苏教版七年级数学 第三章代数式提优检测卷及答案

合集下载

2018-2019学年度第一学期苏科版七年级数学上册 第三章《代数式》检测测试题含答案

2018-2019学年度第一学期苏科版七年级数学上册 第三章《代数式》检测测试题含答案

2018-2019学年度第一学期苏科版七年级数学上册第三章 代数式 单元检测题考试总分: 120 分 考试时间: 120 分钟一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 ) 1.代数式a −b 2的意义表述正确的是( ) A.a 减去b 的平方的差 B.a 与b 差的平方C.a 、b 平方的差D.a 的平方与b 的平方的差2.我校七年级共有学生a 人,其中女生占40%,则男生人数是( )A.40%aB.a40% C.(1−40%)aD.a1−40%3.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,…如此继续下去如图,结果如表 则a n =()(用含n 的代数式表示)A.2nB.3(n −1)C.3(n +1)D.3n +14.下列各式中运算正确的是( ) A.3a −4a =−1 B.a 2+a 2=a 4C.3a 2+2a 3=5a 5D.5a 2b −6a 2b =−a 2b5.观察以下数组:(1),(3、5),(7、9、11),(13、15、17、19),….问2005在第()组.A.44B.45C.46D.无法确定6.在代数式ab3,−23abc,0,−5,x−y,2x,1π中,单项式有()A.3个B.4个C.5个D.6个7.代数式:abbc ,−4x,−23abc,π,2a−13,x+5y,0,−ab2π,a2−b2中,单项式和多项式分别有()A.5个,1个B.5个,2个C.4个,1个D.4个,2个8.下列判断:(1)−xy2π不是单项式;(2)x−y3是多项式;(3)0不是单项式;(4)1+xx是整式,其中正确的有()A.1个B.2个C.3个D.4个9.下列定义一种关于n的运算:①当n是奇数时,结果为3n+5②n为偶数时结果是n2(其中k是使n2是奇数的正整数),并且运算重复进行.例如:取n=26,则…,若n=449,则第449次运算结果是()A.1B.2C.7D.810.a+b=−3,c+d=2,则(c−b)−(a−d)的值为()A.5B.−5C.1D.−1二、填空题(共 10 小题,每小题 3 分,共 30 分)11.单项式3a2b5的系数是________.12.当k=________时,3x k y与−x2y是同类项.13.合并同类项:−12x2+23x2−56x2=________.14.已知ab =73,则a+ba−b=________.15.已知a2−ab=8,ab−b2=−4,则a2−b2=________,a2−2ab+b2=________.16.如果−4x6y2n+1与6x3m y3是同类项,那么,m=________,9n=________.17.已知A=2x2+3xy−2x−1,B=x2+xy−1,且3A+6B的值与x无关,则y=________.18.代数式“5x”,可解释为:“小明以5千米/时的速度走了x小时,他一共走了5x千米”.请你对“5x”再给出一个身边生活中的解释:________.19.下列四个计算:①a3+a3=a6;②(a2)3=a5;③a2⋅a4=a8;④a4÷a3=a,其中正确的有________.(填序号)20.观察图中所示的点阵图和相应的等式,探究其中的规律:观察图中所示的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式;①12=1;②1+3=22;③1+3+5=32;④________;⑤________;…(2)笫n个图形相应的式子是________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.(1)合并同类项:2a+6b−7a−b.(2)先化简,再求值:3(2m2−mn)−6(m2+mn−1),其中m=−2,n=3.22.(1)化简:7a+3(a−3b)−2(b−a)(2)先化简,再求值:5(3a2b−ab2)−4(−ab2+3a2b);其中a=−1,b=2.23.某公园的门票价格是:成人单价是10元,儿童单价是4元.某旅行团有a名成人和b名儿童;那么:(1)该旅行团应付多少的门票费.(2)如果该旅行团有32个成人,10个儿童,那么该旅行团应付多少的门票费.24.有规律排列的一列数:2,4,6,8,10,12,…它的每一项用式子2n(n是正整数)来表示.有规律排列的一列数:1,−2,3,−4,5,−6,7,−8,…(1)它的每一项你认为可用怎样的式子来表示;(2)它的第100个数是多少?(3)2006是不是这列数中的数?如果是,是第几个数?25.[背景资料]一棉花种植区的农民研制出采摘棉花的单人便携式采棉机,采摘效率高,能耗低,绿色环保,经测试,一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,购买一台采棉机需900元,雇人采摘棉花,按每采摘1公斤棉花a元的标准支付雇工工钱,雇工每天工作8小时.[问题解决](1)一个雇工手工采摘棉花,一天能采摘多少公斤?(2)一个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,求a的值;(3)在(2)的前提下,种植棉花的专业户张家和王家均雇人采摘棉花,王家雇佣的人数是张家的2倍,张家雇人手工采摘,王家所雇的人中有23的人自带采棉机采摘,13的人手工采摘,两家采摘完毕,采摘的天数刚好一样,张家付给雇工工钱总额为14400元,王家这次采摘棉花的总重量是多少?26.为鼓励居民节约用电,某市电力公司规定了电费的分段计算的方法:每月用电不超过100度,按每度点0.50元计算;每月用电超过100度,超出部分按每度点0.65元计算.设每月用电x度.(1)若0≤x≤100时,电费为________元;若x>100时,电费为________元.(用含有x的式子表示);(2)该用户为了解日用电量,记录了9月第一周的电表读数请你估计该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月份用电多少度?答案1.A2.C3.D4.D5.B6.C7.D8.A9.D10.A11.312.213.−23x214.5215.41216.2117.2−4x518.如买一支钢笔5元,买x支钢笔共5x元19.④20.1+3+5+7=421+3+5+7+9=52n2(n≥1的整数).21.解:(1)原式=2a−7a+6b−b=−5a+5b;(2)原式=6m2−3mn−6m2−6mn+6=−9mn+6当m=−2,n=3时,原式=−9×(−2)×3+6=54+6=60.22.解:(1)原式=7a+3a−9b−2b+2a=12a−11b;(2)原式=15a2b−5ab2+4ab2−12a2b=3a2b−ab2,当a=−1,b=2时,原式=6+4=10.23.解:(1)该旅行团应付(10a+4b)元的门票费;(2)把a=32,b=10代入代数式10a+4b,得:10×32+4×10=360(元),因此,他们应付360元门票费.24.解:(1)它的每一项可用式子(−1)n+1n(n是正整数)来表示.(2)它的第100个数是−100.(3)2006不是这列数中的数,因为这列数中的偶数全是负数.当n为奇数时,表示为n.当n为偶数时,表示为−n.25.解:(1)∵一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,∴一个人手工采摘棉花的效率为:35÷3.5=10(公斤/时),∵雇工每天工作8小时,∴一个雇工手工采摘棉花,一天能采摘棉花:10×8=80(公斤);(2)由题意,得80×7.5a=900,解得a=32;∴雇工工钱的标准为:每采摘1公斤棉花32元;(3)设张家雇佣x人采摘棉花,则王家雇佣2x人采摘棉花,其中王家所雇的人中有4x3的人自带采棉机采摘,2x3的人手工采摘.∵张家雇佣的x人全部手工采摘棉花,且采摘完毕后,张家付给雇工工钱总额为14400元,∴采摘的天数为:1440080x×3,即:120x,∴王家这次采摘棉花的总重量是:(35×8×4x3+80×2x3)×120x=51200(公斤).26.0.5x0.65x−15。

苏科版七年级上数学第三章《代数式》单元检测试卷含答案

苏科版七年级上数学第三章《代数式》单元检测试卷含答案

第三章《代数式》单元检测(满分:100分时间:60分钟)一、选择题(每题3分,共24分)1.下列表述不能表示代数式“4a”意义的是( )A.4的a倍B.a的4倍C.4个a相加D.4个a相乘2.单项式7ab2c3的次数是( )A.3 B.5 C.6 D.73.通信市场竞争日益激烈,若某通信公司的手机本地话费标准按原标准每分钟降低a元后,再次下调了20%,现在的收费标准是每分钟6元,则原收费标准是( )A.54a b⎛⎫+⎪⎝⎭元B.54a b⎛⎫-⎪⎝⎭元C.(a+5b)元D.(a-5b)元4.下列运算正确的是( )A.-2(3x-1)=-6x-1 B.-2(3x-1)=-6x+1C.-2(3x-1)=-6x-2 D.-2(3x-1)=-6x+25.化简5(2x-3)+4 (3-2x)的结果为( )A.2x-3 B.2x+9 C.8x-3 D.18x-36.某校组织若干师生到恩施大峡谷进行社会实践活动.若学校租用45座的客车x辆,则余下20人无座位;若租用60座的客车,则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是( )A.200-60x B.140-15x C.200-15x D.140-60x7.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部可剪拼成一个矩形(不重叠无缝隙),若拼成矩形的一边长为3,则另一边长是( )A.m+3 B.m+6 C.2m+3 D.2m+68.小明用棋子摆放图形来研究数的规律,图1中棋子围成三角形,其颗数3,6,9,12,…称为三角形数,类似地,图2中的4,8,12,16,…称为正方形数,下列数既是三角形数又是正方形数的是( )A .2010B .2012C .2014D .2016二、填空题(每题2分,共20分)9.农民张大伯因病住院,手术费为a 元,其他费用为b 元.由于参加农村合作医疗,若手术费报销85%,其他费用报销60%,则张大伯此次住院可报销_______元.(用代数式表示)10.观察下列一组图形:它们是按照一定规律排列的,依照此规律,第n 个图形中共有_______个★.11.若代数式-4x 6y 与x 2n y 是同类项,则常数n 的值为_______.12.如果一个关于x 的二次三项式,其二次项系数为2,常数项为-5,一次项系数为3,那么这个二次三项式应是_______.13.若a +b =2,ab =-1,则3a +-ab +3b =_______.14.若x =1时,2ax 2+bx =3,则当x =2时,ax 2+bx =_______.15.有一数值转换器,其转换原理如图所示,若开始输入x 的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是_______,…,依次继续下去,第2013次输出的结果是_______.16.扑克牌游戏,小明背对小亮,让小亮按下列四个步骤操作:第一步,分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;第二步,从左边一堆拿出两张,放入中间一堆;第三步,从右边一堆拿出一张,放入中间一堆;第四步,左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌的张数是_______.17.甲、乙、丙三家超市为了促销一种定价均为m 元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%.此时顾客要购买这种商品,最划算的超市是_______.18.已知2222233+=⨯,2333388+=⨯,244441515+=⨯,….若288a a b b +=⨯(a ,b 为正整数),则a +b =_______.三、解答题(共56分)19.(本题6分)用字母表示图中阴影部分的面积.20.(本题6分)已知(a-3)x2y b+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.21.(本题10分)化简求值:(1)3x2+2xy-4y2-2(3xy-y2-2x2),其中x=1,y=-2;(2)4(x2-3x)-5(2x2-5x),其中x=-1.22.(本题10分)一个三角形一边长为a+b,另一边长比这条边长b,第三边长比这条边短a-b.(1)求这个三角形的周长;(2)若a=5,b=3,求三角形的周长.23.(本题10分)某位同学做一道题:已知两个多项式A,B,求A-B的值.他误将A-B 看成A+B,求得结果为3x2-3x+5,已知B=x2-x-1.(1)求多项式A;(2)求A-B的正确答案.24.(本题12分)某公司在甲、乙两仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元,设从甲仓库调往A县农用车x辆.(1)甲仓库调往B县农用车_______辆,乙仓库调往A县农用车_______辆.(用含x的代数式表示)(2)写出公司从甲、乙两仓库调往农用车到A,B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少.25.(本题10分)观察下列等式:第1个等式:a1=11111323⎛⎫=-⎪⨯⎝⎭;第2个等式:a2=111135235⎛⎫=-⎪⨯⎝⎭;第3个等式:a3=111157257⎛⎫=-⎪⨯⎝⎭;第4个等式:a4=111179279⎛⎫=-⎪⨯⎝⎭;…请回答下列问题:(1)按以上规律列出第5个等式:a5=_______=_______;(2)用含n的代数式表示第n个等式:a n=_______=_______(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.26.(本题12分)(1)已知A=2x2+ax-y+6,B=bx2-3x+5y-1,且A-B中不含有x的项,求a+b3的值;(2)已知a2+2ab=-10,b2+2ab=16,求3a2+2ab-2b2的值.参考答案一、选择题1.D2.C3.A4.D5.A6.C7.C8.D二、填空题9.(85%a +60%b) 10.3n +1 11.3 12.2x 2+3x -5 13.5 14.6 15.3 3 16.517.乙 18.71三、解答题19.(1)ab -bx (2)2214r r π-20.-521.(1)7 (2)-1922.(1)2a +5b (2)2523.(1)A =2x 2-2x +6 (2)A -B =x 2-x +724.(1)12-x 10-x (2)760-30x (3)980 25.(1)1112911⎛⎫⨯- ⎪⎝⎭ (2)11122121n n ⎛⎫⨯- ⎪-+⎝⎭ (3)10020126.(1) 5 (2)-62。

