线性代数期末复习提纲解析
线性代数复习提纲

线性代数复习提纲第一章 行列式1、行列式的定义:总项数、每一项构成、符号确定方法(附带:逆序、逆序数、奇排列)。
2、行列式性质:P9—P11六个性质两个推论,按某一行(列)的降阶展开(附带: 余子式、代数余子式)。
3、行列式计算: 一般方法 --化成三角形、降阶展开。
特殊计算:分块三角形--例10)、范德蒙—例12。
4、克拉默法则公式—P22第二章 矩阵及其运算1、概念:矩阵的型(阶)、相等、线性变换。
特殊矩阵:零矩阵、负矩阵、单位矩阵、纯量矩阵、对角矩阵、对称矩阵、逆矩阵、矩阵的行列式、伴随矩阵、奇异矩阵、分块对角矩阵。
2、运算:加法、数乘、转置、矩阵相乘、求伴随矩阵、解矩阵方程。
3、重要定理公式:⑴矩阵乘法:不满足交换律、两个非零矩阵乘积可能为零矩阵、两个对角矩阵的乘积等于以主对角线对应元素乘积为相应元素的对角矩阵。
⑵转置:T T T T T T T T T T A B AB A A B A B A A A ==+=+=)(,)(,)(,)(λλ,O A A O A T =⇔= ⑶方阵的行列式:B A AB A A BA AB A An T ====,,,λλ,A A A A n 111*==--, ⑷伴随矩阵:E A A A AA ==**,*11*)()(--=A A⑸逆矩阵基本公式:*11 0A AA A A =≠⇔-此时有,可逆方阵 ⑹逆矩阵运算公式:T T A A AB AB A A A A )()()(,1)(,)(111111111---------====λλ ⑺二阶方阵逆矩阵公式:⎪⎪⎭⎫ ⎝⎛---=-a c b d bc ad d c ba 1)(1 ⑻分块对角矩阵的逆等于每一块分别取逆。
特别的,对角矩阵的逆等于主对角线每个元素取倒数。
⑼一元矩阵多项式)(A f 可以象字母多项式)(x f 那样分解为因式的乘积,并且各因式顺序可以交换。
第三章 矩阵的初等变换1、概念:三种初等行变换(列变换)的定义和相应记号、对应的三种初等矩阵。
线性代数复习提纲

线性代数复习提纲线性代数是数学中的一个基础课程,涵盖了向量空间、线性变换、矩阵理论等内容。
它在计算机科学、物理学、经济学和工程学等领域都有广泛的应用。
下面是线性代数的复习提纲,帮助你回顾相关的知识点。
一、向量空间1.向量的定义和性质2.向量空间的定义和性质3.子空间的定义和判断条件4.向量的线性相关性与线性无关性5.基和维数的概念二、线性变换1.线性变换的定义和性质2.线性变换的矩阵表示3.线性变换的核与像空间4.线性变换的维数公式5.线性变换的复合与逆变换三、矩阵理论1.矩阵的定义和性质2.矩阵的运算:加法、数乘、乘法3.矩阵的逆与转置运算4.矩阵的秩和行列式5.矩阵的特征值与特征向量四、特殊矩阵和特征值问题1.对称矩阵的性质和对角化2.可逆矩阵与相似矩阵3.正交矩阵与正交对角化4.特征值问题的求解方法五、解线性方程组1.线性方程组的矩阵表示2.高斯消元法与矩阵的初等变换3.初等矩阵的性质与应用4.齐次线性方程组和非齐次线性方程组的解的结构六、向量空间的基变换1.基变换的定义和性质2.过渡矩阵的求解3.变换矩阵的求解与应用4.基变换下的坐标表示和坐标变换公式七、内积空间和正交性1.内积的定义和性质2.内积空间的定义和性质3.正交基和正交投影4.标准正交基和正交矩阵的定义和性质八、二次型与正定性1.二次型的定义和性质2.二次型的矩阵表示和标准化3.正定二次型和半正定二次型的定义和性质4.二次型的规范形和合同变换以上是线性代数的复习提纲,可以通过对每个知识点的回顾、理解和练习来复习线性代数。
在复习过程中,可以结合教材、习题和课堂笔记,通过解题和思考来巩固知识点的掌握。
