高数、概率论复习重点

合集下载

高等数学概率论与数理统计知识点总结(详细)

高等数学概率论与数理统计知识点总结(详细)

《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。

(完整版)概率论与数理统计复习提纲

(完整版)概率论与数理统计复习提纲
二、矩估计法
1.基本思想: 用样本矩(原点矩或中心矩)代替相应的总体矩.
2.求总体X的分布中包含的m个未知参数 的矩估计步骤:
① 求出总体矩,即 ;② 用样本矩代替总体矩,列出矩估计方程:
③ 解上述方程(或方程组)得到 的矩估计量为:
④ 的矩估计值为:
3. 矩估计法的优缺点:
优点:直观、简单; 只须知道总体的矩,不须知道总体的分布形式.
(1) 分布的 分位点 (2) 分布的 分位点 其性质:
(3) 分布的 分位点 其性质
(4)N(0,1)分布的 分位点 有
第六章 参数估计
一、点估计:设 为来自总体X的样本, 为X中的未知参数, 为样本值,构造某个统计
量 作为参数 的估计,则称 为 的点估计量, 为 的估计值.
2.常用点估计的方法:矩估计法和最大似然估计法.
合概率函数(或联合密度函数) (或
称为似然函数.
3. 求最大似然估计的步骤:
(1)求似然函数:X离散: X连续:
(2)求 和似然方程:
(3)解似然方程,得到最大似然估计值:
(4)最后得到最大似然估计量:
4. 最大似然估计法是在各种参数估计方法中比较优良的方法,但是它需要知道总体X的分布形式.
四、估计量的评价标准
4.伯努利概型:
1.事件的对立与互不相容是等价的。(X)
2.若 则 。(X)
3. 。(X)
4.A,B,C三个事件恰有一个发生可表示为 。(∨)
5.n个事件若满足 ,则n个事件相互独立。(X)
6.当 时,有P(B-A)=P(B)-P(A)。(∨)
第二章 随机变量及其分布
一、随机变量的定义:设样本空间为 ,变量 为定义在 上的单值实值函数,则称 为随机变量,通常用大写英文字母,用小写英文字母表示其取值。

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。

-频率和概率的关系,概率的基本性质。

-古典概型和几何概型的概念。

-条件概率和乘法定理。

-全概率公式和贝叶斯公式。

-随机变量和概率分布函数的概念。

-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。

2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。

-协方差、相关系数和线性变换的数学期望和方差公式。

-两个随机变量的和、差、积的数学期望和方差公式。

3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。

-中心极限定理的概念和中心极限定理的两种形式。

4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。

-样本统计量和抽样分布的概念。

-点估计和区间估计的概念。

-假设检验的基本思想和步骤。

-正态总体的参数的假设检验和区间估计。

5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。

-矩估计的原理和方法。

-最小二乘估计的原理和方法。

-一般参数的假设检验和区间估计。

6.相关分析和回归分析-相关系数和线性相关的概念和性质。

-回归分析的一般原理。

-简单线性回归的估计和检验。

7.非参数统计方法-秩和检验和符号检验的基本思想和应用。

-秩相关系数的计算和检验。

8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。

-正态总体参数的拟合优度检验。

-贝叶斯估计的基本思想和方法。

9.时间序列分析和质量控制-时间序列的基本性质和分析方法。

-时间序列预测的方法和模型。

-质量控制的基本概念和控制图的应用。

以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。

考研数学概率论复习重要知识点

考研数学概率论复习重要知识点

考研数学概率论复习重要知识点一、基本概念概率是指某个事件发生的可能性大小,用于量化不确定性。

而随机事件是指在一次试验中,不能事先确定出现的结果。

概率的数学定义:对于任意事件A,P(A)表示事件A发生的可能性大小,0 ≤P(A)≤ 1。

同时,P(Ω) = 1,其中Ω是样本空间。

二、加法公式概率公式若A1和A2是两个互不相容的事件,则有:$P(A_1 \\cup A_2) = P(A_1) + P(A_2)$容斥原理当两个事件不互不相容时,可以用容斥原理求出其概率:$P(A_1 \\cup A_2) = P(A_1) + P(A_2) - P(A_1 \\cap A_2)$其中,$P(A_1 \\cap A_2)$ 表示事件A1和A2同时发生的概率。

