工程管理专业英语翻译(第二版)徐勇戈
(完整word版)工程管理专业英语徐勇戈课-第二版-后答案

专业英语Unit1第一题1.设计/施工过程Design and construction process2。
房地产开发商Real estate developer3。
投机性住宅市场Speculative housing market4。
项目管理Project management5。
项目全寿命期Project life cycle6。
项目范围Scope of a project/project scope7.专业化服务Professional services8.重大基础项目建设Construction of major infrastructure projects9。
住宅类房屋建设Residential housing construction10.办公和商业用房建设office and commercial building construction11.专业化工业项目建设Specialized industrial projects construction12。
专业咨询师Professional consultants13.总承包商Original contractor14.价值工程value engineering15。
竞争性招标Competitive bidding16.建筑和工程设计公司Architectural and engineering design company17.运营与维护管理operation and maintenance18.设计/施工公司design and construction company19.分包商subcontractor20.设施管理facility management第一章1、从项目管理的角度看,“业主”和“发起方”是同义的,因为两者的基本权力是制定所有重大决策。
2、项目范围界定后,详细的工程设计将提供建设蓝图,最终费用估计将作为控制成本的基准。
工程管理翻译原文

Local Effects Induced by Longitudinal Forces in CompositeGirdersLuigino Dezi1 and Graziano Leoni2Abstract: Local effects on the shear connection of composite girders induced by longitudinal actions such as the anchorages of prestressing cables, concrete shrinkage, or a uniform thermal action on the slab are analyzed. Closed-form solutions are obtained by using the simple model of a composite beam with a linearly elastic shear connection. Successively, by considering the limit scheme of an infinitely long beam, very simple formulas are derived permitting evaluation of the peak value and extension of the interface shear force distribution induced by the longitudinal actions. Numerical applications are carried out to show the effectiveness of the proposed formulas for a wide range of the shear connection stiffness and for longitudinal forces applied both along the beam axis and at the beam end.Key words: Girders; Composite materials; Beams; Slabs; Connections.IntroductionIn composite bridge girders, when concentrated longitudinal forces (or those distributed on a beam section of limited length)are applied to the concrete slab or steel beam, local effects on the shear connection at the beam-slab interface arise. The most common cases of concentrated longitudinal forces are constituted by the anchorages of prestressing cables in the slab (internal prestressing) or in the steel beam (external prestressing), which induce peaks of the shear force distribution at the loaded beam section. A similar problem is also encountered by analyzing the effects of uniform thermal action on the slab and the long-term effects of concrete shrinkage; in both these cases, the shear force distribution at the beam-slab interface shows a peak at the end of the beam similar to that produced by a longitudinal concentrated force (Dezi et al. 1998).Evaluation of the intensity and extension of the shear force peak compose a problem of practical interest that is usually solved by means of the simplified methods suggest by technical codes (European 1997; Johnson et al. 1998).In this paper, by describing the beam-slab interaction with a simple composite beam model with a linearly elastic shear connection(Newmark et al. 1951), closed-form solutions are presented permitting evaluation of the interface shear force distribution produced by a longitudinal force applied at a generic point of the beam axis. Simplified formulas for practical applications, involving all the main parameters influencing the interface shear force distribution, are then derived by considering a beam model with infinite length and by assuming a trapezoidal shape for the shear force distribution. Some applications are carried out to show the effectiveness of the proposed formulas in predicting the shear force distribution (peak value and extension) for a wide range of the shear connection stiffness and for different positions of the longitudinal force along the beam axis. Closed-Form SolutionsThe beam-slab interaction that arises as a consequence of ongitudinal forces applied to the concrete slab or the steel beam is described by means of the simple composite beam model with flexible shear connection proposed by Newmark et al.