《微积分》一般周期的傅里叶级数
傅里叶级数总结

傅里叶级数总结傅里叶级数是数学中非常重要的概念之一,它在物理、工程、信号处理等领域都有广泛的应用。
本文将以傅里叶级数为主题,介绍傅里叶级数的定义、性质和应用。
让我们来了解一下傅里叶级数的定义。
傅里叶级数是由法国数学家傅里叶在19世纪初提出的,用于描述周期函数的一种方法。
对于一个周期为T的函数f(t),傅里叶级数将其表示为一组正弦函数和余弦函数的线性组合。
具体地说,傅里叶级数可以写成以下形式:f(t) = a0 + Σ(a_n*cos(nωt) + b_n*sin(nωt))其中,a0是常数项,a_n和b_n是傅里叶系数,n是正整数,ω是角频率,ω=2π/T。
傅里叶级数有许多重要的性质。
首先,傅里叶级数可以用于表示任意周期函数,不论其形状如何。
其次,傅里叶级数是线性的,即如果一个函数可以表示为两个函数的傅里叶级数之和,那么这个函数的傅里叶级数也可以表示为这两个函数傅里叶级数的和。
此外,傅里叶级数还具有很好的逼近性质,即当级数中的项数足够多时,级数可以无限接近原函数。
傅里叶级数在物理、工程和信号处理中有广泛的应用。
首先,在物理学中,傅里叶级数可以用于描述振动和波动现象,例如声波、光波和电磁波等。
其次,在电路分析和电子工程中,傅里叶级数可以用于分析交流电路中的电压和电流信号。
此外,傅里叶级数还可以在图像处理和数据压缩中应用,通过将图像或数据分解为傅里叶级数的组成部分,可以实现对图像和数据的压缩和恢复。
虽然傅里叶级数在理论和应用中都有很大的成功,但是它也有一些局限性。
首先,傅里叶级数要求函数是周期的,这在某些情况下可能不成立。
其次,傅里叶级数在描述非周期函数时可能需要无限多个项,这导致计算和处理的复杂性增加。
为了解决这些问题,人们提出了傅里叶变换和离散傅里叶变换等概念,它们可以处理非周期函数和离散信号,并且具有更广泛的应用领域。
傅里叶级数是一种重要的数学工具,用于描述周期函数,并在物理、工程和信号处理等领域有广泛的应用。
周期信号的傅里叶级数表

傅里叶级数与复变函数的关系
傅里叶级数可以看作是复数域中的三角函数,即复数域中的正弦和余弦。在复数域中,正弦和余弦函数表现为复指数函数的 形式。
复数的使用使得傅里叶级数的系数可以表示为实数,从而简化了计算。此外,复数的共轭也提供了相位信息,这在信号处理 中非常重要。
傅里叶级数与小波分析的关系
小波分析是傅里叶分析的进一步发展,它提供了更灵活的时频分析工具。小波变 换可以看作是傅里叶变换的一种扩展,它允许我们在不同的频率段使用不同的基 本函数。
三角函数形式
傅里叶级数的另一种表示形式,利用三角函数来表示周期信号。
傅里叶级数的三角函数形式
01
02
03
正弦形式
余弦形式
系数
傅里叶级数的正弦函数形式,用 于表示只包含正弦波的周期信号。
傅里叶级数的余弦函数形式,用 于表示只包含余弦波的周期信号。
在傅里叶级数中,每个正弦或余 弦函数都对应一个系数,表示该 函数在周期信号中的贡献程度。
03
傅里叶级数的性质
傅里叶级数的收敛性
傅里叶级数在数学上具有收敛性,意味着它可以将一个 周期函数表示为无穷级数,每个项都是正弦或余弦函数。
收敛的速度取决于函数的特性,例如,对于具有快速衰 减的周期函数,傅里叶级数收敛得更快。
傅里叶级数的对称性
傅里叶级数的对称性质是指,对于一个周期函数,其傅里叶级数的正弦和余弦项具有对称性。 这意味着,对于一个给定的周期函数,其傅里叶级数的正弦和余弦项的系数是相同的。
周期信号的傅里叶级 数表
目录
• 傅里叶级数简介 • 周期信号的傅里叶级数表示 • 傅里叶级数的性质 • 傅里叶级数的应用实例 • 傅里叶级数与其他数学工具的关系
01
一般周期函数的傅里叶级数

2 k12k 1
2
( x R,x 2m, m 0,1,2, )
a0 E, an 0 (n 1,2, )
二、定义在 [-l , l ]和[ 0, l ]区间上的函数 展成傅里叶级数
1. 将[–l , l ]上的函数展成傅里叶级数
思
周期延拓 F ( x) 傅里叶展开
想
T 2l
y y f (x)
例1 设f ( x) 的周期T 10,且当 5 x 5 时,
f ( x) x,将 f ( x) 展开成傅里叶级数.