三、条件概率条件概率是指已知事件B发生的情况下,事件A发生的概率。

条件概率的公式:$P(A|B) = \\frac{P(A \\cap B)}{P(B)}$其中,$P(A \\cap B)$ 表示事件A和B同时发生的概率。

四、乘法公式用乘法公式计算两个事件的概率,即:$P(A \\cap B) = P(A|B)P(B)$五、独立事件若事件A和事件B满足以下条件,则称它们是独立的:$P(A \\cap B) = P(A)P(B)$六、全概率公式与贝叶斯公式全概率公式如果在样本空间Ω中,有一个有限或无限个互不相交的事件序列B1,B2,…,B n,且对Ω的任意一个子集A有:$A = (A \\cap B_1) \\cup (A \\cap B_2) \\cup \\cdots \\cup (A \\cap B_n)$则称事件序列B1,B2,…,B n是一组划分,其全概率公式为:$P(A) = P(A \\cap B_1) + P(A \\cap B_2) + \\cdots + P(A \\cap B_n)$贝叶斯公式如果事件B1,B2,…,B n是一组划分,并对每个$i=1,2,\\cdots,n$,有P(B i)>0,则贝叶斯公式为:$P(B_i|A) = \\frac{P(B_i)P(A|B_i)}{P(A)}$其中,P(B i|A)表示在事件A发生的条件下,事件B i发生的概率。