(1951). By considering a simply supported beam subjected to two longitudinal forces symmetrically applied to the slab, the restraint reactions are null and the interface shear forces arising on the connection are due only to the diffusion of the longitudinal force from the concrete slab to the steel beam. Two load conditions are analyzed: (1) two symmetric concentrated longitudinal forces {Fig.1(a)}; and (2) two uniformly distributed forces on two slab sections{Fig.1(b)}. In both cases, the longitudinal forces are applied at an intermediate cross section and at the end of the beam.In the case of concentrated longitudinal forces applied at an intermediate cross section and at the beam end, the peak values ofthe shear force distribution are, respectivelywhereρ=shear connection stiffness per unit length; Ic , Is , Ac , andAs=moments of inertia and the cross-section areas of the concretea bFig. 1. Shear force distribution on connection: (a) concentrated force;(b) distributed force (A s=0.0428 m2; A c=0.6 m2; Is=0.015949 m4; Ic=0.002 m4; Es=210,000 MPa; Ec=33,613 Mpa)slab and the steel beam; Es and Ec=Young’s moduli of the steel beam and the concrete slab, respectively; h=distance between the slab and beam centroids; and e=eccentricity of the applied force with respect to the slab centroid (positive if the force is applied under the slab centroid).In the case of distributed longitudinal forces symmetrically applied on two internal beam sections of length 2d and two sections of length at the beam ends, the maximum values of the shear force distributions assume the following expressions:Figs. (a and b) show the shear force distributions obtained by considering five different application points of the concentrated and distributed forces (δ=1.0 m), respectively. Two values of the shear connection stiffness are considered (p=1 and 10 kN/mm2).As is well-known, the peak value and the extension of the shear force distributions are strongly influenced by the connection stiffness. Conversely, it can be observed that, in the case of both the concentrated and distributed forces, the intensity and the extension of the peak are not significantly modified by changing the force position, except for the case in which the force is applied at the end of the beam. In this case, in fact, the peak value is about twice that obtained for an intermediate application point.Simplified RulesThe conclusion drawn at the end of the previous section suggests evaluating the peak values by considering the limit case of a beam with infinite length. In this case, the q max expressions can be easily derived from those previously obtained.For concentrated and distributed forces applied at intermediate beam sections, the peak values are given by the following formulas, respectively:When the forces are applied at the free beam ends, the peak values can be obtained by considering a beam with a semiinfinite length; in this case, the following equations can be derived for concentrated and distributed forces, respectively:These values are exactly twice those given by Eq. (6)for longitudinal forces applied at intermediate beam sections.Once the peak value has been determined, the beam section length affected by the interface shear force can be estimated by introducing a priori the shape of distribution. By introducing the trapezoidal shapes of Fig. 2, the beam section lengths D and 2D can be obtained by equalizing the resultant of the longitudinal force on the shear connection with the maximum asymptotic value of the axial force Ns , given byThe following values of D are obtained for distributed and concentrated forces, respectively:To validate the proposed formulas, results obtained by applying the simplified rules are compared with those provided by the rigorous formulation. In Fig. 3, the comparison is carried out by varying the main parameters involved: length of the loaded beam section {Fig.3(a)}, position of the application point of the force {Fig. 3(b)}, and stiffness of the shear connection {Fig. 3(c)}. In all the cases examined, the proposed simplified formulas provide excellent approximations.Fig. 2. Simplified longitudinal shear force distribution at beam-slab interface: (a) force applied at intermediate section; (b)force appliedat slab endFig. 