直流系统绝缘检测原理介绍
测绝缘电阻原理

测绝缘电阻原理
绝缘电阻测试是一种常用的电气测量方法,用于检测电路或电器设备中绝缘材料的绝缘性能。
测绝缘电阻的原理是利用直流电压产生的电场作用,通过测量电流的大小来判断绝缘电阻的大小。
在进行绝缘电阻测试时,首先需要将被测电路或电器设备断开电源,并确保所有的电源和负载都已经下电。
然后,将测试仪的电源接入被测电路或电器设备,将测试仪的电极分别连接到待测点的绝缘材料上。
当测试仪提供的直流电压施加在绝缘材料上时,会在绝缘材料内产生一个电场。
如果绝缘材料的绝缘性能良好,就可以阻止电流流过。
而如果绝缘材料的绝缘性能不好,就会导致电流流过,从而使测试仪读取到一个较大的电流值。
通过测量电流的大小,可以计算出绝缘电阻的大小。
一般来说,绝缘电阻的单位是欧姆(Ω),表示电阻对电流的阻碍程度。
较大的绝缘电阻意味着较好的绝缘性能,而较小的绝缘电阻则意味着较差的绝缘性能。
绝缘电阻测试通常需要进行多次测量,以确保结果的准确性。
此外,测试仪的选用也会对测试结果产生影响,因此需要选择适合的测试仪器,并按照其操作说明正确使用。
通过绝缘电阻测试,可以及时发现电路或电器设备中存在的绝缘故障,避免由于绝缘性能不良而导致的电气事故。
因此,绝
缘电阻测试在电力、通信、铁路、石油化工等行业中得到广泛应用。
直流绝缘监察装置的运行原理方法

直流绝缘监察装置的运行原理方法直流绝缘监察装置是一种用于检测直流系统绝缘性能的设备。
其运行原理方法主要包括信号源、探头、信号处理和显示等几个方面。
信号源是直流绝缘监察装置的核心部件之一。
它通过产生一定的直流电压信号,作为被测设备的工作电压。
信号源需要具备稳定性和精确性,以确保测试结果的准确性。
探头是直流绝缘监察装置的另一个重要组成部分。
它通常由两个电极组成,用于将信号源产生的直流电压施加到被测设备上。
同时,探头还能够感知被测设备的绝缘状态,并将其转化为相应的电信号。
然后,信号处理是直流绝缘监察装置的关键环节之一。
它主要负责将从探头获得的电信号进行放大、滤波、采样和数字化处理,以提取有用的信息。
信号处理过程中需要注意防止信号失真和噪声干扰,以确保测试结果的可靠性。
显示是直流绝缘监察装置的输出部分。
经过信号处理后的数据将通过显示装置进行展示。
显示装置通常采用液晶显示屏等方式,将绝缘电阻值、泄漏电流值等参数以数字或图形的形式显示出来。
这样,操作人员可以清晰地了解被测设备的绝缘状态,并及时采取相应的措施。
除了以上的主要原理方法外,直流绝缘监察装置还常常配备一些辅助功能,以提高测试效率和便捷性。
例如,自动测量功能可以实现对被测设备的自动测试,减轻了操作人员的负担。
数据存储功能可以将测试结果保存下来,方便后续分析和比对。
报警功能可以在被测设备绝缘状态异常时发出警示,提醒操作人员及时处理。
直流绝缘监察装置的运行原理方法主要包括信号源、探头、信号处理和显示等几个方面。
通过这些环节的相互配合,可以实现对直流系统绝缘性能的检测和监控。
直流绝缘监察装置在电力、通信、交通等领域具有重要的应用价值,可以帮助人们及时发现和解决绝缘故障,保障设备和人员的安全。
绝缘监察装置原理详解

绝缘监察装置原理详解绝缘监察装置的检测原理( a )( b )图1 绝缘监察装置原理电路直流系统绝缘监察装置是根据直流电桥原理构成的(图1)。
其中,Rj为信号继电器的电阻,R+、R-分别为直流系统正、负母线对地绝缘电阻,正常情况下,R+和R-很大,只有微小的不平衡电流流过Rj。
