四川省绵阳市2021届高三数学上学期第二次诊断性考试试题文

合集下载

绵阳市2021级第二次诊断考试语文作文

绵阳市2021级第二次诊断考试语文作文

绵阳市2021级第二次诊断考试语文作文全文共6篇示例,供读者参考篇1题目:放学回家的路上每次放学回家的路上,都会让我想起很多有趣的事情。

从学校到家,一共要走1公里多远的路程,虽然不算太长,但每次走这条路,都会让我感受到不同的乐趣。

首先,离开学校大门的那一刻,就觉得身上的重担一下子卸下来了。

上完一整天的课,终于可以回家玩耍了!同学们三五成群,有说有笑地往外走,感觉特别高兴自在。

出了学校大门,就是一条宽阔的马路。

过马路的时候要特别小心,因为有时会有汽车飞驰而过。

不过马路两旁都有行人绿化带,种着一排排整齐的白蜡树,树冠郁郁葱葱,为行人遮荫挡太阳。

春天的时候,树上会开满了雪白的小花朵,好不优雅啊!马路对面就是一家糖果店了。

每次路过,鲜艳诱人的糖果就像在召唤我们。

有巧克力糖、棒棒糖、泡泡糖等等,看着就让人垂涎欲滴。

奶奶有时会给我们买一些,那滋味真是太甜美了!再往前走一点,就是一片小树林。

树林里有着各种各样的小动物,像是松鼠、小鸟、蝴蝶等。

它们在树枝缝隙间嬉戏打闹,叽叽喳喳地叫个不停,非常可爱有趣。

路过时,我总是会被吸引住,驻足观望好一会儿。

最后,就快到家了。

家门口的小公园里,总是有一群小朋友在踢足球或打篮球。

我们放学回来,也常常加入到他们的游戏中去。

一起尽情挥洒汗水,玩个痛快,实在太开心了!回家后,妈妈会准备好热乎乎的午饭在等着。

吃过饭,再把作业写完,就可以玩耍了。

所以我最喜欢放学后的这段时光,不仅可以欣赏路边的风景,还能和伙伴们嬉戏玩乐,每天都过得充实快乐!篇2题目:快乐的事情大家好,我是小明,今天我要给大家写一篇作文,讲讲快乐的事情。

什么是快乐呢?快乐就是高高兴兴、开开心心的感觉,快乐能让我们感到很幸福。

每个人都有自己快乐的事情,下面我就和大家分享一下我的快乐事。

我最快乐的一件事就是放假的时候。

每次放假的时候,我都会跟爸爸妈妈去公园玩、去游乐场玩。

公园里有很多好玩的设施,比如秋千、滑梯、蹦床,我最喜欢蹦床了,因为可以一直蹦啊蹦,感觉自己好像在飞一样。

2021年四川省绵阳市高考数学三诊试卷(文科)(解析版)

2021年四川省绵阳市高考数学三诊试卷(文科)(解析版)

2021年四川省绵阳市高考数学三诊试卷(文科)一、选择题(每小题5分).1.已知集合A={x|x2>1},则∁R A=()A.(﹣1,1)B.[﹣1,1]C.(﹣∞,﹣1)∪(1,+∞)D.(﹣∞,﹣1]∪[1,+∞)2.已知复数z满足(z﹣1)i=1+i,则复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.若x,y满足约束条件,则z=3x+y的最小值为()A.﹣10B.﹣8C.16D.204.在统计学中,同比增长率一般是指和去年同期相比较的增长率,环比增长率一般是指和上一时期相比较的增长率.根据如图,2020年居民消费价格月度涨跌幅度统计折线图,下列说法错误的是()A.2020年全国居民每月消费价格与2019年同期相比有涨有跌B.2020年1月至2020年12月全国居民消费价格环比有涨有跌C.2020年1月全国居民消费价格同比涨幅最大D.2020年我国居民消费价格中3月消费价格最低5.已知圆C:x2+y2﹣ax+2y﹣4=0关于直线l:x+y﹣1=0对称,圆C交x轴于A,B两点,则|AB|=()A.4B.2C.2D.6.已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x(1﹣x).则不等式xf(x)>0的解集为()A.(﹣1,0)∪(1,+∞)B.(﹣1,0)∪(0,1)C.(﹣∞,﹣1)∪(0,1)D.(﹣∞,﹣1)∪(1,+∞)7.在平行四边形ABCD中,AB=2,AD=,点F为边CD的中点,若=0,则=()A.4B.3C.2D.18.已知a=,b=,c=,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.a>c>b D.b>c>a9.已知数列{a n}满足:a1=a2=2,a n=3a n﹣1+4a n﹣2(n≥3),则a9+a10=()A.47B.48C.49D.41010.设函数f(x)=sin(ωx﹣)(ω>0)的部分图象如图所示,且满足f(2)=0.则f(x)的最小正周期为()A.B.16C.D.11.已知圆锥的顶点和底面圆周都在球O面上,圆锥的侧面展开图的圆心角为,面积为3π,则球O的表面积等于()A.B.C.D.12.已知点F为抛物线E:y2=6x的焦点,点A在E上,线段OA的垂直平分线交x轴于点B,则|OB|﹣|AF|=()A.1B.C.2D.二、填空题:本大题共4小题,每小题5分,共20分.13.记等差数列{a n}的前n项和为S n,若S4=5a5,则a15=.14.若函数f(x)=x2e x﹣mlnx在点(1,f(1))处的切线过点(0,0),则实数m=.15.已知双曲线E:=1(a>0,b>0)与抛物线C:y2=2px(p>0)有共同的一焦点,过E的左焦点且与曲线C相切的直线恰与E的一渐近线平行,则E的离心率为.16.已知三棱锥S﹣ABC中,SA=SB=SC,△ABC是边长为4的正三角形,点E,F分别是SC,BC的中点,D是AC上的一点,且EF⊥SD,若FD=3,则DE=.三、解答题:共70分。

2021届四川绵阳南山中学高三一诊热身考试数学(文)试题(解析版)

2021届四川绵阳南山中学高三一诊热身考试数学(文)试题(解析版)
则 ,所以 ,则 ,
所以 ,所以 ,
所以 ,所以 .
故选:B.
【点睛】
本题考查了等比数列通项公式,考查了等比数列的前 项和公式,属于基础题.
6.设 , , ,则()
A. B. C. D.
【答案】A
【解析】找中间量0和1进行比较可得结果.
【详解】
, , ,
所以 .
故选:A.
【点睛】
本题考查了指数函数与对数函数的单调性,属于基础题.
A. B. C. D.
【答案】B
【解析】分析:将原问题转化为等差数列的问题,然后结合等差数列相关公式整理计算即可求得最终结果.
详解:由题意可得,8个孩子所得的棉花构成公差为17的等差数列,且前8项和为996,
设首项为 ,结合等差数列前n项和公式有:

解得: ,则 .
即第八个孩子分得斤数为 .
本题选择B选项.
设z= ,则z的几何意义是区域内的点到定点D(﹣1,﹣1)的斜率,
由图象知AD的斜率最小,
由 得 ,即A(1,0),
此时z的最小值为z= ,即k≤ ,
即实数k的取值范围是(﹣∞, ].故选A.
11.在△ABC中,cosC= ,AC=4,BC=3,则tanB=()
A. B.2 C.4 D.8
【答案】C
7.已知 ,则 ()
A. B. C. D.
【答案】B
【解析】将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值.
【详解】
由题意可得: ,
则: , ,
从而有: ,
即 .
故选:B.
【点睛】
本题主要考查两角和与差的正余弦公式及其应用,属于中等题.
8. 中,A(1,2),B(3,2),C(-1,-1),则 在 方向上的投影是()

