-起点桩号)*(待求点桩号-起点桩号)*(待求点桩号-起点桩号)*0.7692346551^2)+0.1184634425*SIN(起始方位角/180*3.14159265+起点曲率*(待求点桩号-起点桩号)*0.953089923+0.5*(终点曲率-起点曲率)/(终点桩号-起点桩号)*(待求点桩号-起点桩号)*(待求点桩号-起点桩号)*0.953089923^2))+边距*SIN(偏角+起始方位角/180*3.14159265+起点曲率*(待求点桩号-起点桩号)+0.5*(终点曲率-起点曲率)/(终点桩号-起点桩号)*(待求点桩号-起点桩号)*(待求点桩号-起点桩号)】切线方位角A=起始方位角+(终点曲率*(待求点桩号-起点桩号) +0.5*(终点曲率-起点曲率)/(终点桩号-起点桩号)*(待求点桩号-起点桩号) ^2)*180/3.14159265。

坐标万能计算公式

坐标万能计算公式

坐标万能计算公式X=起点x+(待求点桩号-起点桩号)*【0.1184634425*COS(起始方位角/180*3.14159265+起点曲率*(待求点桩号-起点桩号)*0.046910077+0.5*(终点曲率-起点曲率)/(终点桩号-起点桩号)*(待求点桩号-起点桩号)*(待求点桩号-起点桩号)*0.046910077^2)+0.2393143352*COS(起始方位角/180*3.14159265+起点曲率*(待求点桩号-起点桩号)*0.2307653449+0.5*(终点曲率-起点曲率)/(终点桩号-起点桩号)*(待求点桩号-起点桩号)*(待求点桩号-起点桩号)*0.2307653449^2)+0.2844444444*COS(起始方位角/180*3.14159265+起点曲率*(待求点桩号-起点桩号)*0.5+0.5*(终点曲率-起点曲率)/(终点桩号-起点桩号)*(待求点桩号-起点桩号)*(待求点桩号-起点桩号)*0.5^2)+0.2393143352*COS(起始方位角/180*3.14159265+起点曲率*(待求点桩号-起点桩号)*0.7692346551+0.5*(终点曲率-起点曲率)/(终点桩号-起点桩号)*(待求点桩号-起点桩号)*(待求点桩号-起点桩号)*0.7692346551^2)+0.1184634425*COS(起始方位角/180*3.14159265+起点曲率*(待求点桩号-起点桩号)*0.953089923+0.5*(终点曲率-起点曲率)/(终点桩号-起点桩号)*(待求点桩号-起点桩号)*(待求点桩号-起点桩号)*0.953089923^2))+边距*COS(偏角+起始方位角/180*3.14159265+起点曲率*(待求点桩号-起点桩号)+0.5*(终点曲率-起点曲率)/(终点桩号-起点桩号)*(待求点桩号-起点桩号)*(待求点桩号-起点桩号)】Y=起点Y+(待求点桩号-起点桩号)*【0.1184634425*SIN(起始方位角/180*3.14159265+起点曲率*(待求点桩号-起点桩号)*0.046910077+0.5*(终点曲率-起点曲率)/(终点桩号-起点桩号)*(待求点桩号-起点桩号)*(待求点桩号-起点桩号)*0.046910077^2)+0.2393143352*SIN(起始方位角/180*3.14159265+起点曲率*(待求点桩号-起点桩号)*0.2307653449+0.5*(终点曲率-起点曲率)/(终点桩号-起点桩号)*(待求点桩号-起点桩号)*(待求点桩号-起点桩号)*0.2307653449^2)+0.2844444444*SIN(起始方位角/180*3.14159265+起点曲率*(待求点桩号-起点桩号)*0.5+0.5*(终点曲率-起点曲率)/(终点桩号-起点桩号)*(待求点桩号-起点桩号)*(待求点桩号-起点桩号)*0.5^2)+0.2393143352*SIN(起始方位角/180*3.14159265+起点曲率*(待求点桩号-起点桩号)*0.7692346551+0.5*(终点曲率-起点曲率)/(终点桩号-起点桩号)*(待求点桩号-起点桩号)*(待求点桩号-起点桩号)*0.7692346551^2)+0.1184634425*SIN(起始方位角/180*3.14159265+起点曲率*(待求点桩号-起点桩号)*0.953089923+0.5*(终点曲率-起点曲率)/(终点桩号-起点桩号)*(待求点桩号-起点桩号)*(待求点桩号-起点桩号)*0.953089923^2))+边距*SIN(偏角+起始方位角/180*3.14159265+起点曲率*(待求点桩号-起点桩号)+0.5*(终点曲率-起点曲率)/(终点桩号-起点桩号)*(待求点桩号-起点桩号)*(待求点桩号-起点桩号)】切线方位角A=起始方位角+(终点曲率*(待求点桩号-起点桩号) +0.5*(终点曲率-起点曲率)/(终点桩号-起点桩号)*(待求点桩号-起点桩号) ^2)*180/3.14159265。