苏科版七年级数学上册第三章-代数式检测卷(含答案)

苏科版七年级数学上册第三章-代数式检测卷(含答案)

代数式 检测卷 (总分100分 时间60分钟 )一、选择题(每小题2分,共20分)1.下面各式中,不是代数式的是 ( )A .3a +bB .3a =2bC .8aD .02.以下代数式书写规范的是 ( )A .(a +b )÷2B .65y C .113x D .x +y 厘米 3.计算-5a 2+4a 2的结果为 ( )A .-3aB .-aC .-3a 2D .-a 24. 化简5(2x -3)+4(3-2x)的结果为 ( )A .2x -3B .2x +9C .8x -3D .18x -35.如果单项式5x a y 5与313b x y 是同类项,那么a 、b 的值分别为 ( ) A .2,5 B .-3,5 C .5,3 D .3,56.代数式-23xy 3的系数与次数分别是 ( )A .-2,4B .-6,3C .-2,7D .-8,47.若0<x<1,则x ,1x,x 2的大小关系是 ( ) A .1x <x<x 2 B .x<<x 2 C .x 2<x<1x D .1x<x 2<x 8.根据如图3-1所示的程序计算输出结果.若输入的x 的值是32,则输出的结果为 ( )A .72B .94C .12D .929.已知整式x 2-52x =6,则2x 2-5x +6的值为 ( ) A .9 B .12 C .18 D .2410.某商店在甲批发市场以每包m 元的价格进了40包茶叶,又在乙批发市场以每包n 元(m>n)的价格进了同样的60包茶叶,如果商家以每包2m n 元的价格卖出这种茶叶,卖完后,这家商店 ( )A .盈利了B .亏损了C .不赢不亏D .盈亏不能确定二、填空题(每小题2分,共20分)11.单项式3x 2y 的系数为_______.12.对代数式4a 作出一个合理解释:____________________________.13.当x =1,y =15时,3x(2x +3y)-x(x -y)=_______. 14.若代数式-4x 6y 与x 2n y 是同类项,则常数n 的值为_______.15.观察如图所示图形:它们是按照一定规律排列的,依照此规律,第n 个图形中共有_______个★.16.把(a -b)看作一个整体,合并同类项7(a -b)-3(a -b)-2(a -b)=_______.17.若m 、n 互为相反数,则5m +5n -5=_______.18.已知A 是关于a 的三次多项式,B 是关于a 的二次多项式,则A +B 的次数是_______.19.已知当x =1时,3ax 2+bx 的值为2,则当x -3时,ax 2+bx 的值为_______.20.已知-b 2+14ab +A =7a 2+4ab -2b 2,则A =_______.三.解答题(本题共7小题,共60分)21.(10分)化简:(1)(7x -3y)-(8x -5y); (2)5(2x -7y)-(4x -10y).22.(5分)化简:已知A =-3x 3+2x 2-1,B =x 3-2x 2-x +4,求2A -(A -B).23.(10分)先化简,再求值:(1) (3a 2-ab +7)-(5ab -4a 2+7),其中a =2,b =13.(2) 5x 2-2(3y 2+2x 2)+3 (2y 2-xy),其中 x =-12,y =-1.24.(7分)已知有理数a 、b 、c 满足①()253220a b ++-=;②212a b c x y -++是一个7次单项式;求多项式a 2b -[a 2b -(2abc -a 2c -3a 2b)-4a 2c]-abc 的值.25.(8分)我国出租车收费标准因地而异.甲市为:起步价6元,3千米后每千米价为1.5元;乙市为:起步价10元,3千米后每千米价为1.2元.(1)试问在甲、乙两市乘坐出租车s(s>3)千米的价差是多少元?(2)如果在甲、乙两市乘坐出租车的路程都为10千米,那么哪个市的收费标准高些?高多少?26.(9分)寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当n 个最小的连续偶数相加时,它们的和S 与n 之间有什么样的关系,用公式表示出来;(2)并按此规律计算:①2+4+6+…+300的值;②162+164+166+…+400的值.27.(10分)已知()()11f x x x =⨯+,则 ()()11111112f ==⨯+⨯ ()()11222123f ==⨯+⨯ ……已知()()()()1412315f f f f n ++++=,求n 的值。

苏教版初一数学第三章《代数式》综合练习(含答案)

苏教版初一数学第三章《代数式》综合练习(含答案)