当直流系统发生接地故障时,某一极的绝缘电阻下降,电桥失出平衡,有电流流过Rj,继电器动作,若发生对称接地故障,R+=R-,电桥处于平衡状态,流过Rj的电流仍然为零。
因此,这种装置不能监测对称接地故障。
对于这种情况,可以通过对图1(a)所示电路进行改进来解决,原理电路如图1(b)所示两端并联了1条支路,该支路是由1个继电器的常开触电J1与电阻R串联组成。
这样就可以使直流电桥每隔一段时间在图1(a)和图(b)之间变化。
在检测对称接地的故障时,人为的用万用表去测量控母对地电压,就会出现两个电压值交替出现。
如整个系统绝缘良好,检测对称接地故障时,对于110V系统出现的两个电压值为55V和75V(或35V)左右的电压,此时为绝缘正常状态;如只检测第一种不平衡接地,则系统绝缘良好的状态下,只有一个中间值电压,不会跳变,为合母(或控母)电压的一半。
我公司的绝缘检测单元可以检测以上两种状态(平衡性接地和非平衡性接地,一般绝缘检测只能检测到非平衡性接地故障),故系统绝缘正常时,会有两个电压在上面交替,此时绝缘系统正在检测系统平衡性接地的可能性。
推导公式如下:当在(a)时,根据电流相等可知:I3=I1-I2,I3=I5-I4;I3=(V1-V2)/Rj;(1)I3=(V-V1)/R-V1/R;(2)I3=V2/R- -(V-V2)/R+;(3)根据(1)(2)(3)式计算可知:V1=(V-I3R)/2;(3)V2=(R+*R-*I3+VR-)/(R++R-);(4)在根据(1)、(3)、(4)用V1-V2=I3Rj得知:1/R-*(V-I3R-2RjI3)-1/R+(V+2RjI3+I3R)=2I3;(5)同样的原理,当电桥处于图1(b)时,得知:V3=(2V-I8R)/3;(6)V4=(R+*R-*I8+VR-)/(R++R-);(7)-再根据(6)、(7)用V3-V4=I8Rj得知:1/R-*(2V-I8R-3I8Rj)-1/R+*(V+I8R+3I8Rj)=3I8;(8)综合(5)和(8)就可以得到:(V-I3R-2RjI3)*(V+I8R+3I8Rj)-(2V-I8R-3I8Rj)*(V+2RjI3+I3R)R+=2I3(2V-I8R-3I8Rj)-3I8(V-2RjI3-I3R)(V-2RjI3-I3R)*(V+I8R+3I8Rj)-(2V-I8R-3I8Rj)*(V+I3R+2RjI3)R-=2I3(V+I8R+3I8Rj)-3I8(V+I3R+2RjI3)由于式中的R、RJ已知数,而V、I3和I8是可以快速的测量出来的,这样就可以使直流系统在平衡和不平衡之间以一定的时间间隔变化,从而监察到直流系统正、负对地的绝缘情况。
绝缘电阻测量原理

绝缘电阻测量原理
绝缘电阻是指材料或设备之间的电阻,用于衡量电气设备或电缆绝缘的质量。
绝缘电阻的测量原理是利用直流或交流电源来施加一定的电压,然后测量通过被测绝缘材料或设备的电流,从而计算出绝缘电阻的大小。
在直流绝缘电阻测量中,常使用的测量仪器是绝缘电阻测试仪。
测试仪通过将直流电压施加在被测物体上,并测量流过被测物体的电流来计算电阻。
通常使用的直流电压为500V或1000V,可以根据需要进行调整。
测试仪会自动记录并显示绝缘电阻的数值。
在交流绝缘电阻测量中,使用的是交流电源和阻抗测量器。
测试仪通过施加交流电压,并测量流过被测物体的交流电流,然后计算电阻值。
与直流绝缘电阻测量相比,交流绝缘电阻测量更适用于大容量和长电缆的测试。