另外,可以参考相关的教学视频或在线课程来帮助理解和学习线性代数的概念和方法。
最重要的是多做习题,加深对知识点的理解和应用。
线性代数本科期末考试重点资料

本学期线性代数课程的考试要点:第一章一、二阶行列式定义及其计算――对角线法则,利用行列式性质化为上(下)三角形行列式,利用展开定理进行计算(注意记号的正确写法);二、数码排列的逆序数的计算;三、n 阶行列式的定义及其计算――利用行列式性质化为上(下)三角形行列式,利用展开定理进行计算(注意记号的正确写法);四、行列式的展开定理的有关结论。
第二章一、矩阵的概念及其有关运算(加,减,数乘,矩阵相乘,逆矩阵,方阵的行列式,方阵的幂乘)(矩阵相乘一般不满足交换律,必须注意是左乘还是右乘)二、逆矩阵的定义及有关概念和有关结论;三、逆矩阵存在的充要条件;四、矩阵的初等变换(主要是初等行变换);五、行阶梯形矩阵和行最简形矩阵的定义;六、如何利用矩阵的初等行变换将一个矩阵化为行阶梯形和行最简形;七、初等矩阵的概念;八、矩阵的秩的概念;九、如何利用矩阵的初等行变换:(1)求出可逆矩阵的逆矩阵;(2)求解矩阵方程;(3)确定所给矩阵的秩。
第三章一、方程组的系数矩阵和增广矩阵的概念;二、如何利用矩阵的初等行变换判定齐次线性方程组是否有非零解;三、如何利用矩阵的初等行变换判定非齐次线性方程组是否有解;有解时是唯一解还是无穷多解;四、向量的线性组合、线性表示、线性相关、线性无关的概念;五、如何利用矩阵的初等行变换判定向量组:(1)求出所给向量组的秩;(2)判定向量组是否线性相关;(3)求出向量组的极大无关组;(4)求出不在极大无关组中的向量由极大无关组向量线性表示的表达式。
六、解向量、解空间、基础解系的概念;七、如何利用矩阵的初等行变换求解线性方程组:(1)求出齐次线性方程组的基础解系和通解的表达式;(2)求出非齐次线性方程组的一个特解,求出相应的齐次线性方程组的基础解系,最后,利用基础解系写出非齐次线性方程组的通解的表达式。
第四章一、如何求出所给矩阵的特征值和特征向量。
线性代数期末复习提纲

n
n
(A)
a ij Aij 0
(B)
aij Aij 0
i1
j1
n
(C)
aij Aij D
(D)
j1
n
ai1 Ai 2 D
i1
7、设 A, B 均为 n阶可逆矩阵,则下列各式成立的是
( A) ( AB)T BT AT
(B)
(C) AB BA
(D)
(AB) 1 A 1B 1 AB A B
8、设 A 为 3 阶方阵,且行列式 A 1 ,则 2A
【主要内容】 1、向量的内积、长度、夹角等概念及其计算方法。 2、向量的正交关系及正交向量组的含义。 3、施密特正交化方法。 4、方阵的特征值与特征向量的概念及其计算方法。
( 1)特征值求法:解特征方程 A E 0 ;
( 2)特征向量的求法:求方程组 A E X 0 的基础解系。
5、相似矩阵的定义 ( P 1 AP B )、性质 ( A, B 相似
第四部分 线性方程组 【主要内容】
1、齐次线性方程组 Ax 0 只有零解 系数矩阵 A 的秩 未知量个数 n; 2、齐次线性方程组 Ax 0 有非零解 系数矩阵 A 的秩 未知量个数 n. 3、非齐次线性方程组 Ax b 无解 增广矩阵 B ( A, b) 秩 系数矩阵 A 的秩;
4、非齐次线性方程组 Ax b 有解 增广矩阵 B ( A, b) 秩 系数矩阵 A 的秩
即得二次型的标准形 f
1 y1 2
2 y2 2
n yn2
8、正定二次型的定义及其判定方法 常用判定二次型正定的方法: ( 1)定义法 ( 2)特征值全大于零 ( 3)顺序主子式全大于零