第三章《代数式》综合练习一.选择题1.若a+2b=3,则代数式2a+4b的值为()A.3 B.4 C.5 D.62.已知5a x﹣3b与a5b y+5的和是单项式,则|x+y|等于()A.﹣5 B.4 C.3 D.53.已知x2a y4﹣b与﹣x3﹣b y3a是同类项,则a+b的值为()A.﹣1 B.0 C.1 D.24.按如图所示的运算程序,能使输出m的值为8的是()A.x=﹣7,y=﹣2 B.x=5,y=3 C.x=3,y=﹣1 D.x=﹣4,y=35.下列各式中,是5x2y的同类项的是()A.x2y B.﹣3x2yz C.3a2b D.5x36.下列计算正确的是()A.﹣2(a﹣b)=﹣2a+b B.2c2﹣c2=2C.x2y﹣4yx2=﹣3x2y D.3a+2b=5ab7.按一定规律排列的单项式:a,﹣2a,4a,﹣8a,16a,﹣32a,…,第n个单项式是()A.(﹣2)n﹣1a B.(﹣2)n a C.2n﹣1a D.2n a8.某公司今年2月份的利润为x万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)()A.(x﹣8%)(x+10%)B.(x﹣8%+10%)C.(1﹣8%+10%)x D.(1﹣8%)(1+10%)x9.下列对代数式a的描述,正确的是()A.a与b的相反数的差B.a与b的差的倒数C.a与b的倒数的差D.a的相反数与b的差的倒数10.已知对于任意正整数n,都有a1+a2+a3+…+a n=n3,则()A.B.C.D.二.填空题11.已知﹣5a3x b5+y和a7﹣y b3x是同类项,则x+y的值是.12.若3x n y3和﹣x2y m是同类项,则n﹣m=.13.已知a+b=2,ab=1,求a﹣2ab+b的值为.14.若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn=.15.若m=20,按下列程序计算,最后得出的结果是.16.已知2a﹣5b=﹣4,则13﹣4a+10b的值为.17.观察下面的变化规律:1,,,,…根据上面的规律计算:.三.解答题18.先化简,再求值:(1)5a2bc abc﹣2a2bc﹣3a2abc,其中a=2,b=3,c;(2)6(x+y)2﹣9(x+y)+(x+y)2+7(x+y),其中x+y.19.先化简再求值:3a2b﹣[2ab2﹣2(ab a2b)+ab]+3ab2,其中a,b满足(a+4)2+|b|=0.20.已知a﹣2b=3,求代数式2(3a2b+a﹣b)﹣3(2a2b﹣a+b)﹣5b的值.21.某村种植了小麦、水稻、玉米三种农作物,小麦种植面积是a亩,水稻种植面积是小麦种植面积的4倍,玉米种植面积比小麦种植面积的2倍少3亩.问:(1)水稻种植面积;(含a的式子表示)(2)水稻种植面积和玉米种植面积哪一个大?为什么.22.小王家买了一套新房,其结构如图所示(单位:m).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米k元,木地板的价格为每平方米2k元,那么小王一共需要花多少钱?23.对于题目:“已知x2﹣2x﹣1=0,求代数式3x2﹣6x+2020的值”,采用“整体代入”的方法(换元法),可以比较容易的求出结果.(1)设x2﹣2x=y,则3x2﹣6x+2020=(用含y的代数式表示).(2)根据x2﹣2x﹣1=0,得到y=1,所以3x2﹣6x+2020的值为.(3)用“整体代入”的方法(换元法),解决下面问题:已知a5=0,求代数式的值.24.某移动通讯公司开设了两种通讯业务:全球通:用户先交50元月租费,然后每通话1分钟付费0.4元(市内通话),2.快捷通用户不交月租费,每通话1分钟,付话费0.6元(市内通话).按一个月通话x分钟计算,两种方式的话费分别为P,Q 元.(1)请你写出P,Q与x之间的关系;(2)某用户一个月内通话时间为120分钟,你认为选择何种移动通讯较合适?25.按如图程序进行运算.如果结果不大于10,就把结果作为输入的数再进行第二次运算,直到符合要求(结果大于10)为止.(1)当输入的数是10时,请求出输出的结果;(2)当输入的数是x时,经过第一次运算,结果即符合要求,请求出x的最小整数值.26.某农户几年前承包荒山若干亩,投资8000元种桃树,农户精心照料,收获季节桃树上硕果累累.今年桃子总产量为20000千克,桃子在市场上每千克售m元,在桃园每千克售n元(n<m).该农户将桃子拉到市场出售平均每天出售1000千克,需4人帮忙,每人每天付工资50元,农用车运费及其他各项费用平均每天100元.(1)分别用m,n表示两种方式出售桃子的纯收入?(2)若m=2元,n=1.5元,且两种出售桃子的方式都在相同的时间内售完全部桃子,请你通过计算说明选择哪种出售方式获利多.27.用同样大小的两种不同颜色的正方形纸片,按下图方式拼正方形.第(1)个图形中有1个正方形;第(2)个图形有1+3=4个小正方形;第(3)个图形有1+3+5=9个小正方形;第(4)个图形有1+3+5+7=16小正方形;……(1)根据上面的发现我们可以猜想:1+3+5+7+…+(2n﹣1)=(用含n的代数式表示);(2)请根据你的发现计算:①1+3+5+7+...+99;②101+103+105+ (199)1.若a+2b=3,则代数式2a+4b的值为()A.3 B.4 C.5 D.6【解答】D【解析】∵a+2b=3,∴原式=2(a+2b)=2×3=6,故选D.2.已知5a x﹣3b与a5b y+5的和是单项式,则|x+y|等于()A.﹣5 B.4 C.3 D.5【解答】B【解析】∵5a x﹣3b与a5b y+5的和是单项式,∴5a x﹣3b与a5b y+5是同类项,∴x﹣3=5,y+5=1,解得x=8,y=﹣4,∴|x+y|=|8﹣4|=4.故选B.3.已知x2a y4﹣b与﹣x3﹣b y3a是同类项,则a+b的值为()A.﹣1 B.0 C.1 D.2【解答】D【解析】∵x2a y4﹣b与﹣x3﹣b y3a是同类项,∴,解得,∴a+b=1+1=2.故选D.4.按如图所示的运算程序,能使输出m的值为8的是()A.x=﹣7,y=﹣2 B.x=5,y=3 C.x=3,y=﹣1 D.x=﹣4,y=3 【解答】C【解析】A、当x=﹣7,y=﹣2时,xy>0,m=x2+y2=53,不合题意,B、当x=5,y=3时,xy>0,m=x2+y2=34,不合题意;C、当x=3,y=﹣1时,xy<0,m=x2﹣y2=8,符合题意;D、当x=﹣4,y=3时,xy<0,m=x2﹣y2=7,不合题意;故选C.5.下列各式中,是5x2y的同类项的是()A.x2y B.﹣3x2yz C.3a2b D.5x3【解析】A.5x2y与x2y,所含的字母相同:x、y,它们的指数也相同,所以它们是同类项,故本选项符合题意;B.5x2y与﹣3x2yz,所含的字母不相同,所以它们不是同类项,故本选项不合题意;C.5x2y与3a2b,所含的字母不相同,所以它们不是同类项,故本选项不合题意;D.5x2y与5x3,所含的字母不相同,所以它们不是同类项,故本选项不合题意.故选A.6.下列计算正确的是()A.﹣2(a﹣b)=﹣2a+b B.2c2﹣c2=2C.x2y﹣4yx2=﹣3x2y D.3a+2b=5ab【解答】C【解析】∵﹣2(a﹣b)=﹣2a+2b,故选项A错误;∵2c2﹣c2=c2,故选项B错误;∵x2y﹣4yx2=﹣3x2y,故选项C正确;∵3a+2b不能合并,故选项D错误;故选C.7.按一定规律排列的单项式:a,﹣2a,4a,﹣8a,16a,﹣32a,…,第n个单项式是()A.(﹣2)n﹣1a B.(﹣2)n a C.2n﹣1a D.2n a【解答】A【解析】∵a=(﹣2)1﹣1a,﹣2a=(﹣2)2﹣1a,4a=(﹣2)3﹣1a,﹣8a=(﹣2)4﹣1a,16a=(﹣2)5﹣1a,﹣32a=(﹣2)6﹣1a,…由上规律可知,第n个单项式为:(﹣2)n﹣1a.故选A.8.某公司今年2月份的利润为x万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)()A.(x﹣8%)(x+10%)B.(x﹣8%+10%)C.(1﹣8%+10%)x D.(1﹣8%)(1+10%)x【解答】D【解析】由题意得3月份的产值为(1﹣8%)x,4月份的产值为(1﹣8%)(1+10%)x.故选D.9.下列对代数式a的描述,正确的是()A.a与b的相反数的差B.a与b的差的倒数C.a与b的倒数的差D.a的相反数与b的差的倒数【解答】C【解析】用数学语言叙述代数式a为a与b的倒数的差,故选C.10.已知对于任意正整数n,都有a1+a2+a3+…+a n=n3,则()A.B.C.D.【解答】C【解析】∵a1+a2+…+a n﹣1+a n=n3,a1+a2+…+a n﹣1=(n﹣1)3,两式相减,得a n=3n2﹣3n+1,∴,∴,.故选C.二.填空题11.已知﹣5a3x b5+y和a7﹣y b3x是同类项,则x+y的值是.【解答】3【解析】根据题意得:,解得,∴x+y=3.故答案为3,12.若3x n y3和﹣x2y m是同类项,则n﹣m=.【解答】﹣1【解析】根据题意可得:n=2,m=3,∴n﹣m=2﹣3=﹣1.故答案为﹣1.13.已知a+b=2,ab=1,求a﹣2ab+b的值为.【解答】0【解析】∵a+b=2,ab=1,∴a﹣2ab+b=a+b﹣2ab=2﹣2=0,故答案为0.14.若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn=.【解答】0或8【解析】∵多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,∴n﹣2=0,1+|m﹣n|=3,∴n=2,|m﹣n|=2,∴m﹣n=2或n﹣m=2,∴m=4或m=0,∴mn=0或8.故答案为0或8.15.若m=20,按下列程序计算,最后得出的结果是.【解答】21【解析】由题意得,当m=20时,原式.故答案为21.16.已知2a﹣5b=﹣4,则13﹣4a+10b的值为.【解答】21【解析】∵2a﹣5b=﹣4,∴13﹣4a+10b=13﹣2(2a﹣5b)=13﹣2×(﹣4)=13+8=21.故答案为21.17.观察下面的变化规律:1,,,,…根据上面的规律计算:.【解答】【解析】由题干信息可抽象出一般规律:(a,b均为奇数,且b=a+2).故=1=1.故答案为.三.解答题18.先化简,再求值:(1)5a2bc abc﹣2a2bc﹣3a2abc,其中a=2,b=3,c;(2)6(x+y)2﹣9(x+y)+(x+y)2+7(x+y),其中x+y.【解答】(1)﹣1;(2)0【解析】(1)5a2bc abc﹣2a2bc﹣3a2abc,=(5a2﹣2a2﹣3a2)+(abc abc)+(bc bc)=abc,当a=2,b=3,c时,原式=2×3×()=﹣1;(2)6(x+y)2﹣9(x+y)+(x+y)2+7(x+y),=7(x+y)2﹣2(x+y)当x+y时,原式=72=0.19.先化简再求值:3a2b﹣[2ab2﹣2(ab a2b)+ab]+3ab2,其中a,b满足(a+4)2+|b|=0.【解答】﹣3【解析】原式=3a2b﹣2ab2+2(ab a2b)﹣ab+3ab2=3a2b﹣2ab2+2ab﹣3a2b﹣ab+3ab2=(3a2b﹣3a2b)+(﹣2ab2+3ab2)+(2ab﹣ab)=ab2+ab,∵(a+4)2+|b|=0,∴a+4=0,b0,解得:a=﹣4,b,原式=﹣4×()2+(﹣4)=﹣1﹣2=﹣3.20.已知a﹣2b=3,求代数式2(3a2b+a﹣b)﹣3(2a2b﹣a+b)﹣5b的值.【解答】15【解析】原式=6a2b+2a﹣2b﹣6a2b+3a﹣3b﹣5b=5a﹣10b,∵a﹣2b=3,∴原式=5(a﹣2b)=15.21.某村种植了小麦、水稻、玉米三种农作物,小麦种植面积是a亩,水稻种植面积是小麦种植面积的4倍,玉米种植面积比小麦种植面积的2倍少3亩.问:(1)水稻种植面积;(含a的式子表示)(2)水稻种植面积和玉米种植面积哪一个大?为什么.【解答】(1)4a;(2)水稻种植面积大【解析】(1)由题意得:水稻种植面积是4a;(2)由题意得:玉米种植面积是2a﹣3,∵2a﹣3﹣4a=﹣3﹣4a<0,∴2a﹣3<4a,∴水稻种植面积大.22.小王家买了一套新房,其结构如图所示(单位:m).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米k元,木地板的价格为每平方米2k元,那么小王一共需要花多少钱?【解答】(1)木地板:10ab(平方米);地砖:15ab(平方米);(2)35abk(元)【解析】(1)木地板的面积为2b(5a﹣3a)+3a(5b﹣2b﹣b)=2b•2a+3a•2b=4ab+6ab=10ab(平方米);地砖的面积为5a•5b﹣10ab=25ab﹣10ab=15ab(平方米);(2)15ab•k+10ab•2k=15abk+20abk=35abk(元),答:小王一共需要花35abk元钱.23.对于题目:“已知x2﹣2x﹣1=0,求代数式3x2﹣6x+2020的值”,采用“整体代入”的方法(换元法),可以比较容易的求出结果.(1)设x2﹣2x=y,则3x2﹣6x+2020=(用含y的代数式表示).(2)根据x2﹣2x﹣1=0,得到y=1,所以3x2﹣6x+2020的值为.(3)用“整体代入”的方法(换元法),解决下面问题:已知a5=0,求代数式的值.【解答】(1)3y+2020;(2)2023;(3)1【解析】(1)∵x2﹣2x=y,∴3x2﹣6x+2020=3(x2﹣2x)+2020=3y+2020;故答案为3y+2020;(2)∵y=1,∴3x2﹣6x+2020=3y+2020=3×1+2020=2023;故答案为2023;(3)设,则.∵,∴b﹣5=0,解得:b=5.∴.24.某移动通讯公司开设了两种通讯业务:全球通:用户先交50元月租费,然后每通话1分钟付费0.4元(市内通话),2.快捷通用户不交月租费,每通话1分钟,付话费0.6元(市内通话).按一个月通话x分钟计算,两种方式的话费分别为P,Q 元.(1)请你写出P,Q与x之间的关系;(2)某用户一个月内通话时间为120分钟,你认为选择何种移动通讯较合适?【解答】(1)P=50+0.4x,Q=0.6x;(2)快捷通【解析】(1)P=50+0.4x,Q=0.6x;(2)当x=120时,50+0.4x=50+0.4×120=98,0.6x=0.6×120=72,∵98>72,∴某用户一个月内通话时间为120分钟,选择快捷通较合适.25.按如图程序进行运算.如果结果不大于10,就把结果作为输入的数再进行第二次运算,直到符合要求(结果大于10)为止.(1)当输入的数是10时,请求出输出的结果;(2)当输入的数是x时,经过第一次运算,结果即符合要求,请求出x的最小整数值.【解答】(1)16;(2)8【解析】(1)当输入的数是10时,10×2﹣4=16>10,∴输出的结果为16;(2)由题可得,2x﹣4>10,解得x>7,∴x的最小整数值为8.26.某农户几年前承包荒山若干亩,投资8000元种桃树,农户精心照料,收获季节桃树上硕果累累.今年桃子总产量为20000千克,桃子在市场上每千克售m元,在桃园每千克售n元(n<m).该农户将桃子拉到市场出售平均每天出售1000千克,需4人帮忙,每人每天付工资50元,农用车运费及其他各项费用平均每天100元.(1)分别用m,n表示两种方式出售桃子的纯收入?(2)若m=2元,n=1.5元,且两种出售桃子的方式都在相同的时间内售完全部桃子,请你通过计算说明选择哪种出售方式获利多.【解答】(1)(20000m﹣6000)元,20000n元;(2)应选择将桃子拉到市场出售【解析】(1)将这批水果拉到市场上出售收入为20000m4×50100=20000m﹣4000﹣2000=(20000m﹣6000)(元)在果园直接出售收入为20000n元;(2)当m=2时,市场收入为20000m﹣6000=20000×2﹣6000=34000(元).当n=1.5时,果园收入为20000n=20000×1.5=30000(元)因30000<34000,所以应选择将桃子拉到市场出售.27.用同样大小的两种不同颜色的正方形纸片,按下图方式拼正方形.第(1)个图形中有1个正方形;第(2)个图形有1+3=4个小正方形;第(3)个图形有1+3+5=9个小正方形;第(4)个图形有1+3+5+7=16小正方形;……(1)根据上面的发现我们可以猜想:1+3+5+7+...+(2n﹣1)=(用含n的代数式表示);(2)请根据你的发现计算:①1+3+5+7+...+99;②101+103+105+ (199)【解答】(1)n2;(2)①2500,②7500【解析】(1)∵第(1)个图形中有1个正方形;第(2)个图形有1+3=4个小正方形;第(3)个图形有1+3+5=9个小正方形;第(4)个图形有1+3+5+7=16小正方形;……∴1+3+5+7+…+(2n﹣1)=()2=n2;故答案为n2;(2)①1+3+5+7+…+99=()2=502=2500;②∵1+3+5+7+…+199=()2=10000,∴101+103+105+…+199=10000﹣2500=7500.。