交流电源的频率通常为
50Hz或60Hz。
测量时,需要注意被测绝缘材料或设备的外部条件,如温度、湿度和污染等。
这些因素可能会对绝缘电阻产生影响,因此在测量前需对环境因素进行评估和记录。
绝缘电阻测量的结果应该符合国际标准和安全要求。
如果测量结果显示绝缘电阻过低或存在漏电流,说明被测物体的绝缘性能不达标,可能存在电漏电等安全隐患。
此时,需要进行维修或更换绝缘材料或设备,以提高其绝缘性能。
总之,绝缘电阻测量的原理是通过施加一定电压并测量流过被测物体的电流,来计算出绝缘电阻的数值。
可以根据需要选择直流或交流绝缘电阻测量方法,并注意外部条件对测量结果的影响。
测量结果应符合标准并及时采取措施来改善绝缘性能。
直流系统绝缘监测

应用综合判据检测直流系统的接地故障,灵敏度高,用 液晶屏在线中文显示,能及时了解直流系统绝缘状况。
3、结束
通过微机自动检测直流系统正、负极对地电压、正、负 极对地绝缘电阻及支路漏电流来判断直流系统绝缘情况及确 定接地支路,无论是多点接地,同一支路正、负绝缘同等下 降都能检测出接地支路及接地极性。灵敏度高、可靠性高, 配备的液晶屏显示正、负极母线电压、绝缘电阻、线路号和 漏电流值,及时掌握直流系统的绝缘情况,给现场运行人员 提供很大方便。
2.3 检测漏电流判断接地支路
(4) (5)
2号和3号支路的传感器分别输出漏电流I2+和I3+,装置显 示2号和3号支路号、漏电流值及接地电阻值。
同理对多条支路接地,给负极母线投入检测电阻R,能检 测出所有绝缘下降的支路。对负极绝缘下降,给正级母线投 入绝缘电阻R,能检测出所有绝缘下降支路。
c.当同一支路正、负绝缘同等下降或成比例下降时,分别 给直流母线投入正、负极检测电阻,同样能检测出正、负极 各支路漏电流值。
由微机测出此时正极母线电压U+’,此时,电路如图5:
图4 向负极母线投入检测电阻R示意图 R+、R-分别为正负极对地电阻 由此可得:
(2)
图4 向负极母线投入检测电阻R示意图 由此可得:
(3)
电源技术 < 2010年1-2月合刊 51
电 源 技 术 ○技术交流
直流绝缘检测原理

1.引言发电厂和变电站的直流电源作为主要电气设备的保安电源及控制信号电源,是一个十分庞大的多分支供电网络。
在一般情况下,一点接地并不影响直流系统的运行,但如果不能迅速找到接地故障点并予以修复,又发生另一点接地故障,就可能引起重大故障的发生。
现有检测直流系统绝缘的方法主要有电桥平衡原理和低频探测原理。
根据电桥平衡原理实现的绝缘监测装置被广泛使用,但它不能检测直流系统正、负极绝缘同等下降时的情况;绝缘监测装置即使报警,也不能直接得到系统对地的绝缘电阻大小。
用低频探测原理检测接地故障是近几年采用的一种新方法,但它所能检测的接地电阻受直流系统对地分布电容的制约,而且低频交流信号容易受外界的干扰,另外注入的低频交流信号增大直流系统的电压纹波系数。
可见,电桥平衡原理和低频探测原理均存在若干难以克服的缺陷。
本文提出一种新的检测方法,即主回路用不平衡电桥检测总的绝缘电阻,而支路用直流互感器来检测到底是哪一路出现了绝缘降低。
同时用单片机来实现这种检测方法。
2.主回路的绝缘电阻的测量传统的平衡电桥检测原理如下图-1,通过检测电压Uj和Um,再加上给定的电阻R来算出R+、R-,但当正负绝缘都出现降低的情况下,检测的结果将与实际情况不符合。
图-1为了能检测正负都绝缘降低的情况,下文设计一种不平衡电桥测量法。
