中职教育-数学(高教版)课件:3.2函数的性质.ppt

合集下载

职教函数概念课件

职教函数概念课件
题目5
已知函数f(x)的定义域为R,对任意实数 m、n都有f(m+n)=f(m)+f(n),且当 x>0时,f'(x)<0,求证:函数f(x)在R上 单调递减。
答案解析
答案1
答案2
答案3
首先根据函数的性质,令x=y=0,得 到f(0)=0。再令y=-x,得到f(x)+f(x)=0,即f(-x)=-f(x)。所以函数是奇函 数。根据奇函数的性质,当x>0时,x<0,所以f(-x)=-f(x)<0。因此,当 x>0时,有f(x)<0。由于函数在定义域 上为减函数,所以在区间[-3,3]上,最 大值为f(-3),最小值为f(3)。根据函数 的性质和给定的值,可以计算得到最大 值为6,最小值为-6。
函数的性质
• 函数的性质包括奇偶性、单调性、周期性和对称性等。奇偶性 描述了函数在原点附近的对称性,即f(-x)=f(x)为偶函数,f(x)=-f(x)为奇函数。单调性描述了函数值随着自变量的变化趋势, 即如果对于任意x1<x2,都有f(x1)<f(x2),则称f(x)在区间I上 为增函数;反之,如果对于任意x1<x2,都有f(x1)>f(x2),则 称f(x)在区间I上为减函数。周期性描述了函数值重复出现的现 象,即如果存在一个非零常数T,使得对于定义域内的每一个x, 都有f(x+T)=f(x),则称f(x)为周期函数,T称为它的周期。对称 性描述了函数图像的对称关系,即如果函数图像关于直线x=a 对称,则有f(a+x)=f(a-x);如果图像关于点(b,c)中心对称,则 有f(b+x)=-f(b-x)。
详细描述
函数加法是一种基本的函数运算,其操作方式是将两个函数的输出值一一对应地相加。假设有两个函数 f(x)和g(x),函数加法就是将f(x)和g(x)的输出值对应相加,得到一个新的函数h(x)=f(x)+g(x)。

中职数学高教版最新版第三章函数的基本知识课件

中职数学高教版最新版第三章函数的基本知识课件

列表法和解析法表示购买4支以内的签字笔时,应付款与
签字笔支数之间的函数.
解 设表示购买签字笔的支数,表示应付款数(元),则
∈ 1,2,3,4 .
(1)列表法表示见表
(2)解析法表示为: = 6.5, ∈ 1,2,3,4 .
情境
导入
探索
新知
例题
辨析
巩固
练习
归纳
总结
布置
作业
例2 现阶段,我国很多城市普遍采用“阶梯水价”的办法计量水费,发
(1) = 2 + 5与 = ( + 5);
(2) = − 1与 =
(3)() =
2 −4
与()
+2
−1


= − 2.
情境
导入
探索
新知
例题
辨析
巩固
练习
归纳
总结
布置
作业
4.设函数 = 2 + 2 ,x∈R. 求 2 , −2 ,
解 (1)虽然函数 = + 1与函数 = + 1中表示
自变量的字母不同,但它们的定义域和对应法则都是相同
的,所以它们表示的是同一个函数;
(2)因为函数 = 的定义域为 ,函数 =
2