2023届四川省部分地区高三二模语文试卷分类汇编:语言文字运用Ⅱ

2023届四川省部分地区高三二模语文试卷分类汇编:语言文字运用Ⅱ
意完整连贯,内容贴切,逻辑严密,每处不超过15个字。(6分)
21.请根据文中划波浪线的句子,为“弧垂”下定义。(5)
20.(6分)参考答案:①电线长度和弧垂高度也会发生改变②电线就显得又短又高③不能把电线拉得太紧(每处2分,如有其他答案,只要言之成理,可酌情给分)
直观地呈现出春意盎然的景象。夏季以绿色系为主.....”可知是在说明节气变化与色彩
变化的关系,可以填:用色彩变化突出(表现)各个节气的特色。
第③处,据前文“春天的场景大多是暖色系”,以及说明冬天场景的色彩,可以填:冬
天的场景则多为冷色系。
(评分标准:内容1分,句式1分,注意句式上保持相对一致)
21.(4分)[答案]①让表达更生动更形象。所引谚语中的“饺子”“面”“香椿”生动
2023届四川省绵阳市高三二模语文试题
(二)语言文字运用Ⅱ(本题共2小题,9分)
阅读下面的文字,完成各题。
随着生活水平的提高,使人们的饮食习惯也发生了改变,以前要多吃精白米精白面,现在提倡多吃粗粮。那么吃粗粮有什么好处呢?多吃粗粮可以有效地预防不便秘。①,这些纤维素,能促进肠道蠕动,加快消化的速度,从而达到预防便秘的效果。②,如燕麦、荞麦、大麦、红米、黑米等粗粮可明显缓解糖尿病病人餐后高血糖状态,减少24小时内的血糖波动,降低空腹血糖。在我们吃粗粮的时候,要注意吃的时间,粗粮在晚餐最好食用。因为这时候人体可以更好地用粗粮中的膳食纤维来消除体内的垃圾,降低血脂。除了要注意吃的时间,③。吃粗粮一定要遵循粗细搭配的原则。
形象地表现出中国人的饮食习俗和二十四节气的联系。②丰富文章内容的同时,增添了
文章的文化底蕴。
解析:本题考查学生赏析修辞表达效果的能力。本题作答需要结合引用这些谚语的前后
语境内容进行分析;引用的谚语“冬至饺子夏至面”“雨前香椿嫩如丝”本身生动真

四川省绵阳市高中2021届高三数学第二次诊断性测试试题 理(含解析)

四川省绵阳市高中2021届高三数学第二次诊断性测试试题 理(含解析)