并用MCS 80C196KC单片机来实现,如图-2所示。
首先我们先说明一下电子继电器AQW214的用法,当AQW214的1、2脚导通时,7、8脚也导通;而且导通的内阻很小。
同理,3,4脚导通时,5、6脚也导通。
而且,AQW214的耐压值可以达到400V,即当7、8,或5、6不导通时,它们两端可以承受400V的电压。
所以我们可以通过控制P10的电平,来控制1、2脚的导通而达到控制JK1的导通与关断。
同理,通过控制P11的电平来控制JK2的导通与关断。
第一步,JK1、JK2都断开,我们通过80C196单片机的A/D口的AC4通道采集C4两端的电压,从而测得Um。
直流系统绝缘监测综合判据

直流系统绝缘监测综合判据摘要:本文通过微机自动检测直流系统正、负极对地电压、正、负极对地绝缘电阻及支路漏电流来判断直流系统绝缘情况及确定接地支路,无论是多点接地,同一支路正、负绝缘同等下降都能检测出接地支路及接地极性。
灵敏度高、可靠性高,配备的液晶屏显示正、负极母线电压、绝缘电阻、线路号和漏电流值,及时掌握直流系统的绝缘情况,给现场运行人员提供很大方便.关键词:直流系统;绝缘监测;综合判据1 WZJD-6A型绝缘监测仪原理解析WZJD-6A型绝缘监测仪具有实时监测直流系统母线电压、正负母线对地电压、正负母线对地绝缘电阻以及巡检支路接地电阻等功能。
1.1 母线监测原理在直流系统中,直流母线对地的绝缘电阻分为正极母线对地绝缘电阻R+和负极母线对地绝缘电阻R-。
按电路基本原理分析可知,要求取R+与R-两个未知数,必须建立两组独立的回路方程式,再将其联立求解,方可求得R+与R-的电阻值。
为此,该监测仪设计了两个不平衡电桥电路。
联立以上两个方程式即可求解正极母线对地绝缘电阻R+和负极母线对地绝缘电阻R-。
1.2 支路检测原理该监测仪在主机中装有超低频信号源,该信号源将4Hz的超低频信号由母线对地注入直流系统。
如果某支路经电阻接地,则装在该支路上的传感器会产生感应电流,感应电流的大小与接地电阻的大小成反比。
感应电流经过一系列处理之后送入CPU进行数据处理,再通过RS485接口送入主机。
主机一方面控制信号采集模块有序地采集各支路传感信号,另一方面又接收信号采集模块送来的数据。
主机接收到的数据经过处理后,一方面送液晶显示器显示与输出报警,另一方面通过通讯接口电路传送给上位机。
设计时将各支路编号,每个信号采集模块能采集16个支路信号,支路数量较多时可扩展多个信号采集模块,信号采集模块通过地址拨码进行编号。
某个支路发生接地故障时,最终会在液晶显示屏上显示出故障支路的编号以及接地电阻阻值,根据支路编号能够很快确定故障支路。
绝缘监测装置原理

绝缘监测装置原理绝缘监测装置是一种用于监测电气设备绝缘状态的设备。
它通过测量和分析绝缘材料的电气特性,提供有关设备绝缘状态的信息。
本文将介绍绝缘监测装置的原理和工作机制。
一、绝缘监测装置的原理绝缘监测装置通过测量电气设备的绝缘电阻、介质损耗角正切以及绝缘材料的极化电流等参数,来判断设备的绝缘状态。
以下是绝缘监测装置常用的原理和工作方式:1. 直流电阻原理:根据欧姆定律,绝缘电阻与电流、电压之间满足Ohm's Law. 如果绝缘材料完好,电阻会很大;若电阻缺陷或污染,电阻会明显下降。
绝缘监测装置通过施加一定电压和测量电流,来计算绝缘电阻,从而判断绝缘状态。
2. 介质损耗角正切原理:介质损耗角正切是指介质中电场能量损耗的程度。
当绝缘材料老化或受潮时,导致介质中电荷移动频率增加,电场能量的损耗增加,角正切值会显著增大。