坐标推算计算公式

坐标推算计算公式

坐标推算计算公式
坐标推算计算公式是根据已知坐标点的位置和距离,推算出另一个坐标点的位置。

常用的坐标推算计算公式有:
1. 一维坐标推算公式:x2 = x1 + d,其中x1和x2分别为已知坐标点和待求坐标点的位置,d为已知坐标点到待求坐标点的距离。

2. 二维坐标推算公式:根据已知坐标点A(x1,y1)和已知坐标点B(x2,y2)之间的距离d和角度θ,可以求解待求坐标点C(x,y)的位置。

具体公式为:x = x1 + d * cosθ, y = y1 + d * sinθ。

3. 三维坐标推算公式:根据已知坐标点A(x1,y1,z1)和已知坐标点B(x2,y2,z2)之间的距离d和角度θ,可以求解待求坐标点C(x,y,z)的位置。

具体公式为:x = x1 + d * sinθ * cosψ, y = y1 + d * sinθ * sinψ, z = z1 + d * cosθ。

这些公式都是根据几何关系和三角函数来推算坐标点位置的。

需要根据实际情况选择适用的公式进行计算。

直角坐标系的8大公式

直角坐标系的8大公式

直角坐标系的8大公式直角坐标系是数学中常用的坐标系之一,广泛应用于几何、物理和工程等领域。

在直角坐标系中,我们通过坐标对点进行唯一标识和定位。

本文将介绍直角坐标系中的8大公式,这些公式在解决几何和代数问题时非常有用。

一、坐标距离公式在直角坐标系中,我们可以通过两点的坐标计算它们之间的距离。

假设点A的坐标为(x₁, y₁),点B的坐标为(x₂, y₂),那么点A和点B之间的距离可以由以下公式求得:d = √((x₂ - x₁)² + (y₂ - y₁)²)这个公式被称为坐标距离公式,可以通过计算两点之间的直线距离来确定它们之间的距离。

二、中点公式在直角坐标系中,我们可以通过两点的坐标计算它们的中点坐标。

假设点A的坐标为(x₁, y₁),点B的坐标为(x₂, y₂),那么这两点的中点坐标可以由以下公式求得:M = ((x₁ + x₂) / 2, (y₁ + y₂) / 2)这个公式被称为中点公式,可以通过计算两点坐标的平均值来确定它们的中点坐标。

三、斜率公式在直角坐标系中,我们可以通过两点的坐标计算它们之间的斜率。

假设点A的坐标为(x₁, y₁),点B的坐标为(x₂, y₂),那么这两点之间的斜率可以由以下公式求得:m = (y₂ - y₁) / (x₂ - x₁)这个公式被称为斜率公式,可以用于计算两点之间直线的斜率。

斜率表示直线的倾斜程度。

四、线性方程公式在直角坐标系中,我们可以通过直线的斜率和一点的坐标来确定直线的方程。

假设直线的斜率为m,一点的坐标为(x₁, y₁),那么直线的方程可以由以下公式给出:y - y₁ = m(x - x₁)这个公式被称为线性方程公式,可以用于描述直线在直角坐标系中的方程。

五、平行线公式在直角坐标系中,我们可以通过两条平行线的斜率来确定它们之间的关系。

假设平行线L₁的斜率为m₁,平行线L₂的斜率为m₂,那么这两条平行线之间的关系可以由以下公式给出:m₁ = m₂这个公式表示两条平行线的斜率相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档