四川省绵阳市高中2021届高三数学第二次诊断性测试(cèshì)试题理(含解析)注意事项:1.答卷前,考生务必将自己的姓名(xìngmíng)、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应(duìyìng)题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试(kǎoshì)结束后,将答题卡交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有(zhǐyǒu)一项是符合题目要求的.1.设全集,,则()A. B. C. D.【答案】D【解析】【分析】先确定集合的元素,再由补集定义求解.【详解】由题意,∴.故选:D.【点睛】本题考查补集的运算,解题时需确定集合的元素后才能进行集合的运算.本题还考查了指数函数的单调性.2.已知为虚数单位,复数满足,则()A. B.C. D.【答案】A【解析】【分析】由除法计算出复数z.【详解(xiánɡ jiě)】由题意.故选:A.【点睛】本题考查(kǎochá)复数的除法运算,属于基础题.3.已知两个(liǎnɡ ɡè)力,作用于平面内某静止物体的同一点(yī diǎn)上,为使该物体仍保持静止,还需给该物体同一点上再加上一个力,则()A. B. C. D.【答案(dá àn)】A【解析】【分析】F.根据力的平衡条件下,合力为,即可根据向量的坐标运算求得3【详解】根据力的合成可知因为物体保持静止,即合力为0,则即故选:A【点睛】本题考查了向量的运算在物理中的简单应用,静止状态的条件应用,属于基础题. 4.甲、乙、丙三位客人在参加中国(绵阳)科技城国际科技博览会期间,计划到绵阳的九皇山、七曲山大庙两个景点去参观考察,由于时间关系,每个人只能选择一个景点,则甲、乙、丙三人恰好到同一景点旅游参观的概率为()A. B. C. D.【答案】B【解析】【分析】可用列举法写出三人选择景点的各种情形.然后计数后可概率.【详解】两景点用1,2表示,三人选择景点的各种情形为:甲1乙1丙1 ,甲1乙1丙2 ,甲1乙2丙1 ,甲2乙1丙1 ,甲2乙2丙1 ,甲2乙1丙2 ,甲1乙2丙2 ,甲2乙2丙2 共8种,其中三人去同一景点的有甲1乙1丙1 和甲2乙2丙2两种,所以概率为.故选:B.【点睛】本题考查古典概型,解题时可用列举法写出所有(suǒyǒu)的基本事件.5.已知为任意(rènyì)角,则“”是“”的()A. 充分(chōngfèn)不必要条件B. 必要(bìyào)不充分条件C. 充要条件D. 既不充分(chōngfèn)也不必要【答案】B【解析】【分析】说明命题1cos23α=3sin3α=和3sin3α=⇒1cos23α=是否为真即可.【详解】,则,因此“1cos23α=”是“3sin3α=”的必要不充分条件.故选:B.【点睛】本题考查充分必要条件的判断,只要命题为真,则是的充分条件,q 是p的必要条件.6.若的展开式中各项系数的和为1,则该展开式中含项的系数为()A. -80B. -10C. 10D. 80【答案】A【解析】【分析】根据二项式定理展开式的各项系数和为1,即可得参数的值.由二项展开式的通项即可求得3x项的系数.【详解】因为51axx⎛⎫-⎪⎝⎭的展开式中各项系数的和为1令代入可得,解得即二项式为展开式中含3x的项为所以(suǒyǐ)展开式中含3x项的系数(xìshù)为故选:A【点睛】本题考查(kǎochá)了二项定理展开式的简单应用,指定(zhǐdìng)项系数的求法,属于(shǔyú)基础题.7.已知某产品的销售额与广告费用之间的关系如下表:x(单位:万元)0 1 2 3 4y(单位:万元)10 15 30 35若根据表中的数据用最小二乘法求得y对x的回归直线方程为,则下列说法中错误的是()A. 产品的销售额与广告费用成正相关B. 该回归直线过点C. 当广告费用为10万元时,销售额一定为74万元D. m的值是20【答案】C【解析】【分析】根据回归直线方程中x系数为正,说明两者是正相关,求出后,再由回归方程求出,然后再求得m,同样利用回归方程可计算出时的预估值.【详解】因为回归直线方程中x系数为 6.5>0,因此,产品的销售额与广告费用成正相关,A正确;又,∴,回归直线一定过点,B正确;x 时,,说明(shuōmíng)广告费用为10万元时,销售额估计为74 10万元,不是一定为74万元,C错误;由,得,D正确(zhèngquè).故选:C.【点睛】本题考查回归(huíguī)直线方程,回归直线方程中x系数的正负说明两变量间正负相关性,回归直线(zhíxiàn)一定过中心点,回归直线方程(fāngchéng)中计算的值是预估值,不是确定值.8.双曲线的右焦点为,过F作与双曲线的两条渐近线平行的直线且与渐近线分别交于,两点,若四边形(为坐标原点)的面积为,则双曲线的离心率为()A. B. 2 C. D. 3【答案】B【解析】【分析】把四边形OAFB面积用表示出来,它等于bc,变形后可求得离心率.【详解】由题意,渐近线方程,不妨设方程为,由,得,即,同理,∴,由题意,∴.故选:B.【点睛】本题考查求双曲线的离心率.求离心率关键是找到关于,,a b c的一个等式,本题中四边形OAFB的面积是bc就是这个等式,因此只要按部就班地求出其面积即可得.9.小明与另外2名同学进行“手心手背”游戏,规则是:3人同时随机等可能选择手心或手背中的一种手势,规定相同手势人数多者每人得1分,其余每人得0分.现3人共进行了4次游戏,记小明4次游戏得分之和为,则X的期望为()A. 1B. 2C. 3D. 4【答案(dá àn)】C【解析(jiě xī)】【分析(fēnxī)】根据(gēnjù)古典概型概率求法,列举出现的所有(suǒyǒu)可能.由离散型随机变量的概率求法,可得小明得分的对应的概率与分布列,即可求出得分之和的期望.【详解】进行“手心手背”游戏,3人出现的所有可能情况如下所示:(心,心,心), (心,心,背),(心,背,心),(背,心,心)(心,背,背),(背,心,背),(背,背,心),(背,背,背)则小明得1分的概率为,得0分的概率为1 4进行4次游戏,小明得分共有5种情况:0分,1分,2分,3分,4分由独立重复试验的概率计算公式可得:则得分情况的分布列如下表所示:X1234P则X 的期望(qīwàng)故选:C【点睛】本题考查(kǎochá)了离散型随机变量的概率分布及期望的求法,属于(shǔyú)基础题. 10.已知圆:,点M ,在圆C 上,平面(píngmiàn)上一动点满足(mǎnzú)且,则的最大值为( ) A. 4 B.C. 6D.【答案】D 【解析】 【分析】根据几何意义可知动点P 位于以为直径的圆上,由正弦定理即可求得PC 的最大值.【详解】圆C :2268110x y x y +---= 化成标准方程可得所以圆C 的半径为因为点M ,N 在圆C 上,动点P 满足PM PN =且PM PN ⊥ 所以P 位于以MN 为直径的圆上,位置关系如下图所示:则,即在三角形中,由正弦定理可得代入可得则因为(yīn wèi)所以(suǒyǐ)PC 的最大值为62 故选:D【点睛】本题考查(kǎochá)了圆的一般方程与标准方程的转化,圆的几何(jǐ hé)性质,正弦定理(dìnglǐ)的简单应用,属于中档题. 11.已知为偶函数,且当时,,则满足不等式的实数m 的取值范围为( )A. B. C.D. ()2,+∞【答案】A 【解析】 【分析】由偶函数性质把不等式()()212log log 21f m f m f ⎛⎫+< ⎪⎝⎭化为,由导数确定函数在上的单调性,利用单调性解不等式.【详解】∵()f x 是偶函数,∴,则不等式()()212log log 21f m f m f ⎛⎫+< ⎪⎝⎭可化为,即2(log )(1)f m f <,0x ≥时,,,令,则,∴是上的增函数,∴当时,,∴0x ≥时,,∴()f x 在[0,)+∞上是增函数,∴由2(log )(1)f m f <得,即,.故选:A .【点睛】本题考查函数的奇偶性与单调(dāndiào)性,考查解对数不等式.此各种类型不等式的解法是:本题这种类型的不等式有两种,一种是奇函数,不等式为,转化(zhuǎnhuà)为,一种(yī zhǒnɡ)是偶函数,不等式为,转化(zh uǎnhuà)为,然后由单调性去函数(hánshù)符号“”.12.函数在区间上恰有一个零点,则实数a 的取值范围是( ) A.B.C. D.【答案】D 【解析】 【分析】根据函数零点存在定理可求得a 的取值范围.并根据区间10,a⎡⎤⎢⎥⎣⎦上恰有一个零点,分析可知当时函数有两个零点,不符合要求,即可求得最终a 的取值范围.【详解】函数()()()221log 2a a f x ax x =--+在区间10,a ⎡⎤⎢⎥⎣⎦上恰有一个零点,则,由二次函数的图像与对数函数的图像可知,函数零点至多有两个.且因为恰有一个零点,所以满足且与在10,a⎡⎤⎢⎥⎣⎦上不同时成立.解不等式()()110log 2log 3a a --≤可得当3a =时,函数(hánshù),区间(qū jiān)为且满足(mǎnzú),,所以(suǒyǐ)在内有一个(yī ɡè)零点, 为一个零点.故由题意可知,不符合要求综上可知, a 的取值范围为[)2,3 故选:D【点睛】本题考查了函数零点存在定理的综合应用,根据零点个数求参数的取值范围.需要判断零点个数及检验参数是否符合题目要求,属于难题. 二、填空题:本大题共4小题,每小题5分,共20分. 13.直线:与直线平行,则实数a 的值是______.【答案】2. 【解析】 【分析】由两直线平行的条件判断. 【详解】由题意,解得2a =. 故答案为:2.【点睛】本题考查两直线平行的充要条件,两直线和平行,条件是必要条件,不是充分条件,还必须有或,但在时,两直线平行的充要条件是.14.法国数学家布丰提出一种计算圆周率的方法——随机投针法,受其启发,我们设计如下实验来估计π的值:先请200名同学每人随机写下一个横、纵坐标都小于1的正实数对,x y的个数m;最后再根据统计数m来估计;再统计两数的平方和小于1的数对()π的值.已知某同学一次试验统计出,则其试验估计π为______.【答案(dá àn)】3.12【解析(jiě xī)】【分析(fēnxī)】,x y构成(gòuchéng)第一象限内的一个正方形, 横、纵坐标都小于1的正实数(shìshù)对(),x y为单位圆在第一象限的部分.由几何概型概率的计算公式,两数的平方和小于1的数对()及试验所得结果,即可估计π的值.,x y构成第一象限内的一个正方形,【详解】横、纵坐标都小于1的正实数对(),x y为单位圆在第一象限的部分.其关系如下图所示:两数的平方和小于1的数对()则阴影部分与正方形面积的比值为由几何概型概率计算公式可知解得故答案为:【点睛】本题考查了几何概型概率的求法,根据题意得各部分的关系是解决问题的关键,属于基础题.f x在区间上的零15.函数的图象如图所示,则()点之和为______.【答案(dá àn)】.【解析(jiě xī)】 【分析(fēnxī)】先求出周期(zhōuqī),确定,再由点确定(quèdìng),得函数解析式,然后可求出上的所有零点.【详解】由题意,∴,又且,∴,∴.由得,,,在[,]-ππ内有:,它们的和为23π. 【点睛】本题考查三角函数的零点,由三角函数图象求出函数解析式,然后解方程得出零点,就可确定在已知范围内的零点.本题也可用对称性求解,由函数周期是π,区间[,]-ππ含有两个周期,而区间端点不是函数零点,因此()f x 在[,]-ππ上有4个零点,它们关于直线对称,由此可得4个零点的和.16.