插值法(拉格朗日插值)讲解

合集下载

拉格朗日 插值 区间误差限

拉格朗日 插值 区间误差限

拉格朗日插值区间误差限拉格朗日插值方法是一种常用的数值插值方法,用于在给定一组已知数据点的情况下,通过构造一个多项式函数来拟合这些数据点,并在插值区间内求得未知值。

然而,由于插值方法的近似性质,插值结果与真实值之间总会存在一定的误差。

本文将介绍拉格朗日插值法以及其误差限的计算方法。

一、拉格朗日插值法简介拉格朗日插值法是一种基于多项式的插值方法,其基本思想是通过构造一个满足给定数据点的插值多项式来逼近真实的函数曲线。

具体而言,对于给定的n个数据点(xi, yi),拉格朗日插值法的插值多项式可以表示为:P(x) = Σ[ yi * Li(x) ],i=0 to n其中,Li(x)是拉格朗日基函数,定义为:Li(x) = Π[ (x - xj) / (xi - xj) ],j=0 to n,i ≠ j这样,通过求解插值多项式P(x),我们可以在插值区间内求得未知值。

二、插值误差限的计算尽管拉格朗日插值法可以通过构造插值多项式来逼近真实函数曲线,但由于插值方法本质上是一种近似方法,插值结果与真实值之间总会存在一定的误差。

我们可以通过计算插值误差限来评估插值的可靠性。

在拉格朗日插值法中,插值误差限可通过以下等式进行估计:| f(x) - P(x) | ≤ M / (n + 1)! * | x - x0 | * | x - x1 | * ... * | x - xn |其中,f(x)是真实函数的值,P(x)是插值多项式的值,M是插值区间上函数f(x)的最大导数的上界,n是插值多项式的次数。

三、拉格朗日插值法的应用示例为了更好地理解拉格朗日插值法及其误差限的计算方法,我们来看一个具体的示例。

假设我们要通过拉格朗日插值法来估计函数f(x) = sin(x)在区间[0, π]内的某个未知值。

已知在该区间内取了n+1个等间距的数据点(xi, yi),其中i=0, 1, 2, ..., n。

首先,我们可以根据已知数据点构造拉格朗日插值多项式P(x),并计算出未知值的近似值。

【学习笔记】拉格朗日插值

【学习笔记】拉格朗日插值

【学习笔记】拉格朗⽇插值学习多项式的第⼀步。

参考资料:1.拉格朗⽇插值法的简介问题:解法1:⾼斯消元显然deg⩾n的多项式有⽆穷个,因为根据⾼斯消元,⼀定会出现⾃由元。

直接把这n个点列出⽅程组,⽤⾼斯消元求解。

求出多项式后再求出f(k)即可。

时间复杂度O(n3).解法2:拉格朗⽇插值法给出⼀个关于点(x i,y i)的基函数:g(k)=1⩽j⩽n∏j≠ik−x jx i−x j容易发现:∀j≠i,g(x j)=0.因为累乘中总有k=x j,使得k−x j=x j−x j=0,g(x j)=0.对于j=i,g(x j)=1.因为累乘中每⼀项均为x i−x jx i−x j=1,g(xj)=1.于是我们的多项式就可以表⽰为:f(k)=n∑i=1y i×1⩽j⩽n∏j≠ik−x jx i−x j这样∀(x i,y i),f(x i)=y i,也可以据此求出f(k).⼤概因为要求逆元,所以时间复杂度为O(n2+n log n)=O(n2). code:#include <bits/stdc++.h>#define ll long longusing namespace std;int n;const ll mod = 998244353;ll x[2011], y[2011], k, ans;ll ksm(ll s1, ll s2) {if(!s2) return 1;if(s2 & 1) return s1 * ksm(s1, s2 - 1) % mod;ll ret = ksm(s1, s2 / 2);return ret * ret % mod;}int main() {scanf("%d%lld", &n, &k);for(int i = 1; i <= n; i++) scanf("%lld%lld", &x[i], &y[i]);for(int i = 1; i <= n; i++) {ll sum = 1, mul = 1;for(int j = 1; j <= n; j++) {if(i == j) continue;sum *= (k - x[j]); sum %= mod; sum += mod; sum %= mod;mul *= (x[i] - x[j]); mul %= mod; mul += mod; mul %= mod;}sum *= ksm(mul, mod-2); sum %= mod;ans += (sum * y[i]) % mod; ans %= mod;}printf("%lld\n", ans);return 0;}2.拉格朗⽇插值法的拓展问题:同上,加⼊x i的值连续的限制。