【要求】 1 、掌握向量的内积、长度、夹角,正交向量组的性质,会利用施密特正交化方法化线 性无关向量组为正交向量组。 2、掌握方阵特征值、特征向量的概念、求法, 3、了解相似矩阵的概念、掌握化对称矩阵为对角矩阵的方法。 4、掌握二次型的概念、会用正交变换化二次型为标准形。 5、了解二次型的分类,知道正定二次型等概念及其判定方法。
线性代数总复习大纲及复习题

04-05(2) 线性代数总复习大纲及复习题: 一、 概念1、 行列式的 定义2、 向量组相关与无关的定义3、 对称阵与反对称阵4、 可逆矩阵5、 矩阵的伴随矩阵6、 基与向量的坐标7、 矩阵的特征值与特征向量 8、 正定矩阵 9、 矩阵的迹 10、 矩阵的秩 11、 矩阵的合同 12、 二次型与矩阵13、 齐次线性方程组的基础解系 二、 性质与结论1、 与向量组相关与无关相关的等价结论2、 行列式的性质3、 克莱姆规则(齐次线性方程组有非零解的充要条件)4、 矩阵可逆的充要条件及逆矩阵的性质5、 初等变换与初等矩阵的关系6、A A A A A E **==7、 n 维向量空间坐标变换公式 8、 相似矩阵的性质 9、 合同变换10、 矩阵正定的充要条件11、 线性方程组解的性质与结构定理 三、复习题及参考答案1.若三阶行列式1231122331232226a a a b a b a b a c c c ---=,则 123123123a a ab b bc c c = 12 2.若方程组123123123000tx x x x tx x x x tx ++=⎧⎪++=⎨⎪++=⎩有非零解,则t=⎽⎽⎽⎽1⎽⎽⎽。
3.已知齐次线性方程组32023020x y x y x y z λ+=⎧⎪-=⎨⎪-+=⎩仅有零解,则λ≠ 04.已知三阶行列式D=123312231,则元素12a =2的代数,余子式12A = -1 ;3.若n 阶矩阵A 、B 、C 满足ABC=E (其中E 为n 阶可逆阵),则BCA=E 。
( 对 )4.行列式002002316.02342345= ( 对 ) 5.对向量1234,,,αααα,如果其中任意两个向量都线性无关,则1234,,,αααα线性无关。
( 错 )6. 如果A 是n 阶矩阵且0A =,则A 的列向量中至少有一个向量是其余各列向量的线性组合。
( 对 )7. 向量组s ααα,,,21 线性无关的充分必要条件是其中任一部分向量组都线性无关。
线性代数期末复习要点

注:一般而言, 1o ( AB)k Ak Bk , 正确: ( AB)k (AB)(A B)( AB) ;
k个
2o ( A B)(A B) A2 B2, 正确: ( A B)(A B) A2 AB BA B2 ;
3o ( A B)2 A2 2AB B2 , 正确: ( A B)2 A2 AB BA B2 。
A22
An
2
A2n
Ann
称为
A
的伴随矩阵。
2、n 阶方阵可逆的充要条件:
A
0
A 可逆,且 A1
1 A
A 。
3、逆矩阵的性质: 1o ( A1 )1 A ; 3o ( AT )1 ( A1 )T ;
4、伴随矩阵的性质:
2o ( AB)1 B1 A1 ;
4o
(kA)1
1 k
A1
(k
1、 Ax 0的基础解系:解向量组的一个极大无关组。
2、 Ax 0解的定理:只有当 R( A) r n 时,才存在基础解 系,且 n r 个线性无关的解向量组成的向量组 v1、v2、、vnr 是 Ax 0的基础解系,其线性组合
v c1v1 c2v2 cnrvnr 是 Ax 0的全部解。 3、基础解系的求法:
组有且仅有唯一解,且
xj
Dj D
( j 1,2,, n )
注:齐次线性方程组有非零解 D 0。 (逆否命题:齐次线性方程组仅有零解 D 0。)