过点的直线l 与抛物线C :交于A ,B 两点(A 在M ,B 之间),F 是抛物线C 的焦点,点N 满足:,则与的面积之和的最小值是______. 【答案】8 【解析】 【分析】根据直线l 过点()1,0M -,设出直线l 的方程.联立抛物线后可表示出A 、B 两点的纵坐标,利用5NA AF =可表示出点N 的纵坐标.由三角形面积公式可表示出ABF ∆与AMN ∆的面积之和.对表达式求导,根据导数即可求得面积和的最小值. 【详解】根据题意,画出抛物线及直线方程如下图所示:因为(yīn wèi)直线l 过点()1,0M - 设直线(zhíxiàn)的方程为则,化简可得因为有两个(liǎnɡ ɡè)不同交点,则,解得或不妨(bùfáng)设1t >, 则解方程可得因为(yīn wèi)5NA AF =,则所以所以则,(1t >)令则令解得当时, ,所以(suǒyǐ)在内单调(dāndiào)递减当时, ,所以(suǒyǐ)()f t在内单调(dāndiào)递增即当54t=时()f t取得(qǔdé)最小值.所以故答案为:【点睛】本题考查了直线与抛物线的位置关系,抛物线中三角形面积的求法,利用导数求函数的最值的应用,综合性强,属于难题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.每年的4月23日为“世界读书日”,某调查机构对某校学生做了一个是否喜爱阅读的抽样调查.该调查机构从该校随机抽查了100名不同性别的学生(其中男生45名),统计了每个学生一个月的阅读时间,其阅读时间(小时)的频率分布直方图如图所示:(1)求样本学生一个月阅读时间t的中位数m.(2)已知样本中阅读时间低于m的女生有30名,请根据题目信息完成下面的列联表,并判断能否在犯错误的概率不超过0.1的前提下认为阅读与性别有关.列联表22男女总计总计附表:015 0.10 0.052.072 2.7063.841其中(qízhōng):.【答案(dá àn)】(1);(2)不能在犯错误的概率不超过0.1的前提下认为阅读(yuèdú)与性别有关.【解析(jiě xī)】【分析(fēnxī)】(1)频率为0.5对应的点的横坐标为中位数;(2)100名学生中男生45名,女生55名,由频率分布直方图知,阅读时长大于等于m的人数为50人,小于m的也有50人,阅读时间低于m的女生有30名,这样可得列联表中的K,对照附表可得结论.各数,得列联表,依据公式计算2【详解】(1)由题意得,直方图中第一组,第二组的频率之和为.所以阅读时间的中位数.(2)由题意得,男生人数为45人,因此女生人数为55人,由频率分布直方图知,阅读时长大于等于m的人数为人,故列联表补充如下:男女总计≥25 25 50t mt m20 30 50<总计45 55 100 2K的观测(guāncè)值,所以不能在犯错误的概率不超过0.1的前提下认为(rènwéi)阅读与性别有关.【点睛】本题考查频率分布直方图,考查独立性检验.正确认识频率分布直方图是解题(jiě tí)基础.18.已知等差数列(děnɡ chā shù liè)的前项和为,且满足(mǎnzú),.各项均为正数的等比数列满足,.(1)求和;(2)求和:.【答案】(1) .. (2)【解析】【分析】(1)根据等差数列与等比数列的通项公式,可得方程组,解方程组即可求得数列{}n a与数列{}b的通项公式.n(2)根据等比数列{}n b的前n项和公式,可先求得的通项公式,进而根据分组求得即可求得.【详解】(1)设等差数列{}n a的公差为,等比数列{}n b的公比为q.由题意,得,解得,∴23n a n =-∵等比数列(děnɡ bǐ shù liè){}n b 的各项均为正数(zhèngshù)由解得或(舍)∴(2)由(1)得,.【点睛】本题考查了等差数列与等比数列(děnɡ bǐ shù liè)通项公式的求法,等比数列(děnɡ bǐ shù liè)前n 项和公式的简单(jiǎndān)应用,属于基础题. 19.在中,内角A ,B ,C 所对的边分别为a ,,.已知.(1)求A ; (2)若为边上一点,且,,求.【答案】(1);(2)12. 【解析】 【分析】(1)由正弦定理把角的关系转化为边的关系,再由余弦定理可求得A ; (2)把ABC ∆的面积用两种方法表示建立与三角形各边的关系,由23BC AD =,即即代入可得,再代入余弦定理中可求得,从而可得,于是得sin B 的值.【详解】(1)在ABC ∆中,由正弦定理得,即.由余弦定理(yú xián dìnɡ lǐ)得,结合(jiéhé),可知(kě zhī)23A π=. (2)在ABC ∆中,,即.由已知23BC AD =,可得23a AD =.在ABC ∆中,由余弦定理(yú xián dìnɡ lǐ)得,即,整理(zhěnglǐ)得,即b c =,∴.∴.【点睛】本题考查正弦定理、余弦定理、三角形面积公式,第(2)问解题关键是把三角形面积用两种方法表示而建立等式:.20.已知椭圆C :,直线l 交椭圆C 于A ,B 两点.(1)若点满足(O 为坐标原点),求弦的长;(2)若直线l 的斜率不为0且过点,M 为点A 关于x 轴的对称点,点满足,求n 的值.【答案】(1) (2)【解析】 【分析】(1)设出A ,B 两点的坐标,结合关系式0OA OB OP ++=,即可得线段AB 的中点坐标.利用点差法可求得直线AB 的斜率,根据点斜式求得直线AB 的方程.再结合弦长公式即可求得弦AB 的长;(2)设出直线(zhíxiàn)AB 的方程,根据(gēnjù)M 的坐标及MN NB λ=可知(kě zhī).由两点的斜率(xiélǜ)公式,可得,将A ,B 两点的坐标代入直线方程(fāngchéng)后,整理代入n 的表达式,联立圆的方程,即可得关于y 的方程.进而用韦达定理求得n 的值即可. 【详解】(1)设,由0OA OB OP ++=,且点()1,1P -,得,.①∴线段AB 的中点坐标为,其在椭圆内由两式相减得,整理得,即.将①代入,得.∴直线AB 方程为,即.联立消去x 得,由韦达定理得121y y +=-,.∴.(2)设直线AB 的方程为,由题意得,由已知MN NB λ=,可知M ,N ,B 三点共线,即MN MB k k =. ∴,即,解得()121121y x x n x y y -=++.将,,代入得.②联立消去x 得由韦达定理(dìnglǐ)得,.③将③代入②得到(dé dào)1n =【点睛】本题考查了直线与椭圆(tuǒyuán)的位置关系,点差法在求直线(zhíxiàn)方程中的应用,弦长公式(gōngshì)的用法,综合性较强,属于难题. 21.已知函数,其中.(1)讨论函数()f x 的单调性; (2)若,记函数()f x 的两个极值点为,(其中),当的最大值为时,求实数a 的取值范围.【答案】(1) 当时,()f x 在上单调递增;当时,()f x 在和上单调递增,在上单调递减. (2) [)3,+∞ 【解析】 【分析】(1)先求得()f x 的导函数,并令.通过对判别式及a 的讨论,即可判断单调性.(2)根据(1)可知当22a >,()f x 有两极值点1x ,2x ,且两个极值点为的两根.进而可得两个极值点间的关系.利用作差法可得()()21f x f x -的表达式,并令,及.进而通过求导得的单调性,进而根据最大值可求得t 的值.解得1x ,2x 的值.即可得a 的取值范围.【详解(xiánɡ jiě)】(1).令()22g x x ax =-+,则.①当或,即22a ≤时,得恒成立(chénglì),∴()f x 在()0,∞+上单调(dāndiào)递增.②当,即22a >时,由,得或;由,得.∴函数(hánshù)()f x 在280,2a a ⎛⎫-- ⎪ ⎪⎝⎭和28,2a a ⎛⎫+++∞ ⎪ ⎪⎝⎭上单调(dāndiào)递增, 在2288,22a a a a ⎛⎫--+-⎪ ⎪⎝⎭上单调递减. 综上所述,当22a ≤时,()f x 在()0,∞+上单调递增;当22a >时,()f x 在280,2a a ⎛⎫-- ⎪ ⎪⎝⎭和28,2a a ⎛⎫+++∞ ⎪ ⎪⎝⎭上单调递增, 在2288,22a a a a ⎛⎫--+-⎪ ⎪⎝⎭上单调递减. (2)由(1)得当22a >,()f x 有两极值点1x ,2x (其中21x x >). 由(1)得1x ,2x 为()220x a g x x =-+=的两根,于是,.∴.令()211x t t x =>,则()()()2112ln f x f x h t t t t-==-+. ∵,∴()h t 在上单调(dāndiào)递减.由已知的最大值为32ln 22-, 而.∴.设t 的取值集合(jíhé)为,则只要(zhǐyào)满足且T 中的最小元素(yuán sù)为2的T 集合(jíhé)均符合题意. 又,易知在[)2,+∞上单调递增,结合22a >,可得a 与t 是一一对应关系. 而当2t =,即时,联合122x x =, 解得,,进而可得3a =.∴实数a 的取值范围为[)3,+∞.【点睛】本题考查了导数在研究函数单调性中的综合应用,分类讨论判断函数的单调区间,构造函数法判断函数的单调性及参数的取值范围,综合性强,是高考的常考点和难点,属于难题. (二)选考题:共10分.请考生在第22、23题中任选一题做答.如果多做,则按所做的第一题记分.22.在平面直角坐标系中,曲线参数方程为(,ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 经过点,曲线的直角坐标方程为.(1)求曲线(qūxiàn)1C 的普通(pǔtōng)方程,曲线2C 的极坐标方程(fāngchéng);(2)若,是曲线(qūxiàn)2C 上两点,当时,求的取值范围(fànwéi).【答案】(1),;(2).【解析】 【分析】 (1)由消元后得普通方程,由代入直角坐标方程可得极坐标方程; (2)直接把两点的极坐标代入曲线2C 的极坐标方程,得,这样2211OAOB+就可转化为三角函数式,利用三角函数知识可得取值范围. 【详解】(1)将1C 的参数方程化为普通方程为.由,,得点2,3P π⎛⎫⎪⎝⎭的直角坐标为,代入1C ,得,∴曲线1C 的普通方程为()2213x y -+=.2C 可化为,即,∴曲线2C 的极坐标方程为2cos 21ρθ=. (2)将点()1,A ρα,代入曲线2C 的极坐标方程,得,,∴.由已知0,4πα⎛⎫∈ ⎪⎝⎭,可得,于是(yúshì).所以(suǒyǐ)2211OAOB +的取值范围(fànwéi)是3,32⎛⎤⎥ ⎝⎦. 【点睛】本题考查(kǎochá)极坐标方程与直角坐标方程的互化,考查参数方程与普通方程的互化.消元法和公式法是解决此类问题的常用方法. 23.已知关于(guānyú)x 的不等式,其中.(1)当时,求不等式的解集;(2)若该不等式对恒成立,求实数a 的取值范围.【答案】(1);(2). 【解析】 【分析】(1)用分类讨论的方法去绝对值符号后再解不等式,最后要合并(求并集); (2)设,同样用分类讨论去绝对值符号化函数为分段函数,求得()f x 最大值,解相应不等式可得a 的范围.【详解】(1)由4a =时,.原不等式化为,当时,,解得,综合得4x≥;当时,,解得,综合得;当时,,解得,综合(zōnghé)得1x≤-.∴不等式的解集为2|43x x x⎧⎫≤-≥⎨⎬⎩⎭或.(2)设函数(hánshù),画图可知(kě zhī),函数()f x的最大值为.由,解得24a<≤.【点睛】本题考查(kǎochá)解含绝对值的不等式,解题方法是根据绝对值定义去掉绝对值符号,用分类讨论的方法分段解不等式.内容总结。