的定义域为{x|x≠0},它们的定义域不同,因此它们表示的
不是同一个函数.
2




情境
导入
探索
新知
例题
辨析
巩固
练习
归纳
总结
布置
作业
2, − 1 ≤ ≤ 0,
4.已知函数() = ൞ + 2, 0 < < 2, 则

《函数的表示法》中职数学基础模块上册3.2ppt课件2【语文版】

《函数的表示法》中职数学基础模块上册3.2ppt课件2【语文版】
§3、2函数的表示法 (一)
新课
教学目标:
1、使学生掌握函数的两种表示方法:列表发和 解析法,让学生从不同方式表达函数关系时获 得函数的基本特征;
2、让学生掌握函数的不同表示方法,并能够根 据问题的特点和要求选择恰当的表示方法表达 函数关系,发展学生应用数学解决问题的能力;
3、培养学生借助计算机软件构建数学图表及获 取基本信息的能力。
探究(解析法):
生物学研究表明,某种蛇的长度y (cm)是其尾 长x (cm)的一次函数。当蛇的尾长是6cm时, 测得蛇长45.5cm;当蛇的尾长是14cm时,测 得蛇长105.5cm.
(1)写出y与x之间的函数关系;
(2)若一条该种蛇的尾长是10cm,它的长度是 多少?
新知:
解析法:一般地,用解析式的形式表示两个变 量之间的关系的方法,称为~.
由此可见,高的变化与底面半径的变化对圆柱体积的影响不同。
问题解决:
几名学生准备去某景点旅游。甲旅行社的报价为:只要1人购买 全票,其他人均可购买半票;乙旅行社的报价为:2人以上参加 旅游,所有人均享受原价的7折优惠。请问:哪家旅行社的报价 更优惠?
练习:
1、以下是南京地区2010年12月17日至31日的最高气温记 录表.
例2、求解下列问题:
(1)一个三角形的底边一定,它的面积可以 看作是什么变量的函数?如果它的某条边上的 高一定呢?分别分析当自变量的值增加1个单 位时,因变量如何随着自变量的变化而变化。
(2)一个圆柱形物体的底面半径一定,它的 体积可以看作是什么变量的函数?如果它的高 一定呢?分别分析当自变量的值增加1个单位 时,因变量如何随着自变量的变化而变化。
课后作业:
指导用书
编者语
• 要如何做到上课认真听讲?

中职数学 上册 课件-第三章 函数

中职数学 上册 课件-第三章 函数
.
高教社
巩固知识 典型例题
例3 文具店内出售某种铅笔,每支售价为0.12元,应付款额是购买铅 笔数的函数,当购买6支以内(含6支)的铅笔时,请用三种方法表示 这个函数.
解 (3)关系式y=0.12 x就是函数的解析式, 故函数的解析法表示为 y=0. .12 x, x ∈{1,2,3,4,5,6}
高教社
巩固知识 典型例题
例2 设 f x 2x 1 ,求 f 0 , f 2 , f 5 , f b .
3
分析 本题是求自变量x=x0时对应的函数值,方法是将x0代入 到函数表达式中求值.
解 f 0 20 1
3
f 5 2 5 1
3
, f 2 2 2 1
3
,即为函数的列表法表示.
.
x(支)
1
2
3
4
5
6
y(元)
高教社
巩固知识 典型例题
例3 文具店内出售某种铅笔,每支售价为0.12元,应付款额是购买铅 笔数的函数,当购买6支以内(含6支)的铅笔时,请用三种方法表示 这个函数. 解 (2)以上表中的x值为横坐标,对应的y值为纵坐标,在直角 坐标系中依次作出点(1 , 0.12)、(2 , 0.24)、(3 , 0.36)、 (4,0.48)、(5,0.6)、(6,0.72),则函数的图像法表示如图所示.
例4 利用“描点法”作出函数 y x 的图像,并判断
点(25,5)是否为图像上的点 (求对应函数值时,精确 到 0.01)
分析 按照“描点法”的步骤进行.
y f (x), x D
函数 对应法则
自变量
定义域
函数两 个要素 函数值[当x=x0时,函数y=f(x)所对应的值y0=f(x0)]

中职教育数学《函数的性质》课件

中职教育数学《函数的性质》课件
(2)当 = 0时,如图(3)(4)所示.
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
一次函数
= + ( ≠ 0)是一次函数,其图像为直线,如图所
示.
由一次函数 = + ( ≠ 0)的解析式和图像不难发现,其定义域和值域均为R,
并有如下性质:
(1)当 > 0时,在R上是增函数,如图(1)所示;当 < 0时,在R上是减函数,如图(2)所示.
奇偶性也可以研究函数图像.
如在研究函数时,如果我们知道它是奇函数或偶函
数,就可以先研究它在非负区间上的性质,然后利用对称
性便可得到它在非正区间上的性质,从而减少工作量.
3.3 函数的性质 ——奇偶性
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
练习
1.填空题:
(1)点 2,3 关于轴对称的点为
函数是描述客观事物运动变化规律的数学模型.了解了
函数的变化规律,也就基本把握了相应事物的变化规律,因
此这一节我们来研究函数的性质.
3.3 函数的性质
3.3.1
函数的单调性
3.3 函数的性质 ——单调性
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
下图是某市某天气温(℃)是时间(时)的函数图像,
任意两点3 3 , 3 ,4 4 , 4 ,当3 < 4
时,都有3 > 4 ,即f(x3)>f(x4).
3.3 函数的性质 ——单调性
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
设函数 = ()的定义域为D,区间 ⊆ .
(1)如果对于区间上的任意两点1 ,2 ,当1 < 2 时,都