拉格朗日插值法知识讲解

拉格朗日插值法知识讲解

拉格朗日插值法5.2 拉格朗日(Lagrange)插值可对插值函数选择多种不同的函数类型,由于代数多项式具有简单和一些良好的特性,例如,多项式是无穷光滑的,容易计算它的导数和积分,故常选用代数多项式作为插值函数。

5.2.1 线性插值问题5.1给定两个插值点其中,怎样做通过这两点的一次插值函数?过两点作一条直线,这条直线就是通过这两点的一次多项式插值函数,简称线性插值。

如图5.1所示。

图5.1 线性插值函数在初等数学中,可用两点式、点斜式或截距式构造通过两点的一条直线。

下面先用待定系数法构造插值直线。

设直线方程为,将分别代入直线方程得:当时,因,所以方程组有解,而且解是唯一的。

这也表明,平面上两个点,有且仅有一条直线通过。

用待定系数法构造插值多项式的方法简单直观,容易看到解的存在性和惟一性,但要解一个方程组才能得到插值函数的系数,因工作量较大和不便向高阶推广,故这种构造方法通常不宜采用。

当时,若用两点式表示这条直线,则有:(5.1)这种形式称为拉格朗日插值多项式。

,,称为插值基函数,计算,的值,易见(5.2)在拉格朗日插值多项式中可将看做两条直线,的叠加,并可看到两个插值点的作用和地位都是平等的。

拉格朗日插值多项式型式免除了解方程组的计算,易于向高次插值多项式型式推广。

线性插值误差定理5.1记为以为插值点的插值函数,。

这里,设一阶连续可导,在上存在,则对任意给定的,至少存在一点,使(5.3)证明令,因是的根,所以可设对任何一个固定的点,引进辅助函数:则。

由定义可得,这样至少有3个零点,不失一般性,假定,分别在和上应用洛尔定理,可知在每个区间至少存在一个零点,不妨记为和,即和,对在上应用洛尔定理,得到在上至少有一个零点,。

现在对求二次导数,其中的线性函数),故有代入,得所以即5.2.2 二次插值问题5.2给定三个插值点,,其中互不相等,怎样构造函数的二次的(抛物线)插值多项式?平面上的三个点能确定一条次曲线,如图5.2所示。

常见的插值方法及其原理

常见的插值方法及其原理

常见的插值方法及其原理1. 拉格朗日插值法(Lagrange Interpolation)拉格朗日插值法是一种基于多项式的插值方法,通过n+1个已知点的函数值来构造一个n次多项式。

具体的计算公式如下:L(x) = Σ[yk * lk(x)], k=0 to n其中yk为已知点(xi, yi)的函数值,lk(x)为拉格朗日基函数,定义为:lk(x) = Π[(x - xj)/(xi - xj)], j=0 to n, j≠k拉格朗日插值法的原理是通过构造一个通过已知点的n次多项式,来代替未知函数的近似值。

利用拉格朗日基函数的性质,可以保证插值多项式通过已知点。

2. 牛顿插值法(Newton Interpolation)牛顿插值法是一种递推的插值方法,通过已知点的函数值和差商来逐步构造插值多项式。

差商的定义如下:f[x0]=y0f[x1]=(f[x1]-f[x0])/(x1-x0)f[x2]=(f[x2]-f[x1])/(x2-x1)...f[xn] = (f[xn] - f[xn-1]) / (xn - xn-1)利用差商的定义,可以得到牛顿插值多项式的表达式:N(x) = f[x0] + f[x0, x1](x-x0) + f[x0, x1, x2](x-x0)(x-x1) + ... + f[x0, x1, ..., xn](x-x0)(x-x1)...(x-xn)牛顿插值法的原理是通过递推计算差商来得到插值多项式。