y
解 l 5, f ( x) : 奇函数,
an 0 n 0,1,2,
5 o 5
x
bn
2 l
0l
f
xsin nπx d x
l
2 5
05
x
sin
nπx d 5
x
2 nπ
x
l l
l
(n 0,1,2, )
bn
1 l
l F ( x)sin nx d x,
l
l
(n 1,2, )
1 l f ( x)sin nx d x.
l l
l
例3 将f x e x在 π, π 上展成傅里叶级数
解 f ( x)在 π,π上连续,且满足狄利克雷条件.
(周期延拓
傅里叶展开
傅里叶级数之和函数:
S( xm )
f ( xm ) 2
f
(
xm
)
E. 2
l 2,
当x xm 时,f ( x)连续
f
(
x)
S(
x)
a0 2
(an
n1
cos
nx 2l
bn
傅里叶级数 公式

傅里叶级数公式傅里叶级数是一种用正弦函数和余弦函数表示周期函数的方法。
它由法国数学家傅里叶在19世纪提出,被广泛应用于信号处理、物理学、工程学等领域。
傅里叶级数的公式如下:\[f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))\]在这个公式中,\(f(x)\)表示周期为\(2\pi\)的函数,\(a_0\)表示函数的直流分量,\(a_n\)和\(b_n\)分别表示函数的交流分量的系数。
傅里叶级数的优点在于可以将任意周期函数分解为一系列简单的正弦函数和余弦函数,从而更好地理解和分析周期性现象。
对于一个周期为\(2\pi\)的函数\(f(x)\),我们可以通过计算其在一个周期内的积分来求解傅里叶系数。
具体的计算方法如下:\[a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)dx\]\[a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)\cos(nx)dx\]\[b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)\sin(nx)dx\]通过计算这些积分,我们可以得到傅里叶级数的系数。
根据这些系数,我们可以重新构造出原函数\(f(x)\)的近似值。
当我们取无限多个正弦函数和余弦函数时,傅里叶级数的近似值将趋近于原函数。
傅里叶级数的应用非常广泛。
在信号处理领域,傅里叶级数可以用来分析和合成信号。
通过将信号分解为一系列正弦函数和余弦函数,我们可以更好地理解信号的频谱特性,从而设计出更好的信号处理算法。
在物理学中,傅里叶级数可以用来描述波动现象,如声波、光波等。
通过将波动现象分解为一系列正弦函数和余弦函数,我们可以更好地理解波动的性质和传播规律。
在工程学中,傅里叶级数可以用来分析和设计电路、通信系统等。
通过将电路和信号分解为一系列正弦函数和余弦函数,我们可以更好地理解电路和信号的行为,从而设计出更好的工程方案。
傅里叶级数的定义及应用

傅里叶级数的定义及应用傅里叶级数是一种将周期函数表示为三角函数和正弦函数之和的数学工具。
它在信号处理、图像处理和电子通信等领域中有着广泛的应用。
本文将介绍傅里叶级数的定义及其在实际中的应用。
第一部分:傅里叶级数的定义傅里叶级数是由法国数学家约瑟夫·傅里叶在19世纪初提出的。
它将周期函数表示为无穷级数的形式,其中每一项为三角函数或正弦函数的乘积。
一个周期为T的函数f(t)可以表示为以下无穷级数的形式:f(t) = a₀ + Σ(aₙcos(nω₀t) + bₙsin(nω₀t))在公式中,a₀是常数项,aₙ和bₙ是系数,n是正整数,ω₀是基波角频率。
根据傅里叶级数的定义,周期函数f(t)可以通过确定其系数来表示。
系数的计算可以通过将函数f(t)与三角函数进行内积运算来实现。
这种数学上的运算使得我们能够将任意周期函数表示为一系列简单的三角函数的和,从而更好地理解和分析函数的特性。