第二章 矩阵
一、矩阵的定义:矩形数表。
二、矩阵的运算
1、矩阵的加法、减法:只有同型矩阵才可以进行加减运算。
2、数与矩阵的乘法:数与矩阵的乘法是数与矩阵每一个元 素相乘;而数与行列式的乘积是数与行列式中某一行(列) 的每一个元素相乘。
《线性代数》复习提纲

《线性代数》复习提纲第一部分:基本要求(计算方面)四阶行列式的计算;N阶特殊行列式的计算(如有行和、列和相等);矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);求矩阵的秩、逆(两种方法);解矩阵方程;含参数的线性方程组解的情况的讨论;齐次、非齐次线性方程组的求解(包括唯一、无穷多解);讨论一个向量能否用和向量组线性表示;讨论或证明向量组的相关性;求向量组的极大无关组,并将多余向量用极大无关组线性表示;将无关组正交化、单位化;求方阵的特征值和特征向量;讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;通过正交相似变换(正交矩阵)将对称矩阵对角化;写出二次型的矩阵,并将二次型标准化,写出变换矩阵;判定二次型或对称矩阵的正定性。
第二部分:基本知识一、行列式1.行列式的定义用n^2个元素aij组成的记号称为n阶行列式。
(1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和;(2)展开式共有n!项,其中符号正负各半;2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则;N阶(n>=3)行列式的计算:降阶法定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。
方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。
特殊情况上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;(2)行列式值为0的几种情况:Ⅰ行列式某行(列)元素全为0;Ⅱ行列式某行(列)的对应元素相同;Ⅲ行列式某行(列)的元素对应成比例;Ⅳ奇数阶的反对称行列式。
二.矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等);2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果;(2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵);②矩阵乘法一般不满足消去律、零因式不存在;③若A、B为同阶方阵,则|AB|=|A|*|B|;④|kA|=k^n|A|3.矩阵的秩(1)定义非零子式的最大阶数称为矩阵的秩;(2)秩的求法一般不用定义求,而用下面结论:矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。
线性代数复习提纲

1.1二阶、三阶行列式了解二阶、三阶行列式的概念;熟练掌握其计算方法..1.2排列了解排列、正逆序数、奇偶排列、对换的概念;熟练掌握逆序数的计算方法、3个定理1.3n阶行列式了解n阶行列式的定义和由二阶、三阶行列式展开式的特点导出的一般规律;;掌握用定义计算特殊n阶行列式的方法;熟记三角形行列式的计算结果..1.4行列式的性质熟练掌握行列式的运算性质;并应用它们进行行列式的运算..转置行列式的概念;行列式的5个性质和两个推论1.5行列式按行列展开掌握余子式和代数余子式的概念;熟练掌握行列式按行列展开的方法..