3(d)shows the interface shear force distributions obtained with the ENV 1994-2 (European 1997) rules, which do not take into account the shear connection stiffness; comparison with the closed-form solution shows the low level of accuracy of these formulas.The proposed formulas involve all parameters influencing the interface shear force distribution, including the shear connection stiffness. Even if derived by a linear elastic analysis, they provide a useful tool for practical applications and can be used for verification of both serviceability and ultimate limit states. A morerealistic nonlinear analysis would lead to smoother distributions with lower peak values, so the method presented provides conservative solutions. ConclusionsLocal effects on the shear connection of composite beams, induced by longitudinal actions applied on the slab or on the steel beam have been analyzed. Closed-form solutions, obtained with the classical model of the composite beam with a flexible connection, have been examined, showing that:1. The peak value of the longitudinal shear force is approximatelyconstant when varying the position of the loaded sectionalong the beam axis; and 2. For longitudinal forces applied at the ends of the beam, the peak value of the interface shear force distribution is nearly double and the extension is nearly half of that produced by forces applied at intermediate cross sections.The first point suggested calculating the peak values of the interface shear force in the limit scheme of an infinitely long beam by obtaining simplified solutions of practical interest. In this case, the peak values are independent from the position of the forces along the beam axis and they double when the forces are applied at the ends of the beam. Successively, by assuming a trapezoidal shape for the shear force distribution, very simple formulas to evaluate the extension of the sections affected by the shear force distribution were derived. The proposed formulas, which involve all the parameters influencing the interface shear force distribution ~including the connection stiffness!, were used in numerical tests, obtaining an excellent estimation of both the maximum value and the extension of the shear force distribution.Fig. 3. Comparison between exact method and simplified method: (a)forces applied to beam sections with different length; (b) forces with different application points; (c) forces applied to beams with differentshear connections; (d) influence of shear connection stiffness on EC4-2 rules precisionReferencesDezi, L., Leoni, G., and Tarantino, A. M. (1998). ‘‘Creep and shrinkage analysis of composite beams.’’ Progress in Structural Engineering and Materials, 1(2), 170–177.European Committee for Standardization. ENV 1994-2, (1997). ‘‘Euro code 4: Design of composite steel and concrete structures. Part 2: Bridges—third draft: January 1997.’’Johnson, R. P., Hanswille, G., and Tschemmernegg, F. (1998). ‘‘The Euro code for composite bridges, ENV 1994-2:1997.’’ J. Constr. Steel Res., 46(1–3), Paper 95.Newmark, N. M., Siess, C. P., and Viest, I. M. (1951). ‘‘Tests and analysis of composite beams with incomplete interaction.’’ Proc., Soc. Exp.Stress Anal., 9(1), 75–92.。
工程管理专业英语徐勇戈课-第二版-后答案精编版

专业英语Unit1第一题1.设计/施工过程Design and construction process2.房地产开发商Real estate developer3.投机性住宅市场Speculative housing market4.项目管理Project management5.项目全寿命期Project life cycle6.项目范围Scope of a project/project scope7.专业化服务Professional services8.重大基础项目建设Construction of major infrastructure projects9.住宅类房屋建设Residential housing construction10.办公和商业用房建设office and commercial building construction11.专业化工业项目建设Specialized industrial projects construction12.专业咨询师Professional consultants13.总承包商Original contractor14.价值工程value engineering15.竞争性招标Competitive bidding16.建筑和工程设计公司Architectural and engineering design company17.运营与维护管理operation and maintenance18.设计/施工公司design and construction company19.分包商subcontractor20.设施管理facility management第一章1、从项目管理的角度看,“业主”和“发起方”是同义的,因为两者的基本权力是制定所有重大决策。
2、项目范围界定后,详细的工程设计将提供建设蓝图,最终费用估计将作为控制成本的基准。
(完整word版)工程管理专业英语徐勇戈课-第二版-后答案