苏教版初一数学第3章《代数式》达标检测卷(含答案)

苏教版初一数学第3章《代数式》达标检测卷(含答案)

第3章《代数式》达标检测卷考试时间:100分钟;满分:100分学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2019秋•金凤区校级期中)在1,a,a+b,,2x2y﹣xy2,3a>2,x+1=9中,代数式有()个.A.3个B.4个C.5个D.6个2.(3分)(2019秋•兰陵县期中)下列式子中,符合代数式书写格式的有()①m×n;②3ab;③;④m+2天;⑤abc3A.2个B.3个C.4个D.5个3.(3分)(2019秋•陇县期中)下列结论中正确的是()A.的系数是,次数是4B.单项式m的次数为1,没有系数C.单项式﹣xy2z的系数为﹣1,次数为4D.多项式2x2+xy﹣3是四次三项式4.(3分)(2019秋•汉阳区期中)若2x3n y m+4与﹣3x9y2n的和仍为单项式,那么m+n=()A.2 B.3 C.5 D.85.(3分)(2019秋•罗湖区校级期中)下列各式中,不能由3a﹣2b+c经过变形得到的是()A.3a﹣(2b+c)B.c﹣(2b﹣3a)C.(3a﹣2b)+c D.3a﹣(2b﹣c)6.(3分)(2019秋•罗湖区校级期中)m表示一个三位数,n表示一个一位数,把m放到n的左边组成一个四位数,则这个数可以表示为()A.mn B.10m+n C.100m+n D.1000m+n7.(3分)(2019秋•自贡期中)如果关于x的多项式3x3﹣4x2+x+k2x2﹣5中不含x2项,则k的值为()A.2 B.﹣2 C.2或﹣2 D.08.(3分)(2020春•南安市期中)我们把关于x的多项式用记号f(x)来表示,把x等于某数a时的多项式的值用f(a)来表示.例如x=2时,多项式f(x)=ax3﹣bx+5的值记为f(2).若f(2)=8,则f(﹣2)的值为()A.2 B.﹣2 C.3 D.﹣39.(3分)(2019秋•衡水期中)将四张边长各不相同的正方形纸片按如图方式放入矩形ABCD内(相邻纸片之间互不重叠也无缝隙),未被四张正方形纸片覆盖的部分用阴影表示.设右上角与左下角阴影部分的周长的差为l.若知道l的值,则不需测量就能知道周长的正方形的标号为()A.①B.②C.③D.④10.(3分)(2019秋•灌阳县期中)下列图形都是由同样大小的黑、白圆按照一定规律组成的,其中第①个图形中一共有2个白色圆,第②个图形中一共有8个白色圆,第③个图形中一共有16个白色圆,按此规律排列下去,第⑨个图形中白色圆的个数是()A.86 B.98 C.104 D.106第Ⅱ卷(非选择题)二.填空题(共6小题,满分18分,每小题3分)11.(3分)(2019秋•沙坪坝区校级期中)单项式的系数是,多项式0.3xy﹣2x3y﹣5xy2+1是次项式.12.(3分)(2019秋•武冈市期中)把多项式﹣2x2+3x﹣4放入带“﹣”的括号里为﹣().13.(3分)(2020春•香坊区校级期中)已知x2﹣3x+2=7,那么代数式﹣x2+3x+2的值是.14.(3分)(2019秋•杭锦后旗期中)某商品的进价为a元/件,在销售旺季,该商品售价较进价高50%,旺季后,又以7折(即原价的70%)的价格对该商品开展促销活动,这时一件该商品的售价为.15.(3分)(2019秋•太和县期中)已知k为常数,当k=时,多项式a2﹣kab+2b2与多项式﹣3a2+2ab﹣3b2相加合并为二次二项式.16.(3分)(2019秋•海淀区校级期中)小明同学在做一道题:“已知两个多项式A,B,计算2A+B,误将“2A+B”看成“A+2B”,求得的结果为9x2+2x﹣6.已知A+B=2x2﹣4x+9,则2A+B的正确答案为.三.解答题(共7小题,满分52分)17.(4分)(2020春•南岗区校级期中)化简(1)2(2a﹣b)﹣(2b﹣3a).(2)5xy+y2﹣2(4xy﹣y2+1).18.(4分)(2019秋•金水区校级期中)已知a=2,b=﹣1,求2[a2b(a+1)]﹣3(a2b﹣2b)﹣6(b)的值时,马虎同学将a=2,b=﹣1错抄成a=2,b=1,可结果还是正确的,马虎同学比较纳闷,请你帮助他揭开其中的迷雾,写出你的说明过程.19.(8分)(2019秋•费县期中)先化简,再求值:(1)(5a2+2a﹣1)﹣4(3﹣8a+2a2),其中a=﹣1.(2)已知(x+1)2+|y﹣2|=0,求代数式4(x2﹣3xy﹣y2)﹣3(x2﹣7xy﹣2y2)的值.20.(8分)(2019秋•洪山区期中)已知A=2a2+3ab﹣2a﹣1,B=﹣a2ab.(1)当a=﹣1,b=﹣2时,求4A﹣(3A﹣2B)的值.(2)若代数式4A﹣(3A﹣2B)的值与a的取值无关,求b4A+b3B的值.21.(8分)(2019秋•上蔡县期末)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓广探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.22.(10分)(2019秋•泉港区期中)为了庆祝元旦,学校准备举办一场“经典诵读”活动,某班准备网购一些经典诵读本和示读光盘,诵读本一套定价100元,示读光盘一张定价20元.元旦期间某网店开展促销活动,活动期间向客户提供两种优惠方案:方案A:买一套诵读本送一张示读光盘;方案B:诵读本和示读光盘都按定价的九折付款.现某班级要在该网店购买诵读本10套和示读光盘x张(x>10),解答下列三个问题:(1)若按方案A购买,共需付款元(用含x的式子表示),若按方案B购买,共需付款元(用含x的式子表示);(2)若需购买示读光盘15张(即x=15)时,请通过计算说明按哪种方案购买较为合算;(3)若需购买示读光盘15张(即x=15)时,你还能给出一种更为省钱的购买方法吗?若能,请写出你的购买方法和所需费用.23.(10分)(2019秋•汉阳区期中)观察下列各式13=112×22;13+23=922×32;13+23+33=3632×42;13+23+33+43=10042×52.回答下面的问题:(1)猜想:13+23+33+…+(n﹣1)3+n3=;(直接写出你的结果)(2)根据(1)中的结论,直接写出13+23+33+…+993+1003的值是;(3)计算:513+523+…+993+1003的值.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2019秋•金凤区校级期中)在1,a,a+b,,2x2y﹣xy2,3a>2,x+1=9中,代数式有()个.A.3个B.4个C.5个D.6个【分析】代数式是用运算符号把数和表示数的字母连在一起的式子.单独的一个数或者一个字母都叫做代数式.因此题目中符合题意的是1,a,a+b,,2x2y﹣xy2,一共5个;3a>2是不等式,x+1=9是等式,都不是代数式.【答案】解:∵1,a,a+b,,2x2y﹣xy2是代数式;∴一共有5个代数式.故选:C.【点睛】本题考查代数式的概念,题型容易.需注意带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式.2.(3分)(2019秋•兰陵县期中)下列式子中,符合代数式书写格式的有()①m×n;②3ab;③;④m+2天;⑤abc3A.2个B.3个C.4个D.5个【分析】根据代数式的书写要求判断各项.【答案】解:①正确的书写格式是mn;②正确的书写格式是ab;③的书写格式是正确的,④正确的书写格式是(m+2)天;⑤的书写格式是正确的.故选:A.【点睛】此题考查代数式问题,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.3.(3分)(2019秋•陇县期中)下列结论中正确的是()A.的系数是,次数是4B.单项式m的次数为1,没有系数C.单项式﹣xy2z的系数为﹣1,次数为4D.多项式2x2+xy﹣3是四次三项式【分析】根据单项式的系数及次数的定义,以及多项式的次数、系数的定义解答.【答案】解:A、的系数是,次数是3,故选项错误;B、单项式m的次数是1,系数是1,故选项错误;C、单项式﹣xy2z的系数是﹣1,次数为4是正确的;D、多项式2x2+xy﹣3是二次三项式,故选项错误.故选:C.【点睛】本题考查了多项式和单项式.解题的关键是掌握多项式的系数,次数,项,以及单项式的系数,次数.4.(3分)(2019秋•汉阳区期中)若2x3n y m+4与﹣3x9y2n的和仍为单项式,那么m+n=()A.2 B.3 C.5 D.8【分析】直接利用合并同类项法则得出m,n的值,进而得出答案.【答案】解:∵2x3n y m+4与﹣3x9y2n的和仍为单项式,∴3n=9,解得:n=3,故m+4=2n=6,则m=2,那么m+n=5.故选:C.【点睛】此题主要考查了合并同类项,正确掌握相关运算法则是解题关键.5.(3分)(2019秋•罗湖区校级期中)下列各式中,不能由3a﹣2b+c经过变形得到的是()A.3a﹣(2b+c)B.c﹣(2b﹣3a)C.(3a﹣2b)+c D.3a﹣(2b﹣c)【分析】根据去括号法则去掉括号,再判断即可.【答案】解:A、3a﹣(2b+c)=3a﹣2b﹣c≠3a﹣2b+c,故本选项符合题意;B、c﹣(2b﹣3a)=c﹣2b+3a=3a﹣2b+c,故本选项不符合题意;C、(3a﹣2b)+c=3a﹣2b+c,故本选项不符合题意;D、3a﹣(2b﹣c)=3a﹣2b+c,故本选项不符合题意;故选:A.【点睛】本题考查了去括号法则,能熟记去括号法则的内容是解此题的关键.6.(3分)(2019秋•罗湖区校级期中)m表示一个三位数,n表示一个一位数,把m放到n的左边组成一个四位数,则这个数可以表示为()A.mn B.10m+n C.100m+n D.1000m+n【分析】直接利用四位数的表示方法得出答案.【答案】解:∵m表示一个三位数,n表示一个一位数,把m放到n的左边组成一个四位数,∴这个数可以表示为10m+n.故选:B.【点睛】此题主要考查了列代数式,正确表示四位数是解题关键.7.(3分)(2019秋•自贡期中)如果关于x的多项式3x3﹣4x2+x+k2x2﹣5中不含x2项,则k的值为()A.2 B.﹣2 C.2或﹣2 D.0【分析】根据合并同类项,可得整式的化简,根据二次项的系数为零,可得关于k的一元二次方程,解一元二次方程,可得答案.【答案】解:原式=3x3+(k2﹣4)x2+x﹣5,由多项式不含x2,得k2﹣4=0,解得k=±2,故选:C.【点睛】本题考查了多项式,多项式不含项的系数为零.8.(3分)(2020春•南安市期中)我们把关于x的多项式用记号f(x)来表示,把x等于某数a时的多项式的值用f(a)来表示.例如x=2时,多项式f(x)=ax3﹣bx+5的值记为f(2).若f(2)=8,则f(﹣2)的值为()A.2 B.﹣2 C.3 D.﹣3【分析】根据:f(x)=ax3﹣bx+5的值记为f(2),f(2)=8,可得:8a﹣2b+5=8,据此求出8a+2b的值是多少,即可求出f(﹣2)的值是多少.【答案】解:∵f(x)=ax3﹣bx+5的值记为f(2),f(2)=8,∴8a﹣2b+5=8,∴8a﹣2b=3,∴f(﹣2)=﹣8a+2b+5=﹣(8a﹣2b)+5=﹣3+5=2.故选:A.【点睛】此题主要考查了等式的性质和应用,以及代数式求值问题,要熟练掌握.9.(3分)(2019秋•衡水期中)将四张边长各不相同的正方形纸片按如图方式放入矩形ABCD内(相邻纸片之间互不重叠也无缝隙),未被四张正方形纸片覆盖的部分用阴影表示.设右上角与左下角阴影部分的周长的差为l.若知道l的值,则不需测量就能知道周长的正方形的标号为()A.①B.②C.③D.④【分析】设①、②、③、④四个正方形的边长分别为a、b、c、d,用a、b、c、d表示出右上角、左下角阴影部分的周长,利用整式的加减混合运算法则计算,得到答案.【答案】解:设①、②、③、④四个正方形的边长分别为a、b、c、d,由题意得,(a+d﹣b﹣c+b+a+d﹣b+b﹣c+c+c)﹣(a﹣d+a﹣d+d+d)=l,整理得,2d=l,则知道l的值,则不需测量就能知道正方形④的周长,故选:D.【点睛】本题考查的是整式加减运算的应用,根据图形正确表示出右上角、左下角阴影部分的周长是解题的关键.10.