通过使用差商来处理已知点的函数值差异,可以得到更高次的插值多项式。

3. 样条插值法(Spline Interpolation)样条插值法是一种基于分段低次插值函数的插值方法,常用的是三次样条插值。

样条插值法通过寻找一组分段函数,使得满足原函数的插值条件,并要求函数在每个插值点处的函数值、一阶导数和二阶导数连续。

这样可以保证插值函数在每个插值点处的平滑性。

三次样条插值法的原理是将整个插值区间划分为多个小区间,在每个小区间内使用三次多项式进行插值。

《拉格朗日插值法》课件

《拉格朗日插值法》课件
确定多项式的阶数
根据已知的插值点和插值函数的性质 ,确定多项式的阶数。
求解插值多项式的系数
求系数
通过已知的插值点和构造的插值多项式,求解出多项式的系数。
验证解的正确性
通过已知的插值点和求解出的系数,验证解的正确性。
04
拉格朗日插值法的应用实例
在数值分析中的应用
数值积分
拉格朗日插值法可用于数值积分,通过插值多项式对被积函数进行近似,进而求得积分的近似值。
全局插值能力较弱
拉格朗日插值法主要适用于局部插值,对于全局插值问题可能不太 适用。
06
拉格朗日插值法的改进与发

改进方法
提高精度
通过增加插值基函数的数量, 可以更精确地逼近函数,从而
提高插值的精度。
处理异常值
引入稳健性估计方法,对异常 值进行识别和处理,以提高插 值的稳定性。
优化算法
改进算法以提高计算效率,减 少计算量,使得插值过程更加 快速和高效。
图像处理
在图像处理中,可以使用拉格朗日插值法对图像进行放大、缩小或旋转等变换,保持图 像的清晰度和连贯性。
三维模型重建
在三维模型重建中,可以使用拉格朗日插值法对点云数据进行插值,得到连续光滑的三 维模型表面。
05
拉格朗日插值法的优缺点
优点
01
02
03
简单易行
拉格朗日插值法是一种直 观且易于理解的方法,不 需要复杂的数学工具即可 实现。
工程
用于解决各种实际问题,如机 械振动、流体动力学和电路分 析等。
物理学
用于模拟和预测各种物理现象 ,如力学、电磁学和量子力学 等。
02
拉格朗日插值法的基本概念
拉格朗日插值法的定义

excel拉格朗日插值函数

excel拉格朗日插值函数

excel拉格朗日插值函数Excel拉格朗日插值函数是一种常用的数据插值方法,在很多领域都有应用,比如工程建模、生物信息学、金融分析等。

本文将从介绍插值方法的基本原理、数学公式和Excel计算方法方面进行讲解,希望使读者能够更好地掌握Excel拉格朗日插值函数的使用方法。

一、插值方法的基本原理插值方法是一种基于已知数据点推导出未知数据点值的数学方法。

在实际应用过程中,很多情况下我们只知道若干个数据点的取值,但是我们需要获得数据点之间的中间值或者在这些数据点之外的其他值。

这时候,插值方法就可以发挥作用。

插值方法的基本思路是,利用已知点之间的最高次多项式函数将数据点连接起来,然后求出函数在某个未知点的取值。

一般来说,如果已知数据点越多,则插值计算得到的结果越准确。

在拉格朗日插值方法中,我们使用拉格朗日多项式来计算未知点的取值。

拉格朗日多项式的原理是,将已知点看作多个线性项的积,然后通过一系列复杂的运算,得到一个关于自变量x的多项式函数。

二、拉格朗日插值法的数学公式假设我们有n个数据点{(x1,y1),(x2,y2),...(xn,yn)},其中x1<x2<...<xn。

我们需要在这些数据点之间插值计算出某个未知点x的函数值y。

y = Σ(yi * Li(x))i从1到n,Li(x)为拉格朗日多项式(Lagrange polynomial),表达式为:Li(x) = Π(j ≠ i)((x - xj)/(xi - xj))j从1到n。

三、Excel计算方法Excel中可以使用插值函数进行插值计算。

要使用拉格朗日插值函数,可以先使用X轴和Y轴的数据点构建一个散点图,然后使用趋势线功能来生成拉格朗日插值函数的公式。

1. 创建散点图在Excel中选中所需要插值的数据点,然后点击插入菜单中的散点图选项。

这时候,Excel将在新的工作表中创建一个散点图,并根据数据点自动添加X轴和Y轴的标签。

2. 添加趋势线在散点图中,我们需要生成一条趋势线来表示拉格朗日插值函数。

拉格朗日插值法 牛顿插值法

拉格朗日插值法 牛顿插值法

拉格朗日插值法牛顿插值法
摘要:
1.插值法的概念和作用
2.拉格朗日插值法原理和应用
3.牛顿插值法原理和应用
4.两种插值法的优缺点比较
正文:
一、插值法的概念和作用
插值法是一种数学方法,通过已知的数据点来预测未知数据点的一种技术。