2023年高考数学基础概率论基础知识点清单

2023年高考数学基础概率论基础知识点清单

2023年高考数学基础概率论基础知识点清单概率论是高中数学中的重要内容之一,也是高考数学考试中的必考知识点之一。

掌握概率论的基础知识对于顺利应对高考数学考试至关重要。

下面是2023年高考数学基础概率论基础知识点的清单,供各位考生复习参考:1. 随机实验与样本空间随机实验是指在相同条件下可以重复进行,但结果不确定的实验。

样本空间是指随机实验所有可能结果的集合。

2. 随机事件与事件的概率随机事件是指随机实验的某个结果或一组结果的集合。

事件的概率是指该事件发生的可能性大小。

概率的范围在0到1之间。

3. 频率与概率的关系频率指的是在重复进行相同随机实验时,某一事件出现的次数与总实验次数的比值。

当实验次数趋于无穷大时,频率趋于概率。

4. 古典概型古典概型是指在随机实验中,样本空间的元素个数有限且等可能出现的情况。

例如,投掷一个均匀骰子,样本空间为{1, 2, 3, 4, 5, 6},每个元素的概率为1/6。

5. 事件的运算事件的运算包括事件的和、事件的积、事件的差、事件的对立等。

对立事件指的是与某一事件互不相容的事件,其概率之和为1。

6. 条件概率条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。

条件概率的计算公式为P(A|B) = P(A∩B) / P(B),其中P(A)为事件A的概率,P(A∩B)为事件A与事件B同时发生的概率。

7. 独立事件独立事件指的是两个事件之间互不影响,一个事件的发生不会对另一个事件的概率产生影响。

对于独立事件,P(A∩B) = P(A) × P(B)。

8. 贝叶斯定理贝叶斯定理是指在已知事件B发生的条件下,事件A发生的概率。

贝叶斯定理的计算公式为P(A|B) = P(B|A) × P(A) / P(B),其中P(A)为事件A的概率,P(B|A)为事件A的条件概率。

9. 排列组合与概率排列组合是概率论中经常用到的方法之一。

排列是指从n个元素中取出m个元素并按照一定顺序排列的方式。

考研数学概率论重要考点总结

考研数学概率论重要考点总结

考研数学概率论重要考点总结概率论是考研数学中的重要考点之一。

下面是概率论中的一些重要考点总结。

一、概率基本概念1. 随机试验与样本空间2. 事件与事件的关系3. 概率的定义、性质和运算法则4. 条件概率及其性质二、随机变量与概率分布1. 随机变量的概念及其分类2. 离散型随机变量与连续型随机变量3. 随机变量的分布函数和密度函数4. 两个随机变量的独立性5. 随机变量的函数及其分布三、数学期望与方差1. 数学期望的概念及其性质2. 数学期望的计算3. 方差的概念及其性质4. 方差的计算5. 协方差和相关系数四、大数定律与中心极限定理1. 大数定律的概念及其性质2. 切比雪夫不等式3. 中心极限定理的概念及其性质4. 泊松定理5. 极限定理的应用五、随机变量的常见分布1. 二项分布、泊松分布2. 均匀分布、指数分布3. 正态分布4. 伽马分布、贝塔分布5. t分布、F分布、卡方分布六、矩母函数与特征函数1. 矩母函数的概念及性质2. 矩母函数的计算3. 特征函数的概念及性质4. 特征函数的计算5. 中心极限定理的特征函数证明七、样本与抽样分布1. 随机样本的概念及其性质2. 样本统计量的概念及其性质3. 样本均值和样本方差4. 正态总体抽样分布5. t分布,x^2分布,F分布的定义及其应用八、参数估计与假设检验1. 点估计的概念及性质2. 极大似然估计3. 置信区间的概念及计算4. 参数假设检验的概念及流程5. 正态总体均值的假设检验九、回归与方差分析1. 回归分析的概念及方法2. 多元回归模型、回归模型的检验3. 方差分析的概念及方法4. 单因素方差分析、双因素方差分析以上是概率论中的一些重要考点总结。

在备考过程中,需要对这些知识点有一定的掌握,并进行大量的练习和习题训练,只有充分理解和掌握这些知识,并能运用到实际问题中,才能在考试中取得好成绩。

概率论高数知识点总结大全

概率论高数知识点总结大全

概率论高数知识点总结大全1.概率的基本定义概率是指其中一事件在所有可能事件中出现的可能性大小。

事件的概率通常用P(A)表示,其中A为其中一事件。

概率的取值范围是0到1之间,概率为0表示事件不可能发生,概率为1表示事件必定发生。

2.随机变量随机变量是指在随机现象中所能观测到的数值。

它有两种类型:离散型随机变量和连续型随机变量。

离散型随机变量的取值是有限个或可列个,而连续型随机变量的取值是一个区间。

3.概率分布概率分布是指随机变量取值的可能性及其对应的概率。

对于离散型随机变量,概率分布通常用概率质量函数(probability mass function)表示;对于连续型随机变量,概率分布通常用概率密度函数(probability density function)表示。

4.期望值期望值是随机变量的平均值,它表示了其中一事件发生的长期平均情况。

对于离散型随机变量,期望值的计算公式为E(X) = Σx P(X=x);对于连续型随机变量,期望值的计算公式为E(X) = ∫x f(x) dx,其中f(x)是概率密度函数。

5.方差和标准差方差是随机变量分布与其期望值之间的差异程度,它的计算公式为Var(X) = E[(X-E(X))^2]。

标准差是方差的平方根,它度量了随机变量的变异程度。

6.协方差和相关系数协方差用于度量两个随机变量之间的线性相关程度,它的计算公式为Cov(X,Y) = E[(X-E(X))(Y-E(Y))]。

相关系数是协方差的标准化形式,它的计算公式为ρ(X,Y) = Cov(X,Y) / (σ(X)σ(Y)),其中σ(X)和σ(Y)分别是X和Y的标准差。

7.常见概率分布常见的离散型概率分布包括伯努利分布、二项分布、泊松分布等;常见的连续型概率分布包括均匀分布、正态分布、指数分布等。

8.大数定律和中心极限定理大数定律表明,随着样本规模的增大,样本平均值趋近于总体平均值;中心极限定理表明,当样本规模足够大时,样本平均值的分布接近于正态分布。

考研高数重点概率论数理统计公式整理(超全)