(3分)(2019秋•灌阳县期中)下列图形都是由同样大小的黑、白圆按照一定规律组成的,其中第①个图形中一共有2个白色圆,第②个图形中一共有8个白色圆,第③个图形中一共有16个白色圆,按此规律排列下去,第⑨个图形中白色圆的个数是()A.86 B.98 C.104 D.106【分析】根据题目中的图形可以发现白色圆个数的变化规律,从而可以得到第⑨个图形中白色圆的个数.【答案】解:由图可知,第①个图形中白色圆的个数为3×2﹣4=2,第②个图形中白色圆的个数为4×3﹣4=8,第③个图形中白色圆的个数为5×4﹣4=16,第④个图形中白色圆的个数为6×5﹣4=26,则第⑨个图形中白色圆的个数是:11×10﹣4=110﹣4=106,故选:D.【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中白色圆个数的变化规律,利用数形结合的思想解答.二.填空题(共6小题,满分18分,每小题3分)11.(3分)(2019秋•沙坪坝区校级期中)单项式的系数是,多项式0.3xy﹣2x3y﹣5xy2+1是四次四项式.【分析】根据单项式和多项式的概念求解.【答案】解:单项式的系数是;多项式0.3xy﹣2x3y﹣5xy2+1是四次四项式.故答案为:;四,四.【点睛】本题考查了多项式和单项式的知识,几个单项式的和叫做多项式;数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.12.(3分)(2019秋•武冈市期中)把多项式﹣2x2+3x﹣4放入带“﹣”的括号里为﹣(2x2﹣3x+4 ).【分析】根据添括号法则解答即可.【答案】解:把多项式﹣2x2+3x﹣4放入带“﹣”的括号里为﹣(2x2﹣3x+4).故答案为:2x2﹣3x+4.【点睛】本题考查的是添括号法则.解题的关键是熟练掌握添括号法则.13.(3分)(2020春•香坊区校级期中)已知x2﹣3x+2=7,那么代数式﹣x2+3x+2的值是﹣3 .【分析】将﹣x2+3x+2变形为﹣(x2﹣3x)+2然后代入数值进行计算即可.【答案】解:∵x2﹣3x+2=7,∴x2﹣3x=5,∴﹣x2+3x+2=﹣(x2﹣3x)+2=﹣5+2=﹣3;故答案为:﹣3.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.14.(3分)(2019秋•杭锦后旗期中)某商品的进价为a元/件,在销售旺季,该商品售价较进价高50%,旺季后,又以7折(即原价的70%)的价格对该商品开展促销活动,这时一件该商品的售价为 1.05a元.【分析】根据现售价=进价×(1+提高的百分数)×折数列出算式,再进行计算即可.【答案】解:根据题意得:a×(1+50%)×0.7=1.05a(元).答:这时一件该商品的售价为1.05a元;故答案为:1.05a元.【点睛】此题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.15.(3分)(2019秋•太和县期中)已知k为常数,当k= 2 时,多项式a2﹣kab+2b2与多项式﹣3a2+2ab﹣3b2相加合并为二次二项式.【分析】根据多项式a2﹣kab+2b2与多项式﹣3a2+2ab﹣3b2相加合并为二次二项式,可以求得k的值,本题得以解决.【答案】解:(a2﹣kab+2b2)+(﹣3a2+2ab﹣3b2)=a2﹣kab+2b2﹣3a2+2ab﹣3b2=﹣2a2﹣(k﹣2)ab﹣b2,∵多项式a2﹣kab+2b2与多项式﹣3a2+2ab﹣3b2相加合并为二次二项式,∴k﹣2=0,解得,k=2,故答案为:2.【点睛】本题考查整式的加减,解答本题的关键是明确整式加减的计算方法.16.(3分)(2019秋•海淀区校级期中)小明同学在做一道题:“已知两个多项式A,B,计算2A+B,误将“2A+B”看成“A+2B”,求得的结果为9x2+2x﹣6.已知A+B=2x2﹣4x+9,则2A+B的正确答案为﹣3x2﹣14x+33 .【分析】直接利用整式的加减运算法则得出B,A,进而求出答案.【答案】解:∵A+2B=9x2+2x﹣6,A+B=2x2﹣4x+9,∴2x2﹣4x+9+B=9x2+2x﹣6,∴B=9x2+2x﹣6﹣(2x2﹣4x+9)=7x2+6x﹣15,∴A=2x2﹣4x+9﹣(7x2+6x﹣15)=﹣5x2﹣10x+24,故2A+B=2(﹣5x2﹣10x+24)+7x2+6x﹣15=﹣10x2﹣20x+48+7x2+6x﹣15=﹣3x2﹣14x+33.故答案为:﹣3x2﹣14x+33.【点睛】此题主要考查了整式的加减运算,正确得出多项式B是解题关键.三.解答题(共7小题,满分52分)17.(4分)(2020春•南岗区校级期中)化简(1)2(2a﹣b)﹣(2b﹣3a).(2)5xy+y2﹣2(4xy﹣y2+1).【分析】(1)先去括号,再合并同类项即可得;(2)先去括号,再合并同类项即可得.【答案】解:(1)原式=4a﹣2b﹣2b+3a=7a﹣4b;(2)原式=5xy+y2﹣8xy+2y2﹣2=3y2﹣3xy﹣2.【点睛】本题主要考查整式的加减,整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.18.(4分)(2019秋•金水区校级期中)已知a=2,b=﹣1,求2[a2b(a+1)]﹣3(a2b﹣2b)﹣6(b)的值时,马虎同学将a=2,b=﹣1错抄成a=2,b=1,可结果还是正确的,马虎同学比较纳闷,请你帮助他揭开其中的迷雾,写出你的说明过程.【分析】利用去括号法则、合并同类项法则把原式化简,代入计算得到答案.【答案】解:2[a2b(a+1)]﹣3(a2b﹣2b)﹣6(b)=3a2b﹣(a+1)﹣3a2b+6b﹣6b﹣4=3a2b﹣a﹣1﹣3a2b+6b﹣6b﹣4=﹣a﹣5,因为化简结果不含b,所以与b的取值无关.当a=2,b=﹣1,原式=﹣2﹣5=﹣7.【点睛】本题考查的是整式的化简求值,掌握整式的加减混合运算法则是解题的关键.19.(8分)(2019秋•费县期中)先化简,再求值:(1)(5a2+2a﹣1)﹣4(3﹣8a+2a2),其中a=﹣1.(2)已知(x+1)2+|y﹣2|=0,求代数式4(x2﹣3xy﹣y2)﹣3(x2﹣7xy﹣2y2)的值.【分析】(1)原式去括号合并得到最简结果,把a的值代入计算即可求出值;(2)原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【答案】解:(1)原式=5a2+2a﹣1﹣12+32a﹣8a2=﹣3a2+34a﹣13,当a=﹣1时,原式=﹣3﹣34﹣13=50;(2)∵(x+1)2+|y﹣2|=0,∴x+1=0,y﹣2=0,解得:x=﹣1,y=2,原式=2x2﹣12xy﹣4y2﹣3x2+21xy+6y2=﹣x2+9xy+2y2,当x=﹣1,y=2时,原式=﹣1﹣18+8=﹣11.【点睛】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.(8分)(2019秋•洪山区期中)已知A=2a2+3ab﹣2a﹣1,B=﹣a2ab.(1)当a=﹣1,b=﹣2时,求4A﹣(3A﹣2B)的值.(2)若代数式4A﹣(3A﹣2B)的值与a的取值无关,求b4A+b3B的值.【分析】(1)先化简整式,再代入值即可求解;(2)代数式4A﹣(3A﹣2B)的值与a的取值无关可知a的系数为0,可求出b的值,进而求解.【答案】解:(1)4A﹣(3A﹣2B)=4A﹣3A+2B=A+2B因为A=2a2+3ab﹣2a﹣1,B=﹣a2ab,所以A+2B=2a2+3ab﹣2a﹣1+2(﹣a2ab)=2a2+3ab﹣2a﹣1﹣2a2+ab=4ab﹣2a当a=﹣1,b=﹣2时,原式=8+210;(2)因为4A﹣(3A﹣2B)=4ab﹣2a=a(4b﹣2)因为代数式的值与a无关,所以4b﹣2=0,解得b∵b4A+b3B=b3(bA+B)(A+B)(A+2B)(4ab﹣2a).答:b4A+b3B的值为.【点睛】本题考查了整式的加减,解决本题的关键是代数式4A﹣(3A﹣2B)的值与a的取值无关可知a的系数为0.21.(8分)(2019秋•上蔡县期末)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是﹣(a﹣b)2.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓广探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【分析】(1)利用整体思想,把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2即可得到结果;(2)原式可化为3(x2﹣2y)﹣21,把x2﹣2y=4整体代入即可;(3)依据a﹣2b=3,2b﹣c=﹣5,c﹣d=10,即可得到a﹣c=﹣2,2b﹣d=5,整体代入进行计算即可.【答案】解:(1)∵3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2;故答案为:﹣(a﹣b)2;(2)∵x2﹣2y=4,∴原式=3(x2﹣2y)﹣21=12﹣21=﹣9;(3)∵a﹣2b=3,2b﹣c=﹣5,c﹣d=10,∴a﹣c=﹣2,2b﹣d=5,∴原式=﹣2+5﹣(﹣5)=8.【点睛】本题主要考查了整式的化简求值问题,整体代入法是解决代数式求值问题的常用方法.22.(10分)(2019秋•泉港区期中)为了庆祝元旦,学校准备举办一场“经典诵读”活动,某班准备网购一些经典诵读本和示读光盘,诵读本一套定价100元,示读光盘一张定价20元.元旦期间某网店开展促销活动,活动期间向客户提供两种优惠方案:方案A:买一套诵读本送一张示读光盘;方案B:诵读本和示读光盘都按定价的九折付款.现某班级要在该网店购买诵读本10套和示读光盘x张(x>10),解答下列三个问题:(1)若按方案A购买,共需付款20x+800 元(用含x的式子表示),若按方案B购买,共需付款18x+900 元(用含x的式子表示);(2)若需购买示读光盘15张(即x=15)时,请通过计算说明按哪种方案购买较为合算;(3)若需购买示读光盘15张(即x=15)时,你还能给出一种更为省钱的购买方法吗?若能,请写出你的购买方法和所需费用.【分析】(1)根据两种方案得出代数式即可;(2)把x=15代入解答即可;(3)综合利用两种方案计算,进行比较解答即可.【答案】解:(1)按方案A购买,需付款:10×100+20(x﹣10)=20x+800(元)按方案B购买,需付款:0.9(10×100+20x)=18x+900(元);故答案为:20x+800;18x+900;(2)把x=15分别代入:20x+800=20×15+800=1100(元),18x+900=18×15+900=1170(元).因为1100<1170,所以按方案A购买更合算;(3)先按方案A购买10套诵读本(送10张示读光盘),再按方案B购买(x﹣10)张示读光盘,共需费用:10×100+0.9×20(x﹣10)=18x+820,当x=15时,18×15+820=1090(元)∴用此方法购买更省钱.【点睛】此题考查列代数式及代数式求值问题,得到两种优惠方案付费的关系式是解决本题的关键.23.(10分)(2019秋•汉阳区期中)观察下列各式13=112×22;13+23=922×32;13+23+33=3632×42;13+23+33+43=10042×52.回答下面的问题:(1)猜想:13+23+33+…+(n﹣1)3+n3=n2×(n+1)2;(直接写出你的结果)(2)根据(1)中的结论,直接写出13+23+33+…+993+1003的值是25502500 ;(3)计算:513+523+…+993+1003的值.【分析】(1)根据题目中的式子,可以写出相应的猜想;(2)根据(1)中的结论,可以求得所求式子的值;(3)根据(1)中的结论可以求得所求式子的值.【答案】解:(1)13+23+33+…+(n﹣1)3+n3=(1+2+3+…+n)2n2×(n+1)2,故答案为:n2×(n+1)2;(2)13+23+33+…+993+10031002×(100+1)2=25502500,故答案为:25502500;(3)513+523+…+993+1003=(13+23+33+…+993+1003)﹣(13+23+33+…+493+503)1002×(100+1)2502×(50+1)2=25502500﹣1625625=23876875.【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中式子的特点,求出相应式子的值.。