四川省绵阳市2021届高三数学一诊模拟考试试题 文

四川省绵阳市2021届高三数学一诊模拟考试试题 文

绵阳市“一诊”模拟考试试题数 学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部份,共4页,总分值150分,考试时刻120分钟。

注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上。

2.选择题答案利用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。

3.请依照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4.维持卡面清洁,不折叠,不破损。

第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每题5分,共50分.在每题给出的四个选项中,有且只有一项为哪一项符合题目要求的.1.已知全集R U =,集合{}{})2sin(,)13ln(+==-==x y y B x y x A ,那么()=B A C UA .⎪⎭⎫⎝⎛∞+,31 B .⎥⎦⎤⎝⎛310, C .⎥⎦⎤⎢⎣⎡-311, D .φ 2.假设角α的终边在直线x y 2-=上,且0sin >α,那么αcos 和αtan 的值别离为A .2,55-B .21,55--C .2,552--D .2,55--3.设b a ,为平面向量,那么”“b a b a ⋅=⋅是”“b a //的A .充分没必要要条件B .必要不充分条件C .充分必要条件D .既不充分也没必要要条件 4.已知等差数列{}n a ,且410712a a a +=-,那么数列{}n a 的前13项之和为A .24B .39C .52D .1045.已知O 是坐标原点,点()11,-A ,假设点()y x M ,为平面区域⎪⎩⎪⎨⎧≤≤≥+212y x y x 上的一个动点,那么OM OA ⋅的取值范围是A .[]01,- B .[]20, C .[]10, D .[]21,- 6.在ABC ∆中,M 是BC 的中点,1=AM ,点P 在AM 上且知足PM AP 2=,那么()=+⋅PC PB AP [来源:]A .94B .34C .34-D .94-7.已知函数()πϕωϕω<>>+=,0,0)sin()(A x A x f 的图象与直线()A b b y <<=0的三个相邻交点的横坐标别离是842、、,那么)(x f 的单调递增区间为 A.[]()Z k k k ∈+34,4 B.[]()Z k k k ∈+36,6 C.[]()Z k k k ∈+54,4D.[]()Z k k k ∈+56,68.已知函数()y f x =是概念在实数集R 上的奇函数,且当(,0)x ∈-∞时()()xf x f x '<-成立(其中()()f x f x '是的导函数),假设3(3)a f =,(1)b f =,2211(log )(log )44c f =则,,a b c 的大小关系是 A .c a b >> B .c b a >> C .a b c >> D .a c b >>9.设概念在R 上的偶函数)(x f 知足)1()1(+=-x f x f ,且当[]1,0∈x 时,3)(x x f =,假设方程)0(02cos)(<=--a a x x f π无解,那么实数a 的取值范围是A .()2,-∞-B .(]2,-∞-C .(]1,-∞-D .()1,-∞-10. 已知正方形ABCD 的边长为1,P 、Q 别离为边AB ,DA 上的点,假设45PCQ ︒∠=,那么APQ ∆面积的最大值是A .22-B .322-C .18D .14第 Ⅱ 卷(非选择题,共100分) 填空题:本大题共5小题,每题5分,共25分.11.化简求值:431(22)lg lg 254+-=________.12.已知函数f(x)的图象是两条线段(如图,不含端点),那么f(f(13))=_______.13.已知πααα≤≤=-0,51cos sin ,那么=⎪⎭⎫ ⎝⎛+απ22sin ________. 14.已知实数0,0>>b a ,且1=ab ,那么b a b a ++22的最小值为________.15.设R x ∈,用[]x 表示不超过x 的最大整数,称函数[]x x f =)(为高斯函数,也叫取整函数.现有以下四个命题:①高斯函数为概念域为R 的奇函数;②[][]”“y x ≥是”“y x ≥的必要不充分条件;③设xx g ⎪⎭⎫⎝⎛=21)(,那么函数[])()(x g x f =的值域为{}1,0; ④方程⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+2141x x 的解集是{}51<≤x x .其中真命题的序号是________.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解许诺写出文字说明、证明进程或演算步骤。

四川省绵阳市2021届新高考三诊数学试题含解析

四川省绵阳市2021届新高考三诊数学试题含解析

四川省绵阳市2021届新高考三诊数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.M 是抛物线24y x =上一点,N 是圆()()22121x y -+-=关于直线10x y --=的对称圆上的一点,则MN 最小值是( )A .1112- B .31- C .221-D .32【答案】C 【解析】 【分析】求出点()1,2关于直线10x y --=的对称点C 的坐标,进而可得出圆()()22121x y -+-=关于直线10x y --=的对称圆C 的方程,利用二次函数的基本性质求出MC 的最小值,由此可得出min min 1MN MC =-,即可得解.【详解】 如下图所示:设点()1,2关于直线10x y --=的对称点为点(),C a b ,则121022211a b b a ++⎧--=⎪⎪⎨-⎪=-⎪-⎩,整理得3030a b a b --=⎧⎨+-=⎩,解得30a b =⎧⎨=⎩,即点()3,0C ,所以,圆()()22121x y -+-=关于直线10x y --=的对称圆C 的方程为()2231x y -+=,设点2,4y M y ⎛⎫ ⎪⎝⎭,则MC ===当2y =±时,MC 取最小值min min 11MN MC =-=. 故选:C. 【点睛】本题考查抛物线上一点到圆上一点最值的计算,同时也考查了两圆关于直线对称性的应用,考查计算能力,属于中等题.2.已知m ∈R ,复数113z i =+,22z m i =+,且12z z ⋅为实数,则m =( ) A .23-B .23C .3D .-3【答案】B 【解析】 【分析】把22z m i =-和 113z i =+代入12z z ⋅再由复数代数形式的乘法运算化简,利用虚部为0求得m 值. 【详解】因为()()()()12132632z z i m i m m i ⋅=+-=++-为实数,所以320m -=,解得23m =. 【点睛】本题考查复数的概念,考查运算求解能力.3.已知向量()34OA =-,,()15OA OB +=-,,则向量OA 在向量OB 上的投影是( )A .B .C .25-D .25【答案】A 【解析】 【分析】先利用向量坐标运算求解OB ,再利用向量OA 在向量OB 上的投影公式即得解 【详解】由于向量()34OA =-,,()15OA OB +=-, 故()21OB =,向量OA 在向量OB 上的投影是OA OB OB⋅-==.故选:A 【点睛】本题考查了向量加法、减法的坐标运算和向量投影的概念,考查了学生概念理解,数学运算的能力,属于中档题.4.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“乐”不排在第一节,“射”和“御”两门课程不相邻,则“六艺”课程讲座不同的排课顺序共有( )种. A .408 B .120 C .156 D .240【答案】A 【解析】 【分析】利用间接法求解,首先对6门课程全排列,减去“乐”排在第一节的情况,再减去“射”和“御”两门课程相邻的情况,最后还需加上“乐”排在第一节,且“射”和“御”两门课程相邻的情况; 【详解】解:根据题意,首先不做任何考虑直接全排列则有66720A =(种),当“乐”排在第一节有55120A =(种),当“射”和“御”两门课程相邻时有2525240A A =(种),当“乐”排在第一节,且“射”和“御”两门课程相邻时有242448A A =(种),则满足“乐”不排在第一节,“射”和“御”两门课程不相邻的排法有72012024048408--+=(种), 故选:A . 【点睛】本题考查排列、组合的应用,注意“乐”的排列对“射”和“御”两门课程相邻的影响,属于中档题.5.已知圆锥的高为3,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积与圆锥的体积的比值为( ) A .53B .329C .43D .259【答案】B 【解析】 【分析】计算求半径为2R =,再计算球体积和圆锥体积,计算得到答案. 【详解】如图所示:设球半径为R ,则()223R R =-+,解得2R =.故求体积为:3143233V R ππ==,圆锥的体积:2213333V ππ=⨯=,故12329V V =.故选:B .【点睛】本题考查了圆锥,球体积,圆锥的外接球问题,意在考查学生的计算能力和空间想象能力. 6.函数52sin ()([,0)(0,])33x xx xf x x -+=∈-ππ-的大致图象为A .B .C .D .【答案】A 【解析】 【分析】 【详解】 因为5()2sin()52sin ()()3333x x x xx x x xf x f x ---+-+-===--,所以函数()f x 是偶函数,排除B 、D , 又5()033f π-πππ=>-,排除C ,故选A .7.已知0x >,0y >,23x y +=,则23x yxy+的最小值为( )A .3-B .1C 1D 1【答案】B 【解析】23x yxy +2(2)2111x x y y x y xy y x ++==++≥+=+,选B 8.曲线24x y =在点()2,t 处的切线方程为( ) A .1y x =- B .23y x =-C .3y x =-+D .25y x =-+【答案】A 【解析】 【分析】将点代入解析式确定参数值,结合导数的几何意义求得切线斜率,即可由点斜式求的切线方程. 【详解】曲线24x y =,即214y x =, 当2x =时,代入可得21124t =⨯=,所以切点坐标为()2,1,求得导函数可得12y x '=, 由导数几何意义可知1212k y ='=⨯=, 由点斜式可得切线方程为12y x -=-,即1y x =-, 故选:A. 【点睛】本题考查了导数的几何意义,在曲线上一点的切线方程求法,属于基础题. 9.在复平面内,复数(2)i i +对应的点的坐标为( ) A .(1,2) B .(2,1)C .(1,2)-D .(2,1)-【答案】C 【解析】 【分析】利用复数的运算法则、几何意义即可得出. 【详解】解:复数i (2+i )=2i ﹣1对应的点的坐标为(﹣1,2),故选:C 【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.10.已知抛物线22(0)y px p =>上的点M 到其焦点F 的距离比点M 到y 轴的距离大12,则抛物线的标准方程为( ) A .2y x = B .22y x =C .24y x =D .28y x =【答案】B 【解析】 【分析】由抛物线的定义转化,列出方程求出p ,即可得到抛物线方程. 【详解】由抛物线y 2=2px (p >0)上的点M 到其焦点F 的距离比点M 到y 轴的距离大12,根据抛物线的定义可得122p =,1p ∴=,所以抛物线的标准方程为:y 2=2x . 故选B . 【点睛】本题考查了抛物线的简单性质的应用,抛物线方程的求法,属于基础题.11.椭圆22192x y +=的焦点为12,F F ,点P 在椭圆上,若2||2PF =,则12F PF ∠的大小为( )A .150︒B .135︒C .120︒D .90︒【答案】C 【解析】 【分析】根据椭圆的定义可得14PF =,12F F =. 【详解】由题意,12F F =126PF PF +=,又22PF =,则14PF =, 由余弦定理可得22212121212164281cos 22242PF PF F F F PF PF PF +-+-∠===-⋅⨯⨯.故12120F PF ︒∠=.故选:C. 【点睛】本题考查椭圆的定义,考查余弦定理,考查运算能力,属于基础题.12.已知集合{}21|A x log x =<,集合{|B y y ==,则A B =( )A .(),2-∞B .(],2-∞C .()0,2D .[)0,+∞【答案】D 【解析】 【分析】可求出集合A ,B ,然后进行并集的运算即可. 【详解】解:{}|02A x x =<<,{}|0B y y =≥;∴[)0,A B =+∞.故选D . 【点睛】考查描述法、区间的定义,对数函数的单调性,以及并集的运算. 二、填空题:本题共4小题,每小题5分,共20分。