专业英语Unit1第一题1.设计/施工过程Design and construction process2.房地产开发商Real estate developer3.投机性住宅市场Speculative housing market4.项目管理Project management5.项目全寿命期Project life cycle6.项目范围Scope of a project/project scope7.专业化服务Professional services8.重大基础项目建设Construction of major infrastructure projects9.住宅类房屋建设Residential housing construction10.办公和商业用房建设office and commercial building construction11.专业化工业项目建设Specialized industrial projects construction12.专业咨询师Professional consultants13.总承包商Original contractor14.价值工程value engineering15.竞争性招标Competitive bidding16.建筑和工程设计公司Architectural and engineering design company17.运营与维护管理operation and maintenance18.设计/施工公司design and construction company19.分包商subcontractor20.设施管理facility management第一章1、从项目管理的角度看,“业主”和“发起方”是同义的,因为两者的基本权力是制定所有重大决策。
2、项目范围界定后,详细的工程设计将提供建设蓝图,最终费用估计将作为控制成本的基准。
工程管理专业英语全文翻译

Unit 1 the owner’s perspective 第1单元业主的观点1.2 Major Types of Construction 1.2大建筑类型Since most owners are generally interested in acquiring only a specific type of constructed facility, they should be aware of the common industrial practices for the type of construction pertinent to them [1]. Likewise, the construction industry is a conglomeration of quite diverse segments and products. Some owners may procure a constructed facility only once in a long while and tend to look for short term advantages. However ,many owners require periodic acquisition of new facilities and/or rehabilitation of existing facilities. It is to their advantage to keep the construction industry healthy and productive. Collectively, the owners have more power to influence the construction industry than they realize because, by their individual actions, they can provide incentives for innovation, efficiency and quality in construction [2]. It is to the interest of all parties that the owners take an active interest in the construction and exercise beneficial influence on the performance of the industry.由于大多数业主通常只对获得特定类型的建筑设施感兴趣,所以他们应该了解与他们有关的建筑类型的常见工业实践[1]。
工程管理专业英语翻译

1. A decision whether to pump or to transport concrete in buckets will directly affect the cost and duration of tasks involved in building construction.用泵送混凝土还是用吊斗浇筑混凝土的决定将直接影响建筑物施工中各项任务的成本和时间2.In selecting among alternative methods and technologies, it may be necessary to formulate a number of construction plans based on alternative methods or assumptions. 在选择施工方法和技术时,有必要根据各种备选的施工方法和假设制订若干套施工计划。
3.This examination of several alternatives is often made explicit in bidding competitions in which several alternative designs may be proposed or value engineering for alternative construction methods may be permitted这种对几个备选方案之间的评比在公开招标中表现的十分明显:在设计招标中会要求提交数个设计方案;在施工招标中会用到价值工程的方法4. In this case, potential constructors may wish to prepare plans for each alternative design using the suggested construction method as well as to prepare plans for alternative construction methods which would be proposed as part of the value engineering process.在这个案例中,潜在的承包商需要针对每个备选设计方案根据被建议的施工方法来制定具体的计划;也需要针对每个备选施工方法制定具体计划,而这些施工方法选择会被推荐应用价值工程方法5.In forming a construction plan, a useful approach is to simulate the construction process either in the imagination of the planner or with a formal computer based simulation technique.根据施工计划人员的想象或者利用以计算机为工具的仿真技术队施工过程进行模拟。
工程管理专业英语翻译Chapter 1-5

Chapter 11.1 introduction"To form by assembling parts" is the dictionary definition for construct, but the phrase also is a metaphor for the construction itself. 由各组成部分所构成是对建筑在字典中的定义,它也是对建筑本身的比喻。
Just as divergent materials come together to form a structure, so, too, does a diverse group of people come together to make the project possible.正如将各种不同材料组成构筑物,将不同人群聚集到一起也一样,使实现一个项目成为可能。
To bring together numerous independent businesses and corporate personalities into one goal-oriented process is the particular challenge of the construction industry. 把多个互不相关的行业和独立人群聚集到一起来实现一个共同目标对建筑业而言是独特的挑战。
The organizational cultures of architects, engineers, owners, builders, manufacturers, and suppliers may seem to work against the real need to forge a partnership that will ensure the success of a project. 建筑师,工程师,业主,建造者,制造商和供应商的组织文化看似违背了一个真实需求,这个需求是形成一个合作体(关系)以确保项目成功。
工程管理专业英语第二版

Unit 1 The Owner’s Perspective
1.2 Major Types of Construction
Since most owners are generally interested in acquiring only a specific type of constructed facility, they should be aware of the common industrial practices for the type of construction pertinent to them.