苏科版七年级数学上册《第三章代数式》单元检测卷(带有答案)

苏科版七年级数学上册《第三章代数式》单元检测卷(带有答案)

苏科版七年级数学上册《第三章代数式》单元检测卷(带有答案)一、单选题(本大题共12小题,每小题3分,共36分) 1.一个代数式的倍与的和是3a b +,这个代数式是( )A .3a b +B .1122a b -+C .33a b 22+D .33a b 22+2.合并同类项22335x x x x -++-的结果正确的是( ) A .447x -B .42425x x --C .242x x -D .2425x x --3.若代数式2231a a +=,那么代数式24610a a +-的值是( ) A .-8B .16C .1D .64.买一支笔需要m 元,买一个笔记本需要n 元,则买三支笔和5个笔记本共需要( ) A .(35)m n +元B .15mn 元C .(53)m n +元D .8mn 元5.下列是一串有趣的图案按一定规律排列而成的.请仔细观察并思考,按此规律画出的第2007个图案是 .A .第一个图形B .第二个图形C .第三个图形D .以上都有可能图形6.下列各式中,不能由a ﹣b +c 通过变形得到的是( ) A .a ﹣(b ﹣c )B .c ﹣(b ﹣a )C .(a ﹣b )+cD .a ﹣(b +c )7.下列说法正确的是( ) A .222431a b a b -+是四次三项式 B .单项式23abc -的次数是3 C .单项式3ab-的系数是3-,次数是2 D .32ab -是二次单项式 8.下列图形都是由面积为1的正方形按一定的规律组成的,其中,第1个图形中面积为1的正方形有9个,第2个图形中面积为1的正方形有14个,……,按此规律,则第几个图形中面积为1的正方形的个数为2019个( )A .400B .401C .402D .4039.已知多项式ax 5+bx 3+4,当x =1时,值为5,那么多项式ax 4+bx 2-4,当x =-1时的值为( ) A .5B .-5C .3D .-310.一个篮球的单价为a 元,一个足球的单价为b 元()b a >.小明买6个篮球和2个足球,小刚买5个篮球和3个足球,则小明比小刚少花( )A .()a b -元B .()b a -元C .()5a b -元D .()5b a -元11.定义一种新运算“※”,观察下列各式 1※3=1×5+3=8 3※(﹣1)=3×5﹣1=14 5※4=5×5+4=29 4※(﹣3)=4×5﹣3=17若a ※(﹣b )=﹣6,则(a ﹣b )※(5a +3b )的值为( )A .12B .6C .﹣6D .﹣1212.如图,将-1,2,-3,-5分别填入没有数字的圈内,使横、竖以及内、外两圈上的4个数字之和都相等,则a 、b 所在位置的两个数字之和是( )A .6-或1-B .1-或4-C .3-或4-D .8-或1-.二、填空题(本大题共8小题,每小题3分,共24分)13.小红要购买珠子串成一条手链,黑色珠子每个a 元,白色珠子每个b 元,要串成如图所示的手链,小红购买珠子应该花费 元.14.已知多项式4(1)25n m x x x --+-是三次三项式,则(m +1)n = .15.两个形状大小完全相同的长方形中各放入 5 个相同的小长方形后, 得到图 1 和图 2 的阴 影部分,已知每个小长方形的宽为a ,则图2与图 1 的阴影部分周长之差为 .(用 含a 的代数式表示)16.如果单项式22m x y +与n x y 的和仍然是一个单项式,则m n +的值是 . 17.已知2231x y +=-,则代数式2463x y +-的值为 . 18.若4350x y ++=,则865x y +-的值等于 . 19.将自然数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2015对应的有序数对为 .20.abc 是一个三位的自然数,已知195abc ab a --=,这个三位数是218;聪明的小亮在解决这种问题时,采取列成连减竖式的方法(见右图)确定要求的自然数,请你仿照小亮的作法,解决这种问题.如果abcd 是一个四位的自然数,且2993abcd abc ab a ---=,那么,这个四位数是 .三、解答题(本大题共5小题,每小题8分,共40分) 21.计算:a,船在水中航行时,船速有如下关系:顺水航速50水流速度;逆水航速=船在静水中的速度-水流速度))请用代数式表示出甲、乙两船的航行速度;小时后甲船比乙船多行驶的路程.(1)列式表示广场空地的面积_________,它是_________次_________项式. (2)若50m x =,35m y =和()15r x y =-,求广场空地的面积(π取3.14 ,计算结果保留到个位).1.D 2.D 3.A 4.A 5.C 6.D 7.A 8.D 9.D 10.B 11.D 12.B13.()34a b +/(4b +3a ) 14.8 15.2a 16.1 17.5- 18.15.- 19.(45,11). 20.336521.(1)42;(2)242x y - 22.(1)去括号运算(2)一;没有遵循去括号法则 (3)7ab -;7-23.(1)甲船速度为:()50km/h a +,乙船速度为:()50km/h a -;(2)20km . 24.22352a b a -+ -6.25.(1)()22πm xy r -,二,二(2)21722m。

苏科版七年级数学上册 第三章 代数式 单元检测试题(有答案)

苏科版七年级数学上册 第三章   代数式  单元检测试题(有答案)