2021届四川省绵阳市高三第一次诊断性考试数学(理)试题word版含解析

2021届四川省绵阳市高三第一次诊断性考试数学(理)试题word版含解析

2021届四川省绵阳市高三上学期开学考试数学(文)试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}32|{<<-=x x A ,}05|{2<-∈=x x Z x B ,则=B A ( ) A .}2,1{ B .}3,2{ C .}3,2,1{ D .}4,3,2{ 【答案】A2.已知命题p :01,2>+-∈∀x x R x ,则p ⌝为( )A .01,2>+-∉∀x x R x B .01,0200≤+-∉∃x x R x C .01,2≤+-∈∀x x R x D .01,0200≤+-∈∃x x R x【答案】D 【解析】试题分析:p ⌝为01,0200≤+-∈∃x x R x ,选D.考点:命题的否定【方法点睛】(1)对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.(2)判定全称命题“∀x ∈M ,p(x)”是真命题,需要对集合M 中的每个元素x ,证明p(x)成立;要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值x 0,使p(x 0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个x =x 0,使p(x 0)成立即可,否则就是假命题.3.《九章算术》是我国古代内容极为丰富的一部数学专著,书中有如下问题:今有女子善织,日增等尺,七日织二十八尺,第二日、第五日、第八日所织之和为十五尺,则第九日所织尺数为( ) A .8 B .9 C .10 D .11 【答案】B考点:等差数列4.若实数y x ,满足⎪⎩⎪⎨⎧≥≤+≥-010y y x y x ,则y x z +=2的最大值为( )A .0B .1C .2D .23 【答案】C 【解析】试题分析:可行域为一个三角形ABC 及其内部,其中11(0,0),(1,0),(,)22A B C ,所以直线y x z +=2过点B 时取最大值2,选C. 考点:线性规划【易错点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得. 5.设命题p :1)21(<x ,命题q :1ln <x ,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】B 【解析】6.2016年国庆节期间,绵阳市某大型商场举行“购物送券”活动.一名顾客计划到该商场购物,他有三张商场的优惠券,商场规定每购买一件商品只能使用一张优惠券.根据购买商品的标价,三张优惠券的优惠方式不同,具体如下:优惠券A :若商品标价超过100元,则付款时减免标价的10%; 优惠券B :若商品标价超过200元,则付款时减免30元;优惠券C :若商品标价超过200元,则付款时减免超过200元部分的20%.若顾客想使用优惠券C ,并希望比使用优惠券A 或B 减免的钱款都多,则他购买的商品的标价应高于( )A .300元B .400元C .500元D .600元 【答案】B 【解析】试题分析:设购买的商品的标价为x ,则(200)20%10%;(200)20%30;400,350400x x x x x x -⨯>⋅-⨯>⇒>>⇒>,选B.考点:不等式应用7.要得到函数)(2cos 32sin )(R x x x x f ∈+=的图象,可将x y 2sin 2=的图象向左平移( ) A .6π个单位 B .3π个单位 C .4π个单位 D .12π个单位【答案】A 【解析】试题分析:因为()sin 2322sin(2)3f x x x x π=+=+,所以可将x y 2sin 2=的图象向左平移3=26ππ,选A.考点:三角函数图像变换【思路点睛】三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言. 函数y =Asin(ωx +φ),x ∈R 是奇函数⇔φ=k π(k ∈Z);函数y =Asin(ωx +φ),x ∈R 是偶函数⇔φ=k π+π2(k ∈Z);函数y =Acos(ωx +φ),x ∈R 是奇函数⇔φ=k π+π2(k ∈Z);函数y =Acos(ωx +φ),x ∈R 是偶函数⇔φ=k π(k ∈Z).8.已知αθθsin 2cos sin =+,βθ2sin 22sin =,则( ) A .αβcos 2cos = B .αβ22cos 2cos=C .02cos 22cos =+αβD .αβ2cos 22cos = 【答案】D9.已知定义在),0[+∞上的函数)(x f 满足)(2)1(x f x f =+,当)1,0[∈x 时,x x x f +-=2)(,设)(x f 在),1[n n -上的最大值为)(*N n a n ∈,则=++543a a a ( )A .7B .87C .45D .14 【答案】A 【解析】 试题分析:23412345113111111(),()2(),(2)2()1,2()2,2()4,242222222a f a f f a f f a f a f ======+======,所以3451247a a a ++=++=,选A.考点:函数性质【思路点睛】(1)运用函数性质解决问题时,先要正确理解和把握函数相关性质本身的含义及其应用方向. (2)在研究函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化研究.如奇偶性可实现自变量正负转化,周期可实现自变量大小转化,单调性可实现去f “”,即将函数值的大小转化自变量大小关系10.在ABC ∆中,81cos =A ,4=AB ,2=AC ,则A ∠的角平分线D A 的长为( ) A .22 B .32 C .2 D .1 【答案】C考点:余弦定理11.如图,矩形ABCD 中,2=AB ,1=AD ,P 是对角线AC 上一点,25AP AC =,过点P 的直线分别交DA 的延长线,AB ,DC 于N E M ,,.若DA m DM =,DC n DN =)0,0(>>n m ,则n m 32+的最小值是( ) A .56 B .512 C .524 D .548【答案】C 【解析】 试题分析:232555AP AC DP DA DC =⇒=+,设DP xDM yDN =+,则1x y +=,又DP mxDA ynDC =+,所以3232,15555mx ny m n==⇒+=,因此321941942423(23)()(12)(122)55555n m n m m n m n m n m n m n +=++=++≥+⋅=,当且仅当23m n =时取等号,选C.考点:向量表示,基本不等式求最值【易错点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.12.若函数144)(234+-++=x ax x x x f 的图象恒在x 轴上方,则实数a 的取值范围是( )A .)(2,+∞B .)(1,+∞C .),213(+∞-D .),212(+∞- 【答案】A二、填空题(每题4分,满分20分,将答案填在答题纸上)13.若向量)0,1(=a ,)1,2(=b ,)1,(x c =满足条件b a -3与c 垂直,则=x . 【答案】1 【解析】试题分析:(3)0(1,1)(,1)01a b c x x -⋅=⇒-⋅=⇒= 考点:向量垂直【方法点睛】平面向量数量积的类型及求法(1)求平面向量数量积有三种方法:一是夹角公式a ·b =|a ||b |cos θ;二是坐标公式a ·b =x 1x 2+y 1y 2;三是利用数量积的几何意义.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简. 14.在公差不为0的等差数列}{n a 中,831=+a a ,且4a 为2a 和9a 的等比中项,则=5a . 【答案】13考点:等差数列 15.函数x x a x f ln )(=的图象在点))(,(22e f e 处的切线与直线x ey 41-=平行,则)(x f 的极值点是 . 【答案】e 【解析】 试题分析:2(1ln )()a x f x x -'=,所以244(12)1()1a f e a e e -'==-⇒=,因此)(x f 的极值点是1ln 0,x x e -== 考点:导数几何意义,函数极值【思路点睛】(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.16.)(x f 是定义在R 上的偶函数,且0≥x 时,3)(x x f =.若对任意的]32,12[+-∈t t x ,不等式)(8)3(x f t x f ≥-恒成立,则实数t 的取值范围是 .【答案】3-≤t 或1≥t 或0t = 【解析】试题分析:由题意得0x <时,3()()f x f x x =-=-,即3()||f x x =,因此33(3)8()|3|8|||3|2||f x t f x x t x x t x -≥⇒-≥⇒-≥,当0t =时,x R ∈,满足条件;当0t >时,5tx t x ≥≤-或,要满足条件,需2123150t t t t t t ⎧-≥+≤-⎪⇒≥⎨⎪>⎩或;当0t <时,5tx x t ≥-≤或,要满足条件,需2123350t t t tt t ⎧-≥-+≤⎪⇒≤-⎨⎪<⎩或;综上实数t 的取值范围是3-≤t 或1≥t 或0t = 考点:不等式恒成立【思路点睛】求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数)2||,0,0)(sin()(πϕωϕω<>>+=A x A x f 的图象(部分)如图所示.