考研高数重点概率论数理统计公式整理(超全)

的事件。互斥未必对立。 ②运算:
结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C 分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)


∩ Ai = ∪ Ai
德摩根率: i=1
i=1
A∪B = A∩B, A∩B = A∪ B
(7)概率 的公理化 定义
设 Ω 为样本空间, A 为事件,对每一个事件 A 都有一个实数 P(A),若满
这样一组事件中的每一个事件称为基本事件,用ω 来表示。
基本事件的全体,称为试验的样本空间,用 Ω 表示。
一个事件就是由 Ω 中的部分点(基本事件ω )组成的集合。通常用大写字母
A,B,C,…表示事件,它们是 Ω 的子集。 Ω 为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理, 必然事件(Ω)的概率为 1,而概率为 1 的事件也不一定是必然事件。 ①关系:
(9)几何 概型
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空 间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何 概型。对任一事件 A,
P( A) = L( A) 。其中 L 为几何度量(长度、面积、体积)。 L(Ω)
(10)加法 公式
(11)减法 公式
P(A+B)=P(A)+P(B)-P(AB) 当 P(AB)=0 时,P(A+B)=P(A)+P(B) P(A-B)=P(A)-P(AB)
j =1
此公式即为贝叶斯公式。
P(Bi ) ,( i = 1 , 2 ,…, n ),通常叫先验概率。 P(Bi / A) ,( i = 1, 2 ,…, n ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学复习重点
上册
300页例1, 304页第2题(1),315页第1题(1)(3)题,335页例1、例2、例3 下册
22页习题第2题、第9题,31页第6题、第7题,41页例6
42页第3题,49页第4题、第7题
75页第1题,79页例4,83页第12题,89页第4题
94页例4 99页例6、例7
106页例3,108页第8题,111页例4,141页例1,147页例5
154页第6题(2)(4)题,155页第12题(2)(4)题
155页第15题,161页例3,164页第9题,165页第11题(3)
189页例1,190页第3题(1)(2)(3)(4),214页第4题、第5题(2)(3)
218页例2,219页第5题,226页例2,236页习题第1题(1)(2)(4)(5)250页例3,268页第1题、第2题(1)(2)、第4题(1)(2)(3)(4)、第5题
273页例1、例5,277页第1题(4)(8),283页例5
285页第5题、第6题,306页例1,315页第1题(3)
概率论与数理统计
一、考试范围:第一章——第七章
二、复习范围
第1章全部内容,习题全部要求;
第2章全部内容,习题全部要求;
第3章不要求条件分布求法,对随机向量函数的分布,只要求掌握再生性的结论,习题中涉及前述两部分内容的题目不要求相应的设问;
第4章第一、二节全部内容和习题;第三节(到矩那个部分为止),习题不要求P114的
11、12题;第四节掌握定理1、2、3、4的条件、结论及应用,习题要求P121的
1、2、3、4、6、7、10、11题;
第5章全部内容(其中了解频率直方图),习题要求P134的1题,P142的2、3、4、5题;
第6章不要求两个正态总体的区间估计和0—1分布参数的区间估计、单侧区间估计,习题要求P158的8题,P164的1、2、5题,P169的1、2题,P180的1、2、3、4、
5、6题;
第7章只要求掌握基本概念和一个正态总体期望与方差的检验,习题要求P193—194的1、
2、3、4、5、6题;
三、考试题型:
1.单项选择题(共10小题,20分)
2.填空题(共6小题,18分)
3.判断题(共5小题,10分)
4.大题5分(共52分),都是计算题、应用题,没有证明题
四、一些说明
1.考试题目只涉及简单的计算,不必用计算器;
2.要求学生熟记常见分布的分布表达式(分布律或密度函数)、期望、方差,如题目
中需要,可直接用结论,不必再推导。

3.除第一、二章总习题外,其余各章的不作要求。

4.考试题目围绕教材内容进行,所以建议学生的复习以教材为主要参考。

相关文档
最新文档