在科学计算和工程应用中,常常需要根据有限个已知数据点,来估计某个函数在其他点上的值。

插值法正是为了解决这个问题而诞生的。

二、拉格朗日插值法原理和应用
拉格朗日插值法是一种基于拉格朗日基函数的插值方法。

它的基本原理是:在给定的区间[a, b] 上,选取一个基函数,然后通过求解一组线性方程,得到基函数在各数据点上的值,最后用这些值来近似函数在待求点上的值。

拉格朗日插值法广泛应用于数值分析、工程计算等领域。

三、牛顿插值法原理和应用
牛顿插值法,又称为牛顿前向差分法,是一种基于差分的插值方法。

它的基本原理是:通过对已知数据点的函数值进行差分,然后使用牛顿迭代公式来求解差分后的函数在待求点上的值。

牛顿插值法具有较高的精度,适用于各种函数,特别是对于单调函数和多项式函数,效果尤为显著。

四、两种插值法的优缺点比较
拉格朗日插值法和牛顿插值法各有优缺点。

拉格朗日插值法的优点是适用范围广,可以插值任意类型的函数,但计算过程较为复杂;牛顿插值法的优点是计算简便,精度高,但对于非线性函数或多峰函数,效果可能不佳。

因此,在实际应用中,需要根据具体情况选择合适的插值方法。

拉格朗日插值法

拉格朗日插值法

拉格朗日插值法的一些讨论学院: 班级: 姓名: 学号: 引言——在数值分析中,拉格朗日插值法是以法国十八世纪数学家约瑟夫·路易斯·拉格朗日命名的一种多项式插值方法。

许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解。

如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。

这样的多项式称为拉格朗日(插值)多项式。

数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数。

拉格朗日插值法最早被英国数学家爱德华·华林于1779年发现,不久后(1783年)由莱昂哈德·欧拉再次发现。

1795年,拉格朗日在其著作《师范学校数学基础教程》中发表了这个插值方法,从此他的名字就和这个方法联系在一起。

数据建模有两大方法:一类是插值方法,另一类是拟合函数一般的说,插值法比较适合数据准确或数据量小的情形。

然而Lagrange 插值有很多种,1阶,2阶,…n 阶。

我们可以利用拉格朗日插值求方程,根据它的程序求原方程的图像。

下面我具体介绍分析一下拉格朗日插值的算法设计及应用。

具体算法1、基本概念已知函数y=f(x)在若干点i x 的函数值i y =()i x f (i=0,1,⋅⋅⋅,n )一个差值问题就是求一“简单”的函数p(x):p(i x )=i y ,i=0,1,⋅⋅⋅,n,(1)则p(x)为f(x)的插值函数,而f(x)为被插值函数会插值原函数,0x ,1x ,2x ,...,n x 为插值节点,式(1)为插值条件,如果对固定点-x 求f(-x )数值解,我们称-x 为一个插值节点,f(-x )≈p(-x )称为-x 点的插值,当-x ∈[min(0x ,1x ,2x ,...,n x ),max(0x ,1x ,2x ,...,n x )]时,称为内插,否则称为外插式外推,特别地,当p(x)为不超过n 次多项式时称为n 阶Lagrange 插值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因此, Pn(x)在点x0邻近会很好的逼近f(x).
Taylor展开方法就是一种插值方法.
泰勒插值要求提供 f(x) 在点x0处的各阶导数,这仅 仅适用于 f(x) 相当简单的情况.
§1.2 Lagrange插值
• 设函数y = f(x)在区间[a,b]上有定义,且给 出一系列点上的函数值yi=f(xi) (i=0,1,2,…,n), 求作n次多项式pn(x) 使得
定理 (插值多项式的存在唯一性) 满足 P( xi ) yi , i 0, ... , n
的 n 阶插值多项式是唯一存在的。
证明: ( 利用Vandermonde 行列式论证)
a0 a1x0 ... an x0n y0 a0 a1x1 ... an x1n y1 ...
1 xj)
j0
li ( x)
n ji
(x xj) (xi x j )
j0
n
Ln ( x) li ( x) yi i0
插值余项 /* Remainder */
用简单的插值函数L n(x)代替原复杂函数f(x),其 精度取决于截断误差,即插值余项.
设节点 a x0 x1 xn b ,且 f 满足条件 f C n[a,b] , f (n1)在[a , b]内存在, 考察截断误差 Rn( x) f ( x) Ln( x)
Rn(x)
f (n1) ( )
(n 1) !
n
(x xi )
i0
即Rn (x)
f (n1) ( )
(n 1)!
(
x

x0
)(
x

x1
)(
x

x2
)
(
x

xn
)
其中 [a,b]
——拉格朗日余项定理
注: 通常不能确定 , 而是估计 f (n1)( x) M ,n1x(a,b)
P1( x0 ) y0 , P1( x1 ) y1
可见 P1(x) 是过 ( x0 , y0 ) 和 ( x1, y1 ) 两点的直线。