Unit 1 The Owner’s Perspective
1.3 Selection of Professional Services
When an owner decides to seek professional services for the design and construction of a facility, he is confronted with a broad variety of choices. The type of services selected depends to a large degree on the type of construction and the experience of the owner in dealing with various professionals in the previous projects undertaken by the firm. Generally, several common types of professional services may be engaged either separately or in some combination by the owners.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
U2-S1什么是项目管理?建筑项目管理不仅需要对设计和实施过程有所理解,而且需要现代管理知识。
建设项目有一组明确的目标和约束,比如竣工日期。
尽管相关的技术、组织机构或流程会有所不同,但建设项目同其他一些如航天、医药和能源等准等领域的项目在管理上仍然有共同之处。
一般来说,项目管理和以项目任务为导向的企业宏观管理不同,待项目任务的完成后,项目组织通常也会随之终止。
(美国)项目管理学会对项目管理学科有如下定义:项目管理是一门指导和协调人力物力资源的艺术,在项目整个生命周期,应用现代管理技术完成预定的规模、成本、时间、质量和参与满意度目标。
与此形成对照,一般的工商企业管理更广泛地着眼于业务的更加连贯性和连续性。
然而,由于这两者之间有足够的相似和差异,使得现代管理技术开发宏观管理可以用于项目管理。
项目管理框架的基本要素可以用图2-1表示。
其中,应用宏观管理知识和熟悉项目相关知识领域是不可或缺的。
辅助性学科如计算机科学和决策科学也会发挥重要作用。
实际上,现代管理实践与各专业知识领域已经吸收应用了各种不同的技术和工具,而这些技术和工具曾一度仅仅被视作属于辅助学科领域。
例如,计算机信息系统和决策支持系统是目前常见的宏观管理工具。
同样,许多像线性规划和网络分析这样的运算研究工具,现在广泛应用在许多知识和应用领域。
因此,图2- 1反映了项目管理框架演变的唯一来源。
具体来说,建设项目管理包含一组目标,该目标可能通过实施一系列服从资源约束的运作来实现。
在规模、成本、时间和质量的既定目标与人力、物力和财力资源限制之间存在着潜在冲突。
这些冲突应该在项目开始时通过必要的权衡和建立新备选方案来解决。
另外,施工项目管理的功能通常包括以下:1. 项目目标和计划说明书中包括规模、预算安排、进度安排、设置性能需求和项目参与者的界定。
2. 根据规定的进度和规划,通过对劳动力、材料和设备的采购使资源的有效利用最大化。
3. 在项目全过程中,通过对计划、设计、估算、合同和施工的适当协调控制来实施项目各项运作。
4. 设立有效的沟通机制来解决不同参与方之间的冲突。
项目管理学会聚焦九个不同独特领域,这些领域需要项目经理所具有的知识和关注度:1. 项目宏观管理,确保项目要素有效协调。
2. 项目范围管理,确保所需的所有工作(并且只有所需的工作)。
3. 项目时间管理,提供有效的项目进度。
4. 项目成本管理,确定所需资源和维持预算控制。
5. 项目质量管理,确保满足功能需求。
6 . 项目人力资源管理,有效地开发和聘用项目人员。
7 . 项目沟通管理,确保有效的内部和外部通信。