三阶行列式按行列展开式;余子式和代数余子式的概念;行列式按行列展开定理;范德蒙行列式1.6克拉默法则掌握线性方程组解的克拉默运算法则;掌握用克拉默法则判断齐次线性方程组仅有零解和有非零解的方法..1.7数域掌握数域的定义..2.1消元法了解线性方程组的消元解法;熟练掌握矩阵的初等变换方法;熟练掌握用矩阵的初等变换法解线性方程组以及判断方程组无解、有解唯一解、无穷多解的方法..2.2n维向量空间了解向量的定义;掌握向量的运算;熟悉线性方程组的向量表达形式..向量的有关概念;向量的运算法则;n维向量空间的概念;线性方程组的向量表达形式2.3向量间的线性关系掌握向量的线性组合概念;熟练掌握一个向量可由其它向量线性表示的方法;熟练掌握向量组线性相关和线性无关的概念、理论和方法..向量的线性组合概念;判断一个向量可由其它向量线性表示的方法;向量组线性相关和线性无关的概念;判断向量组线性相关和线性无关的方法;判断向量组线性相关和线性无关的一些结论;5个定理2.4向量组的秩了解向量组极大无关组的概念;掌握等价向量组的概念和性质;掌握向量组秩的概念与相关结论..2.5矩阵的秩了解矩阵的秩的概念;熟练掌握求向量组极大无关组的方法;熟练掌握求向量组秩和矩阵秩的方法..矩阵的行秩与列秩的概念;矩阵子式的概念;矩阵秩的概念;求向量组极大无关组、向量组秩、矩阵秩的方法;2.6线性方程组解的判定掌握非齐次线性方程组有无解、有唯一解、无穷多解的判定方法;熟练掌握齐次线性方程组有非零解解、只有零解判定方法..非齐次线性方程组有无解判定方法定理1;非齐次线性方程组有唯一解、无穷多解的判定方法定理2;齐次线性方程组有非零解解、只有零解判定方法推论1、22.7线性方程组解的结构熟练掌握基础解系的概念;熟练掌握用基础解系表示方程组解的方法..齐次线性方程组解的两个性质;齐次线性方程组基础解系的概念;特别强调基础解系中含解向量个数与未知量个数和系数矩阵秩间的关系;齐次线性方程组解的基础解系表示法;非齐次线性方程组与齐次线性方程组解间的关系;非齐次线性方程组解的基础解系表示法;3.1-3.2矩阵的概念与运算了解矩阵的概念;熟练掌握矩阵的加法、数与矩阵的乘法、乘法、转置、行列式的运算法则和相应的性质..矩阵的定义以及几种特殊矩阵;矩阵的加法法则和对应的性质;数与矩阵的乘法法则和对应的性质;矩阵的乘法法则和对应的性质;矩阵的转置概念和对应的性质;矩阵行列式概念和对应的性质3.3可逆矩阵理解可逆矩阵的概念;了解伴随矩阵的概念;熟练掌握用伴随矩阵求可逆矩阵的逆矩阵的方法..3.4矩阵的分块了解分块矩阵的概念以及矩阵分块的原则;熟练掌握分块矩阵的运算法则..3.5初等矩阵理解三种初等矩阵的概念;掌握初等矩阵在矩阵乘法运算中的作用;熟练掌握利用初等变换求可逆矩阵的方法..三种初等矩阵的概念和它们在矩阵乘法运算中的作用;任意矩阵经过有限次初等变换化成的标准型;可逆矩阵与初等矩阵间的关系定理;利用初等变换求可逆矩阵的方法3.6常见的特殊矩阵了解对角矩阵、准对角矩阵、三角形矩阵、对称矩阵、反对称矩阵的概念和运算性质..4.1向量空间了解向量空间的概念和性质;了解向量空间基以及向量在基下坐标的概念..4.2向量的内积了解内积的概念;掌握内积的性质;熟练掌握n维向量空间两向量内积的坐标表示法;会求向量长度和向量单位化;了解正交向量组的概念;理解标准正交基的概念;熟练掌握向量组的施密特正交化过程..向量内积的概念和性质;n维向量空间两向量内积的坐标表示法;单位向量的概念和向量单位化;正交向量组的概念;正交基、标准正交基的概念;向量组的施密特正交化过程4.3正交矩阵了解正交矩阵的概念;熟练掌握其性质..5.1矩阵的特征值与特征向量了解矩阵特征值与特征向量的概念;熟练掌握求矩阵特征值与特征向量的方法;熟练掌握特征值与特征向量的性质;了解矩阵迹的概念与性质..