P1 ( x) y0 称 x为y11 拉xy氏00 (基x 函x数0 )
= x x1 x0 x1
y0 +
x x0 x1 x0
( x0 x1)( x0 x2)
( x1 x0)( x1 x2) ( x2 x0)( x2 x1)
l0(x)
l1(x)
l2(x)
n1
n次多项式
希望找到li(x),i
=
0,
…,
n
使得
1
li(xj)= 0
i j i j
;然后令
n
Pn ( x )
i0
li( x )
y i
,则显然有Pn(xi) = yi 。
li(x)
每个与li节有点n 个有根关,x0而…与xif …无x关n li (x) Ci (x x0)...(x xi )...(x xn
)

CN插i 次jn值i拉(x多格项x朗j )式日
li (xi ) 1
Ci

ji
( xi
pn (xi)= yi (i=0,1,2,…,n)
函数pn (x)为f(x)的插值函数;称x0,x1,… xn称为
插值节点或简称节点。插值节点所界的区间[a,b]
称为插值区间。pn (xi)= yi 称为插值条件。
构造的n次多项式可表示为: Pn(x)= a0 + a1x + a2x2+…+ anxn
第三章 插值法 /* Interpolation */
• 问题的提出 • 拉格朗日插值 • 牛顿插值 • 埃尔米特插值 • 曲线拟合的最小二乘法
§1问题的提出
函数y = f(x) 1)解析式未知;2)虽有解析式但表达式较复杂,
通过实验计算得到的一组数据,即在某个区间 [a,b]上给出一系列点的函数值yi=f(xi),
a0 a1xn ... an xnn yn
这是一个关于a0 , a1 ,… an 的n+1元线性方程组,其系
数行列式:
n i1
Vn (x0, x1,...,xn )
(xi x j )
i1 j0
由于i ≠j时, xi ≠ xj ,因此 Vn (x0 , x1,..., xn ) 0,即方程组有
3)列表函数
x
x0 x1 x2 …… xn
y=f(x) y0 y1 y2 …… yn
问题:无法求出不在表中的点的函数值,也不能
进一步研究函数的其他性质,如函数的积分和导 数等。因此需寻找y = f(x)的近似函数p(x),但要求 p(xi) = f(xi) 。——插值问题
已知精确函数 y = f(x) 在一系列节点 x0 … xn 处测得函数值 y0 = f(x0), … yn = f(xn),由此构 造一个简单易算的近似函数 p(x) f(x),满足 条件p(xi) = f(xi) (i = 0, … n)。这里的 p(x) 称 为f(x) 的插值函数。最常用的插值函数是 …?
1
y1 i0 li ( x) yi
l0(x)
l1(x)
线性插值
直线方程的两点式: L1(x) x x1 y0 x x0 y1
1
x0 x1
x1 x0
L1(x) i0 li ( x) yi
l (x)
l (x)
抛物插值
L2(x)
( x x1)( x x2) y0 ( x x0)( x x2) y1 ( x x0)( x x1) y2
多项式
p(x) f(x)
x0
x1
x2
x
x3
x4
§1.1Taylor插值
函数y = f(x)在点x0处展开有Taylor 多项式:
pn (x)
f (x0 )
f
' (x0 )(x x0 )
f
'
' ( x0 2!
)
(
x

x0
)
2

...
f
(n) (x0 n!
)
(x

x0
)n
可见: Pn(k)(x0)= f (k)(x0) k=0,1,…,n
唯一解.
§2 拉格朗日插值公式
求 n 次多项式 Pn ( x) a0 a1 x an xn 使得
Pn ( xi ) yi , i 0, ... , n
条件:无重合节点,即 i j xi x j
n=1
已知 x0 , x1 ; y0 , y1 ,求 P1( x) a0 a1 x 使得
相关文档
最新文档