第二部分:傅里叶级数在信号处理中的应用傅里叶级数在信号处理中有着广泛的应用。
信号处理是指对信号进行分析、合成、编码和解码的过程,傅里叶级数为信号处理提供了有效的工具。
首先,傅里叶级数可以将时域信号转换为频域信号。
通过对信号进行傅里叶级数分解,我们可以将信号的频谱表示出来,了解信号在不同频率下的成分情况。
这对于音频信号的合成、滤波、去噪等处理非常有用。
其次,傅里叶级数在通信系统中起着重要的作用。
在数字通信中,信号需要经过调制、解调等处理。
傅里叶级数可以帮助我们理解信道传输中的信号畸变情况,从而对传输信号进行补偿和恢复。
此外,傅里叶级数还广泛应用于图像处理领域。
图像可以看作是由像素点组成的二维数组,每个像素点的灰度值可以用一个周期为1的函数表示。
通过对图像进行傅里叶级数分析,我们可以提取图像中的频域特征,如边缘、纹理等。
这对于图像压缩、增强和恢复等处理具有重要意义。
第三部分:傅里叶级数在其他领域的应用除了信号处理领域,傅里叶级数还在许多其他领域有着广泛的应用。
傅里叶级数基础知识

傅里叶级数基础知识傅里叶级数是数学中的一个重要概念,它在信号处理、图像处理、物理学等领域有着广泛的应用。
本文将介绍傅里叶级数的基础知识,包括傅里叶级数的定义、性质以及应用。
一、傅里叶级数的定义傅里叶级数是一种将周期函数表示为正弦函数和余弦函数的无穷级数的方法。
对于一个周期为T的函数f(t),它可以表示为以下形式的级数:f(t) = a0 + Σ(an*cos(nωt) + bn*sin(nωt))其中,a0、an、bn是系数,ω是角频率,n是正整数。
二、傅里叶级数的性质1. 周期函数的傅里叶级数是收敛的,即级数的和可以无限接近于原函数。
2. 傅里叶级数是唯一的,即给定一个周期函数,它的傅里叶级数是唯一确定的。
3. 傅里叶级数具有线性性质,即两个周期函数的线性组合的傅里叶级数等于它们各自的傅里叶级数的线性组合。
4. 傅里叶级数的系数可以通过积分计算得到,具体的计算公式为:an = (2/T) * ∫[0,T] f(t)*cos(nωt) dtbn = (2/T) * ∫[0,T] f(t)*sin(nωt) dt三、傅里叶级数的应用1. 信号处理:傅里叶级数可以将一个信号分解为不同频率的正弦波的叠加,从而实现信号的频域分析和滤波处理。
2. 图像处理:傅里叶级数可以将一个图像分解为不同频率的正弦波的叠加,从而实现图像的频域滤波和压缩等处理。
3. 物理学:傅里叶级数在物理学中有着广泛的应用,例如在波动现象、振动现象、电磁场等方面的研究中都可以使用傅里叶级数进行分析和计算。
四、总结傅里叶级数是一种将周期函数表示为正弦函数和余弦函数的无穷级数的方法。
它具有收敛性、唯一性和线性性质等基本性质,可以通过积分计算得到系数。
傅里叶级数在信号处理、图像处理、物理学等领域有着广泛的应用。
通过傅里叶级数的分析和计算,我们可以更好地理解和处理周期函数的特性,从而在实际应用中发挥作用。
以上就是傅里叶级数的基础知识的介绍。
希望本文能够帮助读者对傅里叶级数有一个初步的了解,并对其在实际应用中的重要性有所认识。
一般周期的函数的傅里叶级数

n x d x ( n 0 , 1, 2 , ) 其中 an f ( x) cos l 注: 无论哪种情况 , 在 f (x) 的间断点 x 处, 傅里叶级数
收敛于
机动 目录 上页 下页 返回 结束
例1. 把 (1) 正弦级数;
展开成 (2) 余弦级数. 在 x = 2 k 处级 数收敛于何值? 解: (1) 将 f (x) 作奇周期延拓, 则有
机动 目录 上页 下页 返回 结束
2 2 a0 x d x 2 0
1 (2k 1) x ( 0 x 2 ) f ( x) x 1 2 cos 2 2 k 1 (2k 1) 8
说明: 此式对
也成立,
y
据此有
1 2 (2k 1) 2 8 k 1
作业:
11.8 1 ; 2 .
本章已讲完,下次课为习题课,请复习.