矩阵特征值与特征向量的概念;求矩阵特征值与特征向量的方法;矩阵特征值与特征向量的性质;矩阵迹的概念与性质;5.2相似矩阵和矩阵对角化的条件了解相似矩阵的概念;掌握相似矩阵的性质;熟练掌握矩阵对角化的条件和对角化的方法.. 5.3实对称矩阵的对角化了解实对称矩阵特征值与特征向量的性质;熟练掌握实对称矩阵对角化的方法..。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
★ 线性代数基本内容、方法及要求第一部分 行列式【主要内容】1、行列式的定义、性质、展开定理、及其应用——克莱姆法则2、排列与逆序3、方阵的行列式4、几个重要公式:(1)T A A =; (2)AA 11=-; (3)A k kA n =; (4)1*-=n A A ; (5)B A AB =; (6)B A B A B A ==0**0;(7)⎩⎨⎧≠==∑=j i j i A A a ni ij ij ,,01 ; (8)⎩⎨⎧≠==∑=j i j i A A a n j ij ij ,,01(其中B A ,为n 阶方阵,k 为常数)5、行列式的常见计算方法:(1)利用性质化行列式为上(下)三角形;(2)利用行列式的展开定理降阶;(3)根据行列式的特点借助特殊行列式的值【要求】1、了解行列式的定义,熟记几个特殊行列式的值。
2、掌握排列与逆序的定义,会求一个排列的逆序数。
3、能熟练应用行列式的性质、展开法则准确计算3-5阶行列式的值。
4、会计算简单的n 阶行列式。
5、知道并会用克莱姆法则。
第二部分 矩阵【主要内容】1、矩阵的概念、运算性质、特殊矩阵及其性质。
2、方阵的行列式3、可逆矩阵的定义、性质、求法(公式法、初等变换法、分块对角阵求逆)。
4、n 阶矩阵A 可逆⇔0≠A ⇔A 为非奇异(非退化)的矩阵。
⇔n A R =)(⇔A 为满秩矩阵。
⇔0=AX 只有零解⇔b AX =有唯一解⇔A 的行(列)向量组线性无关⇔A 的特征值全不为零。
⇔A 可以经过初等变换化为单位矩阵。
⇔A 可以表示成一系列初等矩阵的乘积。
5、矩阵的初等变换与初等矩阵的定义、性质及其二者之间的关系。
6、矩阵秩的概念及其求法((1)定义法;(2)初等变换法)。
7、矩阵的分块,分块矩阵的运算:加法,数乘,乘法以及分块矩阵求逆。
【要求】1、 了解矩阵的定义,熟悉几类特殊矩阵(单位矩阵,对角矩阵,上、下三角形矩阵,对称矩阵,可逆矩阵,伴随矩阵,正交矩阵)的特殊性质。
2、熟悉矩阵的加法,数乘,乘法,转置等运算法则,会求方阵的行列式。
3、熟悉矩阵初等变换与初等矩阵,并知道初等变换与初等矩阵的关系。
4、掌握矩阵可逆的充要条件,会求矩阵的逆矩阵。
5、掌握矩阵秩的概念,会求矩阵的秩。
6、掌握分块矩阵的概念,运算以及分块矩阵求逆矩阵。
第三部分 向量组的线性相关性【主要内容】1、向量、向量组的线性表示:设有单个向量b ,向量组A :n ααα,,,21 ,向量组B :m βββ,,,21 ,则(1)向量b 可被向量组A 线性表示⇔),,,,(),,,(2121b R R n n αααααα =(2)向量组B 可被向量组A 线性表示⇔),,,,,,,(),,,(212121m n n R R βββαααααα =(3) 向量组A 与向量组B 等价的充分必要条件是:),,,,,,,(),,,(),,,(21212121m n m n R R R βββαααβββααα ==(4)基本题型:判断向量b 或向量组B 是否可由向量组A 线性表示?如果能,写出表达式。