中职教育数学《指数函数及其图象、性质》课件

中职教育数学《指数函数及其图象、性质》课件

(25
)
(0.14
2
5
1
)4
22
1 22
0.11
1 14
10
0.1
3
3
(2)42 (22 )2 23 8
3
3
(4)164 (24 )4 23 8
主要错误:
(
3)0.0001
1 4
( 1 )4 10000 0.1
2
3. (1)a 9 9 a2
5
(2)a 3
1
3 a5
3
(3)a 2 a3
(4)
( 1 )3 4
<
( 1 )4 4
y ( 1 )x 在R上是减函数 3 4 4
2. 求函数 y ( 1 ) x 1 的定义域
2
解: 为使函数有意义,必须 (1)x 1 0 (1)x 1 (1)x (1)0
2
2
22
f ( x) ( 1 )x 在R上是减函数 x 0 ∴函数的定义域是(,0]
1 3
1
1
(2) 0.3 2 与0.3 3
解:y
0.3 x
在R上是减函数
1 2
1 3
1
1
32 33
1
1
0.32 0.33
例3.(补例)解不等式:
(1) 2 x 4 x1 解: 原不等式化为 2 x 22( x1)
y 2x 在R上是增函数 由2x 22( x1) x 2( x 1)
四、作业
1、教材 P 45习题4.2第1、2、3题 2、练习册P26~27 4.2全部
(3) 0 0.01 1 y (0.01)x 在R上是减函数
(4) 20 1 y 20x 在R上是增函数

中职数学基础模块上册3-3函数的性质教学课件

中职数学基础模块上册3-3函数的性质教学课件
如在研究函数时,如果我们知道它是奇函数或偶函 数,就可以先研究它在非负区间上的性质,然后利用对称 性便可得到它在非正区间上的性质,从而减少工作量.
练习
——奇偶性
情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
练习
——奇偶性
情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
——奇偶性
情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
练习
3.3.2
函数的奇偶性
——奇偶性
情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
大千世界,美无处不在.
——奇偶性
情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
数学中也存在着对称美,函数图像的对称就是其中一种.
——奇偶性
如果一个函数是奇函数或偶函数,就说这个函数 具有奇偶性,其定义域一定关于原点中心对称.
——奇偶性
情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
有没有某个函数,它既是奇函数又是偶函数?如果 有,请举例说明.
——奇偶性
情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
——奇偶性
情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
练 习
3.3.3
几个常见的函数
—几个常见的函数 情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
回顾义务教育阶段学过的一次函数、反比例函数与二 次函数,它们的定义域、值域、单调性、奇偶性等各是怎 样的呢?如何用数学的语言表达?
—几个常见的函数 情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
—几个常见的函数 情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业

中职函数课件ppt课件ppt

中职函数课件ppt课件ppt

分段函数
总结词
不同定义域的函数关系
详细描述
分段函数是在不同的定义域上采用不 同的函数关系来定义的。由于其定义 域的离散性,分段函数的图像通常呈 现不连续的特点。分段函数在实际问 题中也有着广泛的应用。
03
函数的运算
函数的四则运算
函数的加法
表示两个函数图像上对应点的 纵坐标相加,横坐标保持不变