习题课 目录 上页 下页 返回 结束
机动
目录
上页
下页
返回
结束
定理. 设周期为2l 的周期函数 f (x)满足收敛定理条件, 则在函数的连续点处其傅里叶展开式为:
其中
n x 1 l d x (n 0 , 1, 2 ,) an f ( x) cos l l l
1 l n x bn f ( x) sin dx l l l
机动 目录 上页 下页 返回
(x 间断点)
结束
思考与练习
1. 将函数展开为傅里叶级数时为什么最好先画出其 图形? 答: 易看出奇偶性及间断点, 从而便于计算系数和写出 收敛域 . 2. 计算傅里叶系数时哪些系数要单独算 ? 答: 用系数公式计算 an , bn时 ,如分母中出现因子n-k
微积分 傅里叶级数

⎪ ⎪⎭
⑹式称为函数 f ( x)的傅立叶系数公式,将这些公式代
入⑸式右端,所得的三角级数
∑ a0
2
+
∞
( an
n =1
cos nx
+ bn sin nx)
称为函数 f ( x) 的傅立叶级数。
定理(收敛定理) 设函数 f ( x) 是周期为2π的周期函
数,如果它满足:
⑴在一个周期内连续或只有有限多个第一类间断点;
第三单元 傅立叶级数
本单元内容要点
本单元讨论如何将一个周期函数展开成三角级数的方 法, 以及展开成正弦级数湖余弦级数的方法.
本单元教学要求
理解三角函数系及三角函数系正交性的意义, 掌握傅
立叶系数的计算方法, 掌握将周期为2π , 2l 的函数展开
成傅立叶级数的方法, 及收敛性的讨论, 掌握将一般函数 在所给定义域上展开成傅立叶级数的方法, 以及展开成 正弦级数与余弦级数的方法.
有
∫ bn
=
1
π
π
f (x)sin nxdx
−π
(n = 1, 2,").
由于当 n = 0时,an 的表达式与 a0一致,因此上面的结
果可合并成
∫ an
=
1
π
π
f (x) cos nxdx
−π
∫ bn
=
1
π
π
f (x)sin nxdx
−π
(n
=
0,1, 2,"),⎫⎪⎪
⎬
⑹
(n = 1, 2,").
y
π
−2π −π o π 2π x
=
1
n2π
Hale Waihona Puke cos nxπ 0=
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
b n
f ( x ) sin nxdx
0
(n 1,2, )
(2)当 周 期 为 2 的 偶 函 数 f ( x ) 展 开 成 傅 里 叶 级
数 时 ,它 的 傅 里 叶 系 数 为
2
a n 0 f ( x ) cos nxdx
( n 0 ,1,2, )
bn 0
f (x)
0 x
y
则
F
(x)
0
x0
f ( x ) x 0
0
x
f ( x )的傅氏正弦级数
f ( x ) b n sin nx
n1
(0 x )
偶延拓: g ( x ) f ( x )
y
则
F
(x)
f f
(x) ( x)
0
2,
2
a n 0 ( x 1 ) cos nxdx
2
0
(cos n 2
n 1)
4 n 2
当 n 2,4,6, 当 n 1,3,5,
4
1
1
x 1 1 (cos x cos 3 x cos 5 x ]
0 x x0
f ( x )的傅氏余弦级数
f (x)
a0 2
an
n1
cos
nx
0
(0 x )
x
定义在[0,]上的函数展成正弦级数与余弦级数
奇延拓
f (x), x [0, ] 偶延拓
y
y
O x
O x
周期延拓 F (x)
f (x) 在 [0, ] 上展成 正弦级数
2 0 E sin
t cos
tdt
0,
4E 1 1
1
1
u(t ) ( cos 2t cos 4t cos 6t )
23
15
35
2E
cos 2nx
[1 2
].
n1 4n2 1
( x )
函数展开成正弦级数或余弦级数
非周期函数的周期性开拓
设f ( x )定义在[0, ]上, 延拓成以2为周期的 函数 F ( x).
f (x) 令 F (x)
0 x , 且 F ( x 2 ) F ( x ),
g(x) x 0
则有如下两种情况
奇延拓
偶延拓
.
奇延拓: g ( x ) f ( x )
周期延拓 F (x)
f (x) 在 [0, ]上展成 余弦级数
例 将函数 f ( x) x 1 (0 x )分别展开成
正弦级数和余弦级数.