(1)求函数)(x f 的解析式; (2)若),(30πα∈,且34)(=παf ,求αcos .【答案】(1))6sin(2)(ππ+=x x f (2)6215+考点:求三角函数解析式,给值求值【方法点睛】已知函数sin()(A 0,0)y A x B ωϕω=++>>的图象求解析式(1)max min max min,22y y y y A B -+==. (2)由函数的周期T 求2,.T πωω=(3)利用“五点法”中相对应的特殊点求ϕ.18.设数列}{n a 的前n 项和为n S ,已知)(12*N n a S n n ∈-=.(1)求数列}{n a 的通项公式;(2)若对任意的*N n ∈,不等式92)1(-≥+n S k n 恒成立,求实数k 的取值范围. 【答案】(1)12-=n n a (2))643[∞+, 【解析】试题分析:(1)由和项求通项,要注意分类讨论:当1n =时,11a S =;当1n =时,11a S =解得11=a ;当2n ≥时,1n n n a S S -=-化简得12-=n n a a ;最后根据等比数列定义判断数列}{n a 为等比数列,并求出等比数列通项(2)先化简不等式,并变量分离得k ≥nn 292-,而不等式恒成立问题一般转化为对应函数最值问题,即k ≥nn 292-的最大值,而对数列最值问题,一般先利用相邻两项关系确定其增减性:令n nn b 292-=,则1112211292272+++-=---=-n nn n n nn n b b ,所以数列先增后减,最后根据增减性得最值取法:n b 的最大值是6436=b .试题解析:(1)令111121a a S n =-==,,解得11=a .……………………………2分 由12-=n n a S ,有1211-=--n n a S ,两式相减得122--=n n n a a a ,化简得12-=n n a a (n ≥2), ∴ 数列}{n a 是以首项为1,公比为2 的等比数列,∴ 数列}{n a 的通项公式12-=n n a .……………………………………………6分考点:由和项求通项,根据数列单调性求最值【方法点睛】给出S n 与a n 的递推关系求a n ,常用思路是:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n . 应用关系式a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2时,一定要注意分n =1,n ≥2两种情况,在求出结果后,看看这两种情况能否整合在一起. 19.在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,已知12=c ,64=b ,O 为ABC ∆的外接圆圆心. (1)若54cos =A ,求ABC ∆的面积S ; (2)若点D 为BC 边上的任意一点,1134DO DA AB AC -=+,求B sin 的值. 【答案】(11442(2)552sin =B 【解析】考点:向量投影,正弦定理【思路点睛】三角函数和平面向量是高中数学的两个重要分支,内容繁杂,且平面向量与三角函数交汇点较多,向量的平行、垂直、夹角、数量积等知识都可以与三角函数进行交汇.不论是哪类向量知识与三角函数的交汇试题,都会出现交汇问题中的难点,对于此类问题的解决方法就是利用向量的知识将条件转化为三角函数中的“数量关系”,再利用三角函数的相关知识进行求解.20.已知函数x x x x f cos sin )(+=.(1)判断在)(x f 区间)3,2(上的零点个数,并证明你的结论;(参考数据:4.12≈,4.26≈)(2)若存在)2,4(ππ∈x ,使得x kx x f cos )(2+>成立,求实数k 的取值范围.【答案】(1)有且只有1个零点(2)π22<k (2)由题意等价于x x x cos sin +x kx cos 2+>,整理得x x k sin <.…………7分 令x x x h sin )(=,则2sin cos )(xx x x x h -=', 令x x x x g sin cos )(-=,0sin )(<-='x x x g ,∴g(x)在)24(ππ,∈x 上单调递减, …………………………………………9分 ∴0)14(22)4()(<-⨯=<ππg x g ,即0sin cos )(<-=x x x x g , ∴0sin cos )(2<-='xx x x x h ,即x x x h sin )(=在)24(ππ,上单调递减, ……11分 ∴ππππ2242244sin)(==<x h ,即π22<k . ………12分 考点:函数零点,利用导数研究不等式有解【方法点睛】利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.21.已知函数1ln )(2-+=ax x x f ,e e x g x-=)(.(1)讨论)(x f 的单调区间;(2)若1=a ,且对于任意的),1(+∞∈x ,)()(x f x mg >恒成立,求实数m 的取值范围. 【答案】(1)a ≥0时,)(x f 的单调递增区间是)0(∞+,; 0<a 时,)(x f 的单调递增区间是)210(a-,;单调递减区间是)21(∞+-,a.(2)m ≥e 3.②当em 30<<时,令x x q x me x p x 2)(1)(=-=,. 显然x me x p x 1)(-=在)1[∞+,上单调递增,∴2131)1()(min =-⨯<-==e e me p x p . 由x x q 2)(=在)1[∞+,单调递增,于是2)(min =x q .∴min min )()(x q x p <. 于是函数xme x p x 1)(-=的图象与函数x x q 2)(=的图象只可能有两种情况: 若)(x p 的图象恒在)(x q 的图象的下方,此时)()(x q x p <,即0)(<'x h ,故)(x h 在)1(∞+,单调递减,又0)1(=h ,故0)(<x h ,不满足条件. 若)(x p 的图象与)(x q 的图象在x>1某点处的相交,设第一个交点横坐标为x0,当)1(0x x ,∈时,)()(x q x p <,即0)(<'x h ,故)(x h 在)1(0x ,单调递减,又0)1(=h ,故当)1(0x x ,∈时,0)(<x h .∴)(x h 不可能恒大于0,不满足条件.……9分③当m ≥e 3时,令x x me x x 21)(--=ϕ,则21)(2-+='xme x x ϕ. ∵x ∈)1(∞+,,∴21)(2-+='xme x x ϕ>2-x me ≥0123>=-⋅e e , 故x xme x x 21)(--=ϕ在x ∈)1(∞+,上单调递增, 于是033211)1()(=-⨯>--=>e e me x ϕϕ,即0)(>'x h , ∴)(x h 在)1(∞+,上单调递增,∴0)1()(=>h x h 成立. 综上,实数m 的取值范围为m ≥e3.………………………………………12分考点:利用导数求函数单调区间,利用导数求参数取值范围【方法点睛】利用导数解决不等式恒成立问题的“两种”常用方法(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,f(x)≥a 恒成立,只需f(x)min ≥a 即可;f(x)≤a 恒成立,只需f(x)max ≤a 即可.(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-4:坐标系与参数方程以直角坐标系的原点O 为极点,x 轴非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为θθρcos 4sin 2=.(1)求曲线C 的直角坐标方程;(2)若直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 511521(t 为参数),设点)1,1(P ,直线l 与曲线C 相交于B A ,两点,求||||PB PA +的值.【答案】(1)24y x =(2)415∴1544)(2122121=-+=-=+t t t t t t PB PA .……………………………10分考点:极坐标方程化为直角坐标方程,直线参数方程几何意义23.(本小题满分10分)选修4-5:不等式选讲已知函数)(|1||1|)(R a a x x x f ∈+--+=.(1)若1=a ,求不等式0)(≥x f 的解集;(2)若方程()f x x =有三个实数根,求实数a 的取值范围.【答案】(1))21[∞+-,(2)11a -<< (2)由方程x x f =)(可变形为11+--+=x x x a .令⎪⎩⎪⎨⎧>-≤≤---<+=+--+=,,,,,,12111211)(x x x x x x x x x x h 作出图象如右. ………………………8分于是由题意可得11a -<<.…………10分考点:绝对值定义【名师点睛】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