绝缘监测装置可以通过测量介质损耗角正切的变化,来评估绝缘材料的老化程度。
3. 极化电流原理:极化电流是指绝缘材料在受到外电场作用时,电荷在材料内部发生移动的电流。
当绝缘材料老化或存在故障时,极化电流会增大。
通过测量极化电流的变化,绝缘监测装置可以检测出绝缘材料的老化和故障情况。
二、绝缘监测装置的工作机制绝缘监测装置通常分为三个主要部分:传感器、数据采集单元和数据处理单元。
传感器负责测量电气设备的绝缘参数,并将测得的数据传输给数据采集单元。
数据采集单元负责接收传感器传来的数据,并将其转换成数字信号,以便后续处理和分析。
数据处理单元是绝缘监测装置的核心部分,它对采集到的数据进行处理和分析。
根据不同的绝缘监测原理,数据处理单元可以采用不同的算法和技术。
在现代的绝缘监测装置中,通常还会配备触摸屏或显示屏,用于显示实时数据和状态报警信息。
用户可以通过触摸屏或显示屏进行操作和设置,以满足不同的监测需求。
绝缘监测装置通常会设置报警阈值,当绝缘参数超过预设的阈值时,会触发报警并发送警报信息。
这样可以及时警示用户,采取相应的维修和保养措施,避免发生绝缘故障。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直流系统绝缘检测原理介绍
时间:2013-2-25 11:56:56来源:深圳市信瑞达电力设备有限公司打印本文直流系统绝缘检测原理介绍
直肯定会有很多人想知道直流系统绝缘检测原理介绍的一些内容?
下面小编就满足下大家的好奇心:
发电厂和变电站的直流电源作为主要电气设备的保安电源及控制信号电源,是一个十分庞大的多分支供电网络。
在一般情况下,一点接地并不影响直流系统的运行,但如果不能迅速找到接地故障点并予以修复,又发生另一点接地故障,就可能引起重大故障的发生。
现有检测直流系统绝缘的方法主要有电桥平衡原理和低频探测原理。
根据电桥平衡原理实现的绝缘监测装置被广泛使用,但它不能检测直流系统正、负极绝缘同等下降时的情况;绝缘监测装置即使报警,也不能直接得到系统对地的绝缘电阻大小。
用低频探测原理检测接地故障是近几年采用的一种新方法,但它所能检测的接地电阻受直流系统对地分布电容的制约,而且低频交流信号容易受外界的干扰,另外注入的低频交流信号增大直流系统的电压纹波系数。
可见,电桥平衡原理和低频探测原理均存在若干难以克服的缺陷。
本文提出一种新的检测方法,即主回路用不平衡电桥检测总的绝缘电阻,而支路用直流互感器来检测到底是哪一路出现了绝缘降低。
同时用单片机来实现这种检测方法。
主回路的绝缘电阻的测量
传统的平衡电桥检测原理如下图-1,通过检测电压Uj和Um,再加上给定的电阻R来算出R+、R-,但当正负绝缘都出现降低的情况下,检测的结果将与实际情况不符合。
图-1
为了能检测正负都绝缘降低的情况,下文设计一种不平衡电桥测量法。
并用MCS 80C196KC单片机来实现,如图-2所示。
首先我们先说明一下电子继电器AQW214的用法,当AQW214的1、2脚导通时,7、8脚也导通;而且导通的内阻很小。
同理,3,4脚导通时,5、6脚也导通。
而且,AQW214的耐压值可以达到400V,即当7、8,或5、6不导通时,它们两端可以承受400V的电压。
所以我们可以通过控制P10的电平,来控制1、2脚的导通而达到控制JK1的导通与关断。
同理,通过控制P11的电平来控制JK2的导通与关断。