8. 项目风险管理,分析和规避潜在风险。
9. 项目采购管理,从外部获得必要资源。
U5-S2怎样在竞争性招标中进行项目投标?什么是竞争性投标?商务词典给出关于竞争性投标的定义是:竞争性投标是透明的采购方法,从根据公开宣传的拟订合同的范围、规格、价款和条件而受到邀请的承包商、供应商和卖方进行竞争出价,以及根据一定标准来对竞标价进行评估。
竞争性投标的目的是通过刺激竞争和防止徇私舞弊来以最低标价获得货物和服务。
在公开的竞争性招标中,密封的投标报价会在所有想见证开标的人面前公布。
在有限的竞争性招标中,密封投标价只在出席的授权人员面前公布。
是否投标一个项目?对于建筑公司来说,因为在准备投标阶段已经花费了大量时间以及金钱,所以决定投标项目不是一个小事儿。
投标的动机根据大量的因素而变化。
在经济市场高涨时,承包商更可以自主选择投标哪些项目。
在经济市场不景气时,承包商可能不得不选择不理想的投标项目。
公司的主要动机是获得良好的投资回报。
一个公司的成长和繁荣必须有自身的投资利润。
如果一个项目有可以获得良好项目投资回报的必要因素,则投标动机会很高。
但是,对于不同公司这些因素并不相同。
除了利润驱动外,公司可能会因其他原因而进行投标。
如果公司想建立一种新的客户关系或者维持一个稳固的客户,它可能会投标一个较低利润的项目。
一个不同寻常且能够丰富公司投资组合的项目,即使其边际效益很低,也能激发承包商的兴趣。
如果项目有很高的社会关注度或社会效益,则公司可以将其视为一种市场营销策略。
在这种情况下,关注客户关系或者社会认可的长期目标比短期利润目标更有价值。
U6-S3合同中的索赔、纠纷、仲裁和调解有时候,项目经理可能必须处理升级到索赔的纠纷,这些索赔需要仲裁和诉讼才能解决。
这些问题可能发生在建造过程中,可能发生在项目开始之前,或者发生在项目完成之后。
尽管总承包商意在不惜一切代价避免这些问题,但是诉讼会给他们压力。
一个平时重视文档工作,且对法律术语,先前的法庭裁决和过往的行业实践相对较为熟悉的项目经理总能更好地应对不避免的纠纷。
这个章节的目的不是把项目经理变成律师,而是想说明法律实务最好还是交给律师。
在日常建设管理活动中,项目经理要实事求是地签发和接收大量具有法律意义的文件。
这部分意图创造一种责任意识,这种意识伴随着所有合同、文件和其他指令的管理,以及他们如何与潜在的法律行为相协调。
什么引发索赔和纠纷?导致纠纷和索赔误解的主要原因如下:1. 计划及其说明书包含错误、遗漏、歧义或者缺少适当的协调。
2. 合同一方提交给合同另一方的问题和议案无响应或者不完全不准确响应。
3. 业主、工程师、承包商、分包商或者供应商管理不尽责。
4. 不愿意或无能力遵守合同的意图或工作执行过程中的应恪守的行业标准。
5. 现场情况与合同文件中描述的有极大差异。
6. 不可预见的地质条件。
7. 在整修和复原工作中,发现现有建筑情况和图纸中反映的而严重不符。
8. 附加工作和变更指令。
9. 合同任何一方的违约。
10. 干扰、延误和赶工引起与初始进度计划偏差11. 业主、承包商、分包商任何一方财务状况的恶化。
如果或当这些误会发生时,合约各方应采取一些妥协措施弥补这些误会和纠纷—这才是谈判的实质,仅当解决纠纷的努力失败才有必要咨询索赔顾问或公司的律师。
即使那时,各方索赔的优劣势可能会显现,索赔继续或放弃的决定会变得容易。
如果这种情况出现,且索赔顾问或律师对会议进行安排,项目经理必须收集或有现成的以下与纠纷和争端相关的文件:1.陷入纠纷各方的往来信函—信件和传真。
2.日报表、工作日志、与问题相关的日记。
3.检验和检测报告。
4.各方的所有支付申请和已收款清单。
5.工作进度表—计划进度和实际进度。
6.现场劳力人员时间表。
7.施工图交底记录和建筑师、分包商或供应商处图纸发放和移交证明的提送函。
8.附加工作或变更指令。
9.各办公室的备忘录、现场备忘录、电话对话备忘录。
10.传真书、投标文件、报价单、书面的或明确的电话标书。
11.变更需求、变更建议、变更估算和所有变更的支撑数据。