某某省某某市2021届高三数学上学期第二次诊断性考试试题 文 注意事项:
1.答卷前,考生务必将自己的某某、某某号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将答题卡交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合A ={x ∈N|-1≤x ≤1},B ={x|log 2x<1},则A ∩B =
A.[-1,1)
B.(0,1)
C.{-1,1}
D.{1}
2.已知直线l 1:ax +2y +1=0,直线l 2:2x +ay +1=0,若l 1⊥l 2,则a =
A.0B.2C.±2D.4
3.已知平面向量a =(1,b =(2,λ),其中λ>0,若|a -b|=2,则a ·b =
A.2 D.8
4.已知函数f(x)=x 3+sinx +2,若f(m)=3,则f(-m)=
A.2
B.1
C.0
D.-1
5.已知cos α+sin(α-6
)=0,则tan α=
A.-3
B.3
C.6.已知曲线y =e x (e 为自然对数的底数)与x 轴、y 轴及直线x =a(a>0)围成的封闭图形的面积为e a -1。

现采用随机模拟的方法向右图中矩形OABC 内随机投入400个点,其中恰有255个点落在图中阴影部分内,若OA =1,则由此次模拟实验可以估计出e 的值约为
A.2.718
B.2.737
C.2.759
D.2.785
7.已知命题p :若数列{a n }和{b n }都是等差数列,则{ra n +sb n }(r ,s ∈R)也是等差数列;命题q :∀x ∈(2k π,2k π+2
π)(k ∈Z),都有sinx<cosx 。

则下列命题是真命题的是 A.¬p∧qB.p ∧qC.p ∨qD.¬p∨q
8.对全班45名同学的数学成绩进行统计,得到平均数为80,方差为25,现发现数据收集时有两个错误,其中一个95分记录成了75分,另一个60分记录成了80分。

纠正数据后重新计算,得到平均数为x ,方差为s 2,则 A.x =80,s 2<25 B.x =80,s 2=25 C.x =80,s 2>25 D.x <80,s 2>25
9.已知圆x 2+y 2-4x -2y +1=0上,有且仅有三个点到直线ax -3y +3=0(a ∈R)的距离为1,则a =
A.±33
B.±32
C.±1
D.310.若函数f(x)=x 3-(2
a +3)x 2+2ax +3在x =2处取得极小值,则实数a 的取值X 围是 A.(-0,-6) B.(-∞,6) C.(6,+∞) D.(-6,+∞)
11.已知正实数x ,y 满足ln x y >lg y x
,则 A.2x >2y B.sinx>sinyC.lnx<lnyD.tanx<tany
12.已知点F 1,F 2是双曲线E :22
21(0)6
x y a a -=>的左、右焦点,点P 为E 左支上一点,△PF 1F 2的内切圆与x 轴相切于点M ,且1
21FM MF 3
=,则a = 23D.2
二、填空题:本大题共4小题,每小题5分,共20分。

13.若复数z满足z(1+i)=1-i,则z=。

14.为加速推进科技城新区建设,需了解某科技公司的科研实力,现拟采用分层抽样的方式从A,B,C三个部门中抽取16名员工进行科研能力访谈。

己知这三个部门共有64人,其中B 部门24人,C部门32人,则从A部门中抽取的访谈人数。

15.已知椭圆E:
22
22
1(0)
x y
a b
a b
+=>>的左、右焦点分别为F1,F2,若E上存在一点P使112
PF FF
⋅=0,且|PF1|=|F1F2|,则E的离心率为。

16.关于x的方程sin2x+2cos2x=m在区间[0,π)上有两个实根x1,x2,若x1-x2≥
2
π
,则实数m的取值X围是。

三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

17.(12分)
某食品厂2020年2月至6月的某款果味饮料生产产量(单位:万瓶)的数据如下表:
(1)根据以上数据,求y关于x的线性回归方程y bx a
=+;
(2)调查显示该年7月份的实际市场需求量为13.5万件,求该年7月份所得回归方程预测的生产产量与实际市场需求量的误差。

附:参考公式:1
2
1
()()
ˆˆ
ˆ,
()
n
i i
i
n
i
i
x x y y
b a y bx
x x
=
=
--
==-
-

∑。

18.(12分)
已知数列{a n}是递增的等比数列,且a1+a5=17,a2a4=16。

(1)求数列{a n}的通项公式;
(2)若数列{a n}的前n项和为S n,且S2n>160
9
a n,求n的最小值。

19.(12分)
如图,在△ABC中,点P在边BC上,∠PAC=30°,AC=3,AP=1。

(1)求∠APC;
(2)若cosB=57
14
,求△APB的面积。

20.(12分)
已知抛物线C:y2=2px(p>0)的焦点为F,点A(x0,2)为抛物线上一点,若点B(-2,0)满足()
FA FB AB
+⋅=0。

(1)求抛物线C的方程;
(2)过点B的直线l交C于点M,N,直线MA,NA分别交直线x=-2于点P,Q,求PB BQ
的值。

21.(12分)
已知函数f(x)=(2m+2)x-nlnx-1
2
mx2(m∈R),曲线y=f(x)在点(2,f(2))处的切线与y 轴垂直。

(1)求n;
(2)若f(x)≥0,求m的取值X围。

(二)选考题:共10分。

请考生在第22、23题中任选一题做答。

如果多做,则按所做的第一
题记分。

22.[选修4-4:坐标系与参数方程](10分)
在直角坐标系xOy 中,曲线C 1的方程为(x -2)2+y 2=6。

曲线C 2的参数方程为22221x t t 1y t t ⎧=+⎪⎪⎨⎪=-⎪⎩
(t 为参数)。

以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=α(-2π<α<2
π,ρ∈R)。

(1)求曲线C 1与C 2的极坐标方程;
(2)已知直线l 与曲线C 1交于A ,B 两点,与曲线C 2交于点C ,若|AB|:|OC|
,求α的值。

23.[选修4-5:不等式选讲](10分)
已知函数f(x)=|x -3|+|x -2|。

(1)求不等式f(x)<3的解集;
(2)记函数f(x)的最小值为m ,a>0,b>0,c>0,a +b +c =mabc ,证明:ab +bc +ac ≥9。

相关文档
最新文档