函数在实际生活中的应用
金融计算
函数在金融领域中有着广泛的应用, 如计算复利、保险费、贷款利息等。
数据分析
通过函数对大量数据进行处理、分析 和可视化,可以挖掘出数据中的潜在 规律和趋势。
自动化控制
在工业生产中,函数可以用于自动化 控制系统的设计和实现,提高生产效 率和产品质量。
计算机编程
函数是计算机编程的基本概念之一, 用于实现程序中的重复逻辑和模块化 设计。
函数在数学建模中的应用
经济模型
物理模型
在经济领域中,函数可以用于描述供求关 系、价格变动、消费行为等经济现象。
在物理学中,函数可以用于描述物体的运 动轨迹、力的作用规律、电磁波的传播等 物理现象。
生物模型
工程模型
在生物学中,函数可以用于描述生物种群 的增长规律、基因的表达和遗传规律等生 物现象。
在工程领域中,函数可以用于描述机械振 动、流体动力学、热传导等工程现象。
函数图像的变换
平移变换
将函数图像沿x轴或y轴方向平移一定的距离 ,得到新的函数图像。
伸缩变换
将函数图像的x轴或y轴方向进行伸缩变换, 得到新的函数图像。
翻转变换
将函数图像沿x轴或y轴方向进行翻转,得到 新的函数图像。
旋转变换
将函数图像绕原点旋转一定的角度,得到新 的函数图像。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

是 的,函数是单调
函数;
x
x 2.当k<0时,图像从左至右
是 的,函数是单调 函数.
由反比例函数 y k (k≠0)的图像分析其单调性 .x
1.当k>0时,在各象限中y值分别随x值的
增大而 ,函数是单调 函数;
2.当k<0时,在各象限中y值分别随x值的
增大而 ,函数是单调 函数.
应用知识 强化练习 教材练习3.2.1
有f(x1)>f(x2)成立. 把函数叫做区间 (a,b)内的减函数 区间(a,b)叫做函 数的减区间.
增函数
动脑思考 探索新知 减函数
演 示
随着自变量的增加 函数值不断增大 图像呈上升趋势.
随着自变量的增加 函数值不断减小 图像呈下降趋势.
动脑思考 探索新知 函数单调性的判定方法
判定函数的单调性有两种方法: 借助于函数的图像或根据单调性的定义来判定.
; ;

演示
动脑思考 探索新知
点的对称
一般地,设点P(a,b)为平面上的任意一点,则 (1)点P(a,b)关于x轴的对称点的坐标为(a,-b); (2)点. P(a,b)关于y轴的对称点的坐标为(-a,b); (3)点P(a,b)关于原点O 的对称点的坐标为(-a,-b).
巩固知识 典型例题
例3 (1)已知点P(−2,3),写出点P关于x轴的对称点的坐标; (2)已知点P(x,y),写出点P关于y轴对称点的坐标与关于原点O 的对称点的坐标; (3)设函数y=f(x,y),在函数图像上任取一点P(a,f(a)),写出点P 关于y轴的对称点的坐标与关于原点O的对称点的坐标.
解 (. 3是)关于f 原x点对称x 的的区定间义,域是0, ,
是关于原原点点对对称称的的区区间间,,
且 f且不是xf 一xx个x关21于xx原3x2点11对x,3称2x的2 f区1x间 ,f,x , 由于所所f以以函x函f数数xfffxx3x是,2奇并x2且函x数是f1是.非x偶奇函非f数 x偶. ,函数.
学习行为
学习效果
继续探索 作业探究
阅读 教材章节3.2 书写 学习与训练3.2 实践 举出函数性质的生活事例
再见
第三章 函数
3.2 函数的性质
创设情景 兴趣导入
问题1
观察天津市2008年11月29日气温时段图,此图反映了0时至 14时的气温T(℃)随时间t( h )变化的情况.
(1) 时,气温最低为 , 时,气温最高为 .
(2)随着时间的增加,在时间段
0时到6时的时间段内,气温
不断地
;6时到14时
这个时间段内,气温不断
如果一个函数是奇函数或偶函数, 那么,就称此函数具有奇偶性.
动脑思考 探索新知
函数奇偶性的判断
(1)求出函数的定义域,看其是否满足对任意的x∈D,都有-x ∈ D, 如果存在−x ∈ D,则函数肯定是非奇非偶函数;
(2)分别计算出f(x)与f(−x),然后根据它们的关系判断函数的奇偶性.
.
用图像法表示的函数,可以通过对图像对称性的观察判断函数是否 具有奇偶性.
所以函数 f x x 1 是非奇非偶函数.
应用知识 强化练习
教材练习3.2.2
2.判断下列函数的奇偶性:
(1) f x x ;
(2)
f
x
1 x2