解法:以向量组A :n ααα,,,21 以及向量b 或向量组B :m βββ,,,21 为列向量构成矩阵,并对其进行初等行变换化为简化阶梯型矩阵,最终断定。
2、向量组的线性相关性判别向量组s ααα,,,21 的线性相关、线性无关的常用方法:方法一:(1)向量方程02211=+++s s k k k ααα 只有零解⇔向量组s ααα,,,21线性无关;(2)向量方程02211=+++s s k k k ααα 有非零解⇔向量组s ααα,,,21 线性相关。
方法二:求向量组的秩),,,(21s R ααα(1)秩),,,(21s R ααα 小于个数s ⇔向量组s ααα,,,21 线性相关(2)秩),,,(21s R ααα 等于个数s ⇔向量组s ααα,,,21 线性无关。
(3)特别的,如果向量组的向量个数与向量的维数相同,则向量组线性无关⇔以向量组s ααα,,,21 为列向量的矩阵的行列式非零;向量组线性相关⇔以向量组s ααα,,,21 为列向量的矩阵的行列式为零。
3、向量组的极大无关组的概念(与向量空间的基、齐次线性方程组的基础解系的关系)及其求法。
基本题型:判断向量组的相关性以及求出向量组的极大无关组。
4、等价向量组的定义、性质、判定。
5、向量组的秩与矩阵的秩之关系。
【要求】1、掌握向量组、线性组合和线性表示的概念,知道两个向量组等价的含义。
2、掌握向量组线性相关、线性无关的定义,并会判断一个具体向量组的线性相关性。
3、知道向量组的秩与矩阵的秩的关系,会求一个具体向量组的秩及其极大无关组。
4、了解向量空间及其基和维数的概念。
第四部分 线性方程组【主要内容】1、齐次线性方程组0=Ax 只有零解⇔系数矩阵A 的秩=未知量个数n ;2、齐次线性方程组0=Ax 有非零解⇔系数矩阵A 的秩<未知量个数n .3、非齐次线性方程组b Ax =无解⇔增广矩阵),(b A B =秩≠系数矩阵A 的秩;4、非齐次线性方程组b Ax =有解⇔增广矩阵),(b A B =秩=系数矩阵A 的秩 特别地,1)增广矩阵),(b A B =的秩=系数矩阵A 的秩=未知量个数n ⇔非齐次线性方程组b Ax =有唯一解;2)增广矩阵),(b A B =的秩=系数矩阵A 的秩< 未知量个数n ⇔非齐次线性方程组b Ax =有无穷多解。
【要求】1、掌握齐次线性方程组解的性质、基础解系的求法,2、掌握非齐次线性方程组解的结构,熟悉非齐次线性方程组有解的等价条件。
3、知道齐次与非齐次线性方程组的解之间的关系。
4、会求解非齐次线性方程组。
第五部分 相似矩阵及二次型【主要内容】1、向量的内积、长度、夹角等概念及其计算方法。
2、向量的正交关系及正交向量组的含义。
3、施密特正交化方法。
4、方阵的特征值与特征向量的概念及其计算方法。
(1)特征值求法:解特征方程0=-E A λ;(2)特征向量的求法:求方程组()0=-X E A λ的基础解系。
5、相似矩阵的定义(B AP P =-1)、性质(B A ,相似)()(B R A R =→、B A =、BA ,有相同的特征值)。
6、判断矩阵是否可以对角化以及对角化的步骤,找到可逆矩阵P 使得AP P 1-为对角矩阵。
7、用正交变换法化二次型为标准形的步骤:(将实对称矩阵对角化)(1)写出二次型的矩阵A .(2)求出A 的所有特征值n λλλ,,,21(3)解方程组0)(=-X A E i λ(n i ,,2,1 =)求对应于特征值n λλλ,,,21 的特征向量n ξξξ,,,21(4)若特征向量组n ξξξ,,,21 不正交,则先将其正交化,再单位化,得标准正交的向量组n ηηη,,,21 ,记),,,(21n P ηηη =,对二次型做正交变换Py x =,即得二次型的标准形2222211n n y y y f λλλ+++=8、正定二次型的定义及其判定方法常用判定二次型正定的方法:(1)定义法(2)特征值全大于零(3)顺序主子式全大于零【要求】1、掌握向量的内积、长度、夹角,正交向量组的性质,会利用施密特正交化方法化线性无关向量组为正交向量组。