第一步,JK1、JK2都断开,我们通过80C196单片机的A/D口的AC4通道采集C4两端的电压,从而测得Um。
第二步,JK1断开、JK2闭合,通过A/D口的AC5通道采集C2两端的电压,从而测算得Uj,记此时测得的电压Uj为Uj1。
第三步,JK1闭合、JK2断开,记此时测得的电压Uj为Uj2。
很明显的Uj1与R+,R-有关系,Uj2也与
R+,R-有关系。
从而可以得到一个二元方程。
在此,因为R与R3之和等于R与RW2之和,故将R与R3之和称为R,将R与RW2之和也称为R。
从而可以得到公式1-1和1-2。
公式 1-1
公式1-2
联立公式1-1,1-2 可解出:
公式1-2
公式1-3
图-2
以上的分析,我们得到理论上的实现,但真正用到实际应用当中去,我们需要注意几个问题。
首先,就电路中所给的参数只适合100V-300V的直流电压,低于100V,则测量精度下降;高于300V,则电子继电器的耐压不够。
对于直流电压比较低的情况,我们可以通过改变相关电阻值而使测量精度提高。
但对于直流电压高于300V的情况,我们要重新选择电子继电器或者别的继电器。
其次,实际测量时,应先判断
|Uj1-Uj2|的大小,如果其值太小,由于AD转换器的精度造成的影响将比较大,上述公式计算结果偏差较大。
这种情况发生在正负绝缘均匀下降且绝缘阻值较小时,比如R+=R-=1K,Um=220V时,由公式1-1、公式1-2可得:Uj1=110.55V,Uj2=109.95V,|Uj1-Uj2|=0.6V,设AD转换器的量程为0~300V,精度为千分之一(10位AD),则其最小测量精度为0.3V,因此|Uj1-Uj2|可能等于零,所以R+=R-=0,与实际相差很大。
根据我们的实测,绝缘电阻在5K~到50K之间时,测量精度可达到5%。
当发生2K以内正负绝缘均匀下降时,测量精度较差。
对于实际中的一般情况,我们最关心的就是当绝缘电阻在15K—25K之间波动。
所以可以达到要求。
但如果在特殊的场合,要求精度更高一些,我们可以选择精度更高的A/D转换器。
支路绝缘降低的判断
在引言里,我们已经提到,用低频探测原理检测容易受直流系统对地分布电容的制约,容易受外界的干扰,而且注入的低频交流信号增大直流系统的电压纹波系数。
在这里,我们用电流互感器来检测漏电流的大小。
我们先根据图-3来说明一下电流互感器的用法。
在这里我们选择DC10EA型的电流互感器,额定输入电流为10mA,输出电压为0—+/-2.5V。
当出现正绝缘降低时,正母线和负母线上的电流差值为I2(单位为mA),则此时电流互感器的输出U=(I2/10)*2.5 (v),当出现负绝缘降低,此时电流互感器的输出U=-(I2/10)*2.5 (v)。
我们通过采集电流互感器的输出电压,便可以计算漏电流I2的大小,从而得到绝缘降低的的程度。
图-3
因为当出现正负绝缘都降低的时候,绝缘降低的程度与漏电流不成正比。
所以我们采用前面讲到的不平衡电桥来计算主回路的绝缘电阻的具体大小。
如果到了报警线,便通过通讯向支路绝缘检测模块获取各个支路绝缘降低的程度。
下面图-4给出了支路绝缘检测模块的大致原理图。
单片机通过多路开关将不同支路的电流互感器的输出电压采集进来。
在绝缘主模块需要的时候将采集的数据发给主模块。
图-4
本文利用不平衡电桥法给出了一个较为精确的计算正负绝缘都出现降低的情况下的正、负绝缘电阻。
同时提出了一种主—从式的绝缘监测小系统。
不知道“直流系统绝缘检测原理”以上内容有没有满足大家的好奇心?。