(3) f x 3x 1 ;
(4) f x 3x2 2 .
归纳小结 强化思想
几何对称
图像特征
函数性质
性质判断
归纳小结 强化思想
学习方法
例2 判断函数y=4x-2的单调性. 分析 对于用解析式表示的函数,其单调性可以通过定义来 判断,也可以作出函数的图像,通过观察图像来判断.无论 采用哪种方法,都要首先确定函数的定义域.
观察函数图像
.
理论升华 整体建构
由一次函数y=kx+b(k≠0)的图像分析其单调性
y
y
1.当k>0时,图像从左 判断下列函数的奇偶性:
(1) f x x3 ; (2) f x 2x2 1;
(3) f x x ; (4) f x x 1 .
分解解析(4()依21f)照 x函f判数xx断f1函2的xx数定2奇义x13域的偶的为定性定义的义域域,基为为本,步骤,,进行,,.
创设情景 兴趣导入 问题1 观察下列图形的是否具有对称性:
演示
创设情景 兴趣导入
问题2 观察下列函数的图像的是否具有对称性,如果有关于
什么对称?
如果沿着y轴对折,那么对折后 如果将图像沿着坐标原点旋转180°,
y轴两侧的图像完全重合.
旋转前后的图像完全重合.
这时称函数图像关于y轴对称. 这时称函数图像关于坐标原点对称.


创设情景 兴趣导入 问题2
下图为股市中,某股票在半天内的行情,请描述此股票的涨幅情况.
动脑思考 探索新知 单调性
函数值随着自变量的增大而增大(或减小)的性质
增函数
减函数
有f(x1)<f(x2)成立. 把函数叫做区间 (a,b)内的增函数 区间(a,b)叫做函 数的增区间.
设函数y=f(x) 在区间(a,b) 内有意义. 对于任意的 x1,x2∈ (a,b) 当x1<x2时
y轴叫做这个函数图像的对称轴. 原点O叫做这个函数图像的对称中心.
动脑思考 探索新知
函数y=f (x)
对任意的x∈D,都有 − x ∈ D
f (−x)=f (x) 图像关于y轴对称 称函数为.偶函数.
f (-x)=-f (x) 图像关于原点对称 称函数为奇函数.
不具有奇偶性的函数叫做非奇非偶函数.
.
分析 利用三种对称点的坐标特征进行研究即可.
点P(a,b)关于x轴的对称点的坐标为(a,-b); 点P(a,b)关于y轴的对称点的坐标为(-a,b); 点P(a,b)关于原点O 的对称点的坐标为(-a,-b).
应用知识 强化练习 教材练习3.2.2 1.求满足下列条件的点的坐标:
(1)与点 2,1 关于 x 轴对称; (. 2)与点 1, 3 关于 y 轴对称; (3)与点 2, 1 关于坐标原点对称; (4)与点 1,0 关于 y 轴对称.
.
巩固知识 典型例题 例1 小明从家里出发,去学校取书,顺路将自行车送还王伟同学. 小明骑了30分钟自行车,到王伟家送还自行车后,又步行10分钟 到学校取书,最后乘公交车经过20分钟回到家.这段时间内,小 明离开家的距离与时间的关系如图所示.指出这个函数的单调性.
观察函数图像
.
巩固知识 典型例题
1.已知函数图像如下图所示.
.
(1)根据图像说出函数的单调区间以及函数在 各单调区间内的单调性;
(2)写出函数的定义域和值域.
问题
创设情景 兴趣导入
P2
如图所示:
P3
P1
点P(3,2)关于x 轴的对称点是点P1,其坐标为 点P(3,2)关于y 轴的对称点是点P2,其坐标为 点P(3,2)关于原点O 的对称点是点P3,其坐标为
相关文档
最新文档