12.工作现场图片记录。
13.所有已签发或待处理的采购单。
14.任何暂停的或完成的竣工图纸。
如果后续的工作有必要,这些文件将会用到,要么是在索赔顾问或公司律师的工作过程中,要么是为仲裁做准备。
随着工作的进行,如果所有的这些文件能够被妥当归档,顾问或律师的工作将变得容易很多,而且他们会轻松地抓住问题并对所提交的索赔在何种程度上是合理的做出决定。
然而,当反对者仅仅了解所示合同文件的深度和完善性,纠纷的解决会更快。
U12-S1设计和施工行业正在经历着一场从二维CAD和纸质CAD和纸质图纸向三维的、语义丰富的数字模型的重大转变。
这种趋势已经到了一个地步:该项技术通常指建筑信息模型,正在以某种形式应用于多数行业。
根据麦格劳-希尔建筑信息公司的一项调查表明:2008年,在所调查的建筑师,工程师,承包商和业主中,有45%的人将BIM应用于其项目的30%甚至更多。
预计BIM将在未来几年持续增长。
行业面临的挑战之一是不仅将BIM当作设计流程中的一个工具,而且当作项目各参与方之间信息交换的接口。
一个典型的建设项目需要多个参与方相互合作与信息交换,这些参与方包括客户、建筑师、工程师、估价师、工料测算师、承包商和监管部门。
传统上,信息交换是以图纸和文件形式进行的。
因为每一方都区域在其组织内部使用BIM工具,因此就存在着使用数字模型作为信息交换媒介的强烈动机。
然而,这些参与方频繁使用不同工具,要么来自不同供应商,要么来自特定的业务领域,工具的多样性对模型交换造成挑战。
工业基础类(IFC)是由智能建筑联盟定义的,其设计模型是公认的行业标准。
IFC模型能够语义丰富的捕捉物体的三维几何特征以及其他一些与建筑物相关的元数据。
例如,我们将门作为一个实例对象来考虑,这个门将会位于在某建筑物既定楼层中的一堵墙上。
它的属性会与其热工性能、成本以及消防安全性能等相关。
访问哪个组件来解决故障可以由模型内追踪系统来确定,例如,热区域系统、成本分解结构和消防安全系统。
该模型中必要的属性定义和系统描述皆是源于法律规定和分析软件输入要求。
当前许多重要的BIM工具都用于产业支撑输入和IFC文件输出。
多年来,作为一种互操作格式,IFC不仅可以作为工具之间模型交换的机制,还可以作为我们进行设计分析和自动化的软件工具的输入格式。
本文提出将成功的观察和IFC的挑战作为建筑模型的互操作性标准。
建筑信息模型是一个融策略,流程和技术于一体的共生网络,它们一起构建了一个“贯穿于建筑物生命周期,以数字格式管理必要的建筑设计和项目数据的方法论”。
能够保证设计过程效率的实质性效益的BIM工具逐渐成为协作式设计和模型流程中的一部分。
一个建筑或建筑群的建设是一个复杂的工作,包含许多参与方和多种不同的活动。
即使小项目让一个公司单独完成也会超过其能力范围,而大项目必然需要数以十计的组织,这些组织包括客户、建筑师、工程师、融资方、施工方和分包商。
可将这些流程比作计算中的协同设计,其中,硬件领域知识和软件工程师各自彰显其价值,与此同时,项目的完成也需要系统过程中的设计,生产以及运营/管理之间的深度协作。
这些已使用的信息模型具有大、复杂且高度互相依赖的特点,不仅包括项目管理、进度计划和成本计划/估算等跨领域的关注点,同时还包括建筑构件、结构、电气、供热通风与空调和机械等方面的工程系统。
传统上,在参与方之间进行信息交换的主要媒介是图纸或其它纸质文件(例如,工程量清单、成本计划、建筑规范),现在在许多项目案例中仍在延用。
虽然许多组织用一些软件来定义设计模型,但是当他们将模型呈现给别的组织时通常是以2D图纸的形式。
信息交换服务用来通知接收方,并且记录下信息是否被传达,因此,当争议或问题发生时,它可以清楚地确定一个决议。
公司更愿意使用图纸而不愿意将数字信息在三维空间中表现出来,通常三维空间数字信息与同意义的图纸相比有更多的附加信息。
例如,建筑师经常将建筑材料类型与建筑物实体联系在一起,目的是为客户呈现出一个直观真实的建筑物,而未必是因为材料用在建设中。