解 (1)求正弦级数. 对 f ( x )进行奇延拓 ,
bn
2
0 f
( x ) sin
nxdx
2
0 ( x
1 ) sin
2
n t l d t
所以,当n=2,4,6,…,2k,…时
b n
0.
当n=1,3,5,…,2k+1,…时
2 p l n l / 2
2 pl
n
b
n
n 2 2 0
t sin tdt
sin
n 2 2
2
2 p l ( 1) m 1
( n 2 m 1, m 1, 2 ,L )
2、需澄清的几个问题.(误认为以下三情况正确)
定理的条件 , 则它的傅里叶级数展开
式为
f
(x)
a0 2
(an
n1
cos
nx l
bn
nx sin ),
l
其中系数 a n , b n 为
1l
nx
an
f ( x) cos dx,
l l
l
(n 0,1,2, )
1l
nx
bn
f ( x) sin dx,
l l
nxdx
2 (1 cos n cos n )
n
2 2
2
n
n
当 n 1,3,5, 当 n 2,4,6,
2
1
x 1 [( 2 ) sin x sin 2 x ( 2 ) sin 3 x ]
2
k 2k x 1 3x 1 5x
f ( x) (sin sin
sin
)
2
23
25
2
( x ; x 0,2,4, )
小结
以2l为周期的傅氏系数; 利用变量代换求傅氏展开式; 求傅氏展开式的步骤; 1.画图形验证是否满足狄氏条件(收敛域,奇偶性); 2.处理不连续点; 3.求出傅氏系数; 4.写出傅氏级数,并注明它在何处收敛于f ( x).
0
t
2
2
a 0 0 u ( t ) dt
2 0 E sin tdt
4E ,
2
2
a n 0 u ( t ) cos ntdt 0 E sin t cos ntdt
E
0 [sin( n 1 ) t sin( n 1 ) t ]dt
l
(n 1,2, )
证明
令 z x , l x l z , l
设f (x)
lz f ( ) F ( z ),
F ( z )以 2 为周期 .
F ( z ) a 0
(a
cos nz b
sin nz ),
2
n n1
n
其中
1
0 dx
2
2
kdx
0
k,
4 2
0
2
x 4
12
n
an
2 0 k cos
xdx 2
0,
(n 1,2, )
12
n
k
b n
k sin
20
xdx 2
( 1 cos n ) n
2k n 0
当 n 1,3,5, ,
当 n 2,4,6,
1 2 cos
nx n
2
sin n x
1 ( x 2k , x 2k , k 0,1,2, ).
2
4l 1
n
nx
二 、 f ( x )
sin sin
2
n2
n1
2
l
(0 x l);
l 2 l
f (x)
一般周期的傅里叶级数
1、以2l为周期的傅氏级数 2、奇函数和偶函数的傅里叶级数
一、以2l为周期的傅氏级数
T 2l,
2 .
代入傅氏级数中
Tl
a
0 (a cos n x b sin n x)
n
n
2
n 1
定理 设周期为 2 l的周期函数 f ( x )满足收敛
l
x
,
l 2
x
l
弦级数 .
x, x
三、 将 函 数 f (x)
2
2
展开成
x,
x
3
2
2
傅里叶级数 .
练习题答案
一、 f (x)
4
n
n
1 ( 1 ) n
[ n1
n2 2
2 sin
2ቤተ መጻሕፍቲ ባይዱ
n
] cos
E cos( n 1 ) t cos( n 1 ) t
n1
n 1 0
(n 1)
4E
[( 2 k ) 2
1]
,
0,
当 n 2k
(k 1,2, )
当 n 2k 1
a1
2 0 u ( t ) cos
tdt
1 [ 2 cos
n 1 ( 1 ) n ] cos
nx
4
2
n2
n1
2
l
(0 x l) .
4
1
三 、 f ( x )
cos[( 2 n 1 )( x )]
n1 (2n 1)2
2
(0 x l) .
二、奇函数和偶函数的傅里叶级数
正弦级数 余弦级数
同理可证(2)
定理证毕.
定义
如 果 f ( x ) 为 奇 函 数 , 傅 氏 级 数 b n sin nx
n1
称为正弦级数.
如果
f (x)为 偶 函 数 ,
傅氏级数 a0
a n cos nx
2
n1
称为余弦级数.
特别,对于周期为2l的函数:
(1 ) 如果 f ( x )为奇函数 , 则有
nx
f ( x ) bn sin
n1
l
,
2l
nx
其中系数 b n为 b n