第三章 代数式 单元检测试题(满分120分;时间:120分钟)一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )1. 下列各式中是代数式的是( )A.a 2−b 2=0B.4>3C.aD.5x −2≠02. 下列说法正确的有( )个①−25πxy 2的系数为−25;②1是单项式;③2x −5是多项式;④单项式(−2)2x 2y 3的次数为7.A.3B.4C.2D.13. 用代数式表示“a 、b 两数的平方和减去它们乘积的2倍”,正确的是( )A.a 2+b 2−2abB.(a +b)2−2abC.a 2b 2−2abD.2(a 2+b 2−ab)4. 下面的说法正确的是( )A.单项式2πa 2b 的次数是4次B.多项式a 2b +bc +3的次数是2C.3ab 5的系数是3 D.x +1x +4不是多项式5. 在式子2ab ,mn 2+2m 3,x ,y+z x ,0,5π,−2πpq 3中单项式有( ) A.6个B.5个C.4个D.3个6. 下列式子中:12,3ab ,m +2n ,2x +3=1,s t ,整式的个数为( ) A.2个B.3个C.4个D.5个7. 下列式子中:13,1x+2,x 3−y ,π(x 2−y 2),16a 2,7x −1,y 2+8x ,9a 2+1a −2,单项式和多项式的个数分别为()A.2个,5个B.2个,4个C.3个,4个D.2个,6个8. 下列运算中,正确的是()A.3a+2b=5abB.2a3+3a2=5a5C.5a2−4a2=1D.3a2b−3ba2=09. 下列说法正确的是()A.−33a2bc2的系数为−3,次数为27B.x π+y2+z23不是单项式,但是整式C.1x+1是多项式D.mx2+1一定是关于x的二次二项式10. 如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是()A.54个B.90个C.102个D.114个二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 如果a−b−2=0,那么代数式1−2a+2b的值是________.12. 化简:3+[3a−2(a−1)]=________.13. 若3x m−2y n+3与−5x5y2是同类项,则m+n=________.14. 观察下列各式1×3=3=22−1,3×5=15=42−1,5×7=35=62−1,11×13=143=122−1…把你猜想到的规律用只含一个字母的等式表示出来________.15. 某班有女生a人,男生比女生的2倍少5人,则男生有________人.16. 若x2−2x−2的值为0,则3x2−6x的值是________.17. 若单项式12x2y m与−2x n y3是同类项,则m=________,n=________.18. 代数式−πa2b22的系数是________,次数是________.19. 已知5x3y m与6x n y2可以合并为一项,则m n的值是________.20. 多项式12x|m|−(m+2)x+7是关于x的二次三项式,则m=________.三、解答题(本题共计6 小题,共计60分,)21. 化简或求值:①4x−(−3y+52x);②5(3a2b−ab2)−4(−ab2+3a2b);③(9a2−1.5ab+5b2)−(7a2−13ab+7b2),其中a=−12,b=1.22. 关于x,y的多项式6mx2+4nxy+2x+2xy−x2+y+4不含二次项,求多项式2m2n+10m−4n+2−2m2n−4m+2n的值.23. 把下列各式填在相应的大括号里:x−7,13x,4ab,23a,5−3x,y,st,x+13,x7+y7,x2+x2+1,m−1m+1,8a3x,−1单项式集合{ ...};多项式集合{ ...};整式集合{ ...}.24. 自我国实施“限塑令”起,开始有偿使用环保购物袋,为了满足市场需求,某厂家生产A、B两种款式的布质环保购物袋,每天生产5000个,两种购物袋的成本和售价如下表,若设每天生产A种购物袋x个.(2)当x=2000时,求每天的生产成本和每天获得的利润.25. 如图,用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察下列图形,探究并观察下列问题.(1)在第4个图中,白色瓷砖共有________块,一共有瓷砖________块;(2)在第n个图中,黑色瓷砖共有________块,一共有瓷砖________块;(3)如果每块黑瓷砖5元,白瓷砖4元,铺设当n=9时,共需花多少钱购买瓷砖?26. 李师傅下岗后,做起来小生意,第一次进货,他以每件a元的价格购进了30件甲种小商品,以每件b元的价格购进了40件乙种小商品,且a<b.(1)若李师傅将甲种商品提价40%,乙种商品提价30%全部出售,他获利多少元?(用含有a,b的式子表示结果)(2)若李师傅将两种商品都以a+b元的价格全部出售,他这次买卖是赚钱还是亏本,请2说明理由?参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】C【解答】解:A:a2−b2=0为等式,不为代数式,故本项错误.B:4>3为不等式,故本项错误.C;a为代数式,故本项正确.D:5x−2≠0为不等式,故本项错误.故选:C.2.【答案】D【解答】解:①−25πxy2的系数为−25π,故①错误;②1是单项式,故②正确;③2x 不是单项式,所以2x−5不是多项式,故③错误;④单项式(−2)2x2y3的次数为5,故④错误;故选(D)3.【答案】A【解答】解:a、b两数的平方和是a2+b2,它们乘积的2倍是2ab,则a、b两数的平方和减去它们乘积的2倍是:a2+b2−2ab;故选A.4.【答案】D【解答】解:A、单项式2πa2b的次数是3次,故选项错误;B、多项式a2b+bc+3的次数是3,故选项错误;C、3ab5的系数是35,故选项错误;D 、x +1x +4不是多项式是正确的.故选D .5.【答案】B【解答】解:2ab 是单项式;mn 2+2m 3含有加减运算是多项式;x 单独一个字母是一个单项式;y+z x 分母含有字母既不是单项式,也不是多项式;0、5π都数字是一个单项式;−2πpq 3是单项式.共有5个单项式.故选:B .6.【答案】B【解答】解:由整式的概念可得,12,3ab ,m +2n 是整式,2x +3=1是等式不是整式,s t 是分式不是整式.故选B .7.【答案】B【解答】解:所给式子中单项式有13,16a 2一共2个; 多项式有:1x+2,x 3−y ,π(x 2−y 2),7x −1,y 2+8x ,一共4个. 故选B .8.【答案】D【解答】解:A、不是同类项不能合并,故A错误;B、合并同类项系数相加字母及指数不变,故B错误;C、合并同类项系数相加字母及指数不变,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.9.【答案】B【解答】解:A、−33a2bc2的系数为−33,次数为2+1+2=5,所以此选项不正确;B、xπ+y2+z23不是单项式,是多项式,是整式,所以此选项正确;C、1x+1不是多项式,是分式,所以此选项不正确;D、因为m不确定,当m=0时,mx2+1=1,是单项式,当m≠0时,一定是关于x的二次二项式,所以此选项不正确.故选B.10.【答案】B【解答】根据题意分析可得:从里向外的第1层包括6个正三角形.第2层包括18个正三角形.此后,每层都比前一层多12个.依此递推,第8层中含有正三角形个数是6+12×7=90个.故选:B.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】−3【解答】∵ a−b−2=0,∵ a−b=2,则原式=1−2(a−b)=1−2×2=1−4=−3,12.【答案】a +5【解答】解:原式=3+3a −2a +2=a +5,故答案为:a +513.【答案】6【解答】解:∵ 3x m−2y n+3与−5x 5y 2是同类项,∵ {m −2=5n +3=2, 解得:{m =7n =−1, 则m +n =7+(−1)=6.故答案为:6.14.【答案】(n −1)(n +1)=n 2−1【解答】解:∵ 1×3=3=22−1,3×5=15=42−1,5×7=35=62−1,11×13=143=122−1…,∵ 规律为:(n −1)(n +1)=n 2−1.故答案为:(n −1)(n +1)=n 2−1.15.【答案】(2a −5)【解答】解:依题意得:(2a −5).16.【答案】6【解答】解:由x 2−2x −2=0,得到x 2−2x =2,则原式=3(x2−2x)=6.故答案为:6.17.【答案】3,2【解答】解:∵ 单项式12x2y m与−2x n y3是同类项,∵ n=2,m=3,故答案为:3、2.18.【答案】−12π,4【解答】解:代数式−πa 2b22的系数是−12π,次数是4.故答案为:−12π,4.19.【答案】【解答】此题暂无解答20.【答案】2【解答】∵ 多项式是关于x的二次三项式,∵ |m|=2,∵ m=±2,但−(m+2)≠0,即m≠−2,综上所述,m=2,故填空答案:2.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:①原式=4x+3y−52x=32x+3y;②原式=15a 2b −5ab 2+4ab 2−12a 2b =3a 2b −ab 2;③原式=9a 2−1.5ab +5b 2−7a 2+13ab −7b 2=2a 2−76ab −2b 2, 当a =−12,b =1时,原式=−1112.【解答】解:①原式=4x +3y −52x =32x +3y ; ②原式=15a 2b −5ab 2+4ab 2−12a 2b =3a 2b −ab 2;③原式=9a 2−1.5ab +5b 2−7a 2+13ab −7b 2=2a 2−76ab −2b 2, 当a =−12,b =1时,原式=−1112.22.【答案】解:6mx 2+4nxy +2x +2xy −x 2+y +4=(6m −1)x 2+(4n +2)xy +2x +y +4,由结果中不含二次项,得到6m −1=0,4n +2=0,即m =16,n =−12,则多项式2m 2n +10m −4n +2−2m 2n −4m +2n=6m −2n +2=1+1+2=4.【解答】解:6mx 2+4nxy +2x +2xy −x 2+y +4=(6m −1)x 2+(4n +2)xy +2x +y +4,由结果中不含二次项,得到6m −1=0,4n +2=0,即m =16,n =−12,则多项式2m 2n +10m −4n +2−2m 2n −4m +2n=6m −2n +2=1+1+2=4.23.【答案】13x ,4ab ,y ,8a 3x ,−1;x −7,x +13,x 7+y 7,x 2+x 2+1;13x ,4ab ,y ,8a 3x ,−1,x −7,x +13,x 7+y 7,x 2+x 2+1 【解答】单项式有:13x ,4ab ,y ,8a 3x ,−1;多项式有:x−7,x+13,x7+y7,x2+x2+1;整式有:13x,4ab,y,8a3x,−1,x−7,x+13,x7+y7,x2+x2+1.24.【答案】由题意得2x+3(5000−x)=−x+15000,即每天的生产成本为:(−x+15000)元;(2.3−2)x+(3.5−3)(5000−x)=−0.2x+2500,即每天获得的利润为:(−0.2x+2500)元;当x=2000时,−x+15000=−2000+15000=13000(元),−0.2x+2500=−0.2×2000+2500=2100(元).答:当x=2000时,每天的生产成本为13000元,每天获得的利润为2100元.【解答】由题意得2x+3(5000−x)=−x+15000,即每天的生产成本为:(−x+15000)元;(2.3−2)x+(3.5−3)(5000−x)=−0.2x+2500,即每天获得的利润为:(−0.2x+2500)元;当x=2000时,−x+15000=−2000+15000=13000(元),−0.2x+2500=−0.2×2000+2500=2100(元).答:当x=2000时,每天的生产成本为13000元,每天获得的利润为2100元.25.【答案】20,42n(n+1),(n+2)(n+3)(3)当n=9时,共有白色瓷砖90块,黑色瓷砖42块,共需90×4+42×5=570元.【解答】解:图形发现:第1个图形中有白色瓷砖1×2块,共有瓷砖3×4块;第2个图形中有白色瓷砖2×3块,共有瓷砖4×5块;第3个图形中有白色瓷砖3×4块,共有瓷砖5×6块;…(1)第4个图形中有白色瓷砖4×5=20块,共有瓷砖6×7=42块;(2)第n个图形中有白色瓷砖n(n+1)块,共有瓷砖(n+2)(n+3)块;(3)当n=9时,共有白色瓷砖90块,黑色瓷砖42块,共需90×4+42×5=570元.26.【答案】解:(1)由题意可得:30×40%a+40×30%b=(12a+12b)元;(2)他这次买卖亏本;−(30a+40b)=5(a−b)理由:270×a+b2∵ a<b,∵ 5(a−b)<0,∵ 他这次买卖是亏本.【解答】解:(1)由题意可得:30×40%a+40×30%b=(12a+12b)元;(2)他这次买卖亏本;−(30a+40b)=5(a−b)理由:270×a+b2∵ a<b,∵ 5(a−b)<0,∵ 他这次买卖是亏本.。