2、掌握方阵特征值、特征向量的概念、求法,3、了解相似矩阵的概念、掌握化对称矩阵为对角矩阵的方法。
4、掌握二次型的概念、会用正交变换化二次型为标准形。
5、知道正定二次型的概念及其判定方法。
★★线性代数练习题一、单项选择题1、行列式210834021--中,元素22a 的代数余子式是(A ) 2001 (B ) 2001-- (C ) 2001- (D ) 2001-2、二阶行列式22b b a a 的值为(A)33b a (B) )(a b ab - (C)33b a - (D)22b a -3、设行列式01110212=-k k ,则k 的取值为( )(A )2 (B )-2或3 (C )0 (D )-3或24、若行列式321321321c c c b b b a a a =1,则321321321a a a b b b c c c = (A )1 (B )2 (C )0 (D )1-5、设a ,b ,c ,d 为常数,则下列等式成立的是(A )d b c a b a d c b a ++=2221 ( B ) 111111d b c a d c b a +=++ (C ) d c ba d cb a 22222= (D ) 111111d bc a cd ab =6、设n 阶行列式D =n ija ,j i A 是D 中元素j i a 的代数余子式,则下列各式中正确的是(A) 01=∑=n i ij ij A a(B) 01=∑=nj ij ij A a (C) D A an j ij ij =∑=1 (D) D A a ni i i =∑=121 7、设B A ,均为n 阶可逆矩阵,则下列各式成立的是(A ) T T T A B AB =)( (B)111)(---=B A AB(C)BA AB = (D) B A B A +=+8、设A 为3阶方阵,且行列式1=A ,则=-A 2(A)-8 (B)-2 (C) 2 (D)89、设B A ,为n 阶方阵且满足O AB =,则(A) O A =或O B = (B) O B A =+ (C) 0=A 或0=B (D) 0=+B A10、设B A ,为n 阶可逆方阵,则下列各式必成立的是(A )T T T B A AB =)( (B )B A AB =(C )111)(---+=+B A B A (D )*1A A A =-11、设矩阵()321=A ,⎪⎪⎪⎭⎫⎝⎛=201B ,则=BA(A) ⎪⎪⎪⎭⎫⎝⎛642000321 (B)⎪⎪⎪⎭⎫⎝⎛601(C)(1,0,6) (D) 7 12、设行矩阵()321,,a a a A =, ()321,,b b b B =, 且⎪⎪⎪⎭⎫⎝⎛----=224310121B A T 则=T AB(A ) 1 (B ) -1 (C ) 2 (D ) -2 13、下列命题正确的是 B .(A )若矩阵B A ,满足O AB =,则有O A =或O B =(B )若矩阵B A ,满足E AB =,则矩阵B A ,都可逆。
(C )若*A 是n 阶矩阵A 的伴随矩阵,则nA A =*(D )若O A ≠,则0≠A14、设B A ,为三阶矩阵, 2=A ,41=B , 则1)(2-BA = (A) 4 (B) 1 (C) 16 (D) 21 15、下列说法不正确的是(A )相似矩阵有相同的特征值。