苏科版七年级上册数学第3章 代数式 含答案

苏科版七年级上册数学第3章 代数式 含答案

苏科版七年级上册数学第3章代数式含答案一、单选题(共15题,共计45分)1、已知甲数比乙数的2倍少1,设甲数为x,则乙数可表示为()A.2x﹣1B.2x+1C.D.2、下列运算正确的是( )A.(ab 3)²=a 2b 6B.2a+3b=5abC.5a²-3a²=2D.(a+1)²=a²+13、下列运算中,正确的是( )A.5a-a=5B.2a 2+2a 3=4a 5C.a 2b-ab 2=0D.-a 2-a 2=-2a 24、若 2x m-1y与- x3y n是同类项,则()A.m=3,n=2B.m=3,n=1C.m=4,n=2D.m=4,n=15、下列式子中属于二次三项式的是()A.2x 2+3B.﹣x 2+3x﹣1C.x 3+2x 2+3D.x 4﹣x 2+16、下列计算正确的是()A. B. C. D.7、下列式子中,abc;7-2x3;9;-m;-ab3;;ab-mn;1-0.11mp;.单项式有()A.3个B.4个C.5个D.6个8、下列算式中,正确的是()A.2x+3y=5xyB.3x 2+2x 3=5x 5C.x 3﹣x 2=xD.x 2﹣3x 2=﹣2x 29、下列计算中,结果正确的是()A. x2+ x2= x4B. x2•x3= x6C. x2﹣(﹣x)2=0D. x6÷x2= a310、如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a,b(a >b),则(a﹣b)等于()A.7B.6C.5D.411、下列计算正确的是()A. B. C. D.12、下列运算正确的是()A.(a 2)3=a 6B.a 6÷a 2=a 3C.a 2·a 3=a 6D.a 2+a 3=a 513、化简的结果是()A.2aB.2a 2C.0D.2a 2-2a14、若﹣x3y a与x b y是同类项,则a+b的值为()A.2B.3C.4D.515、下列计算正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、计算|3.14-π|-π的结果是________17、若单项式与是同类项,那么这两个单项式的积是________.18、如图是一个长方形的储物柜,它被分成大小不同的正方形①②③④和一个长方形⑤.若要计算长方形⑤的周长,则只需要知道哪个小正方形的周长?你的选择是正方形________(填编号).19、在如图所的运算流程中,若输入的数x=-7,则输出的数y=________20、已知个连续整数的和为,它们的平方和是,且.则________.21、已知x+2y=7,4m-3n=8,则代数式(9n-4y)-2(6m+x)+3的值为________.22、﹣2x m﹣n y2与3x4y2m+n是同类项,则m﹣3n的立方根是________.23、若与是同类项,则________.24、单项式的次数为________.25、已知2x3y2和﹣x3m y n是同类项,则式子m+n=________.三、解答题(共5题,共计25分)26、计算:27、用长为12米的木条,做成一个“目”字形的窗框(如图所示,窗框外沿ABCD 是长方形),若窗框的横条长度都为 x 米,用代数式表示长方形 ABCD的面积.28、数a,b,c在数轴上的位置如图所示:化简:|b﹣a|﹣|c﹣b|+|a+b|.29、课堂上老师给大家出了这样一道题:“当=2019时,求代数式的值”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 代数式 提优检测卷
(总分100分 时间60分钟 )
一、选择题(每小题2分,共2019
1.下面各式中,不是代数式的是 ( ) A .3a +b B .3a =2b C .8a D .0 2.以下代数式书写规范的是 ( ) A .(a +b )÷2 B .
6
5
y C .113
x
D .x +y 厘米
3.计算-5a 2+4a 2的结果为 ( ) A .-3a B .-a C .-3a 2 D .-a 2 4.(2012.山东济南)化简5(2x -3)+4(3-2x)的结果为 ( ) A .2x -3 B .2x +9 C .8x -3 D .18x -3 5.如果单项式5x a y 5与31
3
b x y 是同类项,那么a 、b 的值分别为 ( ) A .2,5 B .-3,5 C .5,3 D .3,5 6.代数式-23xy 3的系数与次数分别是 ( ) A .-2,4 B .-6,3 C .-2,7 D .-8,4
7.若0<x<1,则x ,
1
x
,x 2的大小关系是 ( ) A .1x <x<x 2 B .x<<x 2 C .x 2<x<1x D .1x
<x 2<x
8.根据如图3-1所示的程序计算输出结果.若输入的x 的值是3
2
,则输出的结果为
( )
A .
72 B .94 C . D .92
9.已知整式x 2-5
2
x =6,则2x 2-5x +6的值为 ( )
A .9
B .12
C .18
D .24
10.某商店在甲批发市场以每包m 元的价格进了40包茶叶,又在乙批发市场以每包n

1
2
(m>n)的价格进了同样的60包茶叶,如果商家以每包
2
m n
元的价格卖出这种茶叶,卖完后,这家商店 ( ) A .盈利了 B .亏损了 C .不赢不亏 D .盈亏不能确定 二、填空题(每小题2分,共20分) 11.单项式3x 2y 的系数为_______.
12.对代数式4a 作出一个合理解释:____________________________. 13.当x =1,y =
1
5
时,3x(2x +3y)-x(x -y)=_______. 14.若代数式-4x 6y 与x 2n y 是同类项,则常数n 的值为_______. 15.观察如图所示图形:
它们是按照一定规律排列的,依照此规律,第n 个图形中共有_______个★. 16.把(a -b)看作一个整体,合并同类项7(a -b)-3(a -b)-2(a -b)=_______. 17.若m 、n 互为相反数,则5m +5n -5=_______. 18.已知A 是关于a 的三次多项式,B 是关于a 的二次多项式,则A +B 的次数是_______. 19.已知当x =1时,3ax 2+bx 的值为2,则当x -3时,ax 2+bx 的值为_______. 20.已知-b 2+14ab +A =7a 2+4ab -2b 2,则A =_______. 三.解答题(本题共7小题,共60分) 21.(10分)化简:(1)(7x -3y)-(8x -5y); (2)5(2x -7y)-(4x -10y). 22.(5分)化简:已知A =-3x 3+2x 2-1,B =x 3-2x 2-x +4,求2A -(A -B).
23.(10分)先化简,再求值:
(1) (3a 2-ab +7)-(5ab -4a 2+7),其中a =2,b =13

(2) 5x 2-2(3y 2+2x 2)+3 (2y 2-xy),其中 x =-,y =-1.
24.(7分)已知有理数a 、b 、c 满足①()2
53220a b ++-=;②212a b c x y -++是一个7次单项式;求多项式a 2b -[a 2b -(2abc -a 2c -3a 2b)-4a 2c]-abc 的值. 25.(8分)我国出租车收费标准因地而异.甲市为:起步价6元,3千米后每千米价为1.5元;乙市为:起步价10元,3千米后每千米价为1.2元.
(1)试问在甲、乙两市乘坐出租车s(s>3)千米的价差是多少元?
(2)如果在甲、乙两市乘坐出租车的路程都为10千米,那么哪个市的收费标准高些?高多少?
1
2
26.(7分)
定义一种对于三位数abc(a、b、c不完全相同)的“F运算”:重排abc的三个数位上的数字,计算所得最大三位数和最小三位数的差(允许百位数宁为零).例如abc=213时,则
(1)求579经过三次“F运算”的结果(要求写出三次“F运算”的过程);
(2)假设abc中a>b>c,则abc经过一次“F运算”得_______(用代数式表示);
(3)若任意一个三位数经过若干次“F运算”都会得到一个固定不变的值,那么任意一个四位数也经过若干次这样的“F运算”是否会得到一个定值,若存在,请直接写出这个定值,若不存在,请说明理由。

27.(12分)如果10b=n,那么b为n的劳格数,记为b=d(n),由定义可知:10b=n与b=d (n)所表示的b、n两个量之间的同一关系.
(1)根据劳格数的定义,填空:d(10)=,d(10﹣2)=;
(2)劳格数有如下运算性质:
若m、n为正数,则d(mn)=d(m)+d(n),d()=d(m)﹣d(n).
根据运算性质,填空:
=(a为正数),若d(2)=0.3010,则d(4)=,d(5)=,d(0.08)=;
(3)如表中与数x对应的劳格数d(x)有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.
参考答案
1—10 BBDAD DCCCA
11.3
12.答案不唯一
13.7
14.3
15.(3n+1)
16.2(a-b)
17.-5
18.三次
19.6
20.7a2-b2-10ab
21.(1)原式=-x+2y (2)原式=6x-25y 22.-2x3-x+3
23.(1)24 (2)-5 4
24.-75
25.(1)(0.3s-4.9)元(2)乙市的高,高1.9元
26.
27.(1)1,﹣2;
(2)==3;
利用计算器可得:100.3010≈2,100.6020≈4,100.6990≈5,10﹣1.097≈0.08,故d(4)=0.6020,d(5)=0.6990,d(0.08)=﹣1.097;
(3)若d(3)≠2a﹣b,则d(9)=2d(3)≠4a﹣2b,
d(27)=3d(3)≠6a﹣3b,
从而表中有三个劳格数是错误的,与题设矛盾,
∴d(3)=2a﹣b,
若d(5)≠a+c,则d(2)=1﹣d(5)≠1﹣a﹣c,
∴d(8)=3d(2)≠3﹣3a﹣3c,
d(6)=d(3)+d(2)≠1+a﹣b﹣c,
表中也有三个劳格数是错误的,与题设矛盾.
∴d(6)=a+c.
∴表中只有d(1.5)和d(12)的值是错误的,应纠正为:d(1.5)=d(3)+d(5)﹣1=3a﹣b+c﹣1,
d(12)﹣d(3)+2d(2)=2﹣b﹣2c.。

相关文档
最新文档