2012中考数学知识点(四)

合集下载

2012年三明数学中考知识点考点分析

2012年三明数学中考知识点考点分析

2012年三明数学中考知识点考点分析一、考点---数与式考点1、实数的分类及有关概念1.-2、0、2、-3这四个数中最大的是【 】A .2B .0C .-2D .-3 2. 在2,1,0,1-这四个数中,既不是正数也不是负数的是【 】A )1-B )0C )1D )23.2(3)-的值是【 】A .9 B.-9 C .6 D .-6 4.14-的相反数等于( )A .14B .14-C .4D .4-考点2、科学记数法1.用科学记数法表示3804.2正确的是【 】A .3804.2×103B .380.42×104C .3.8042×106D .3.8042×107 2. 全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是【 】 A )2.89×107. B )2.89×106 .C )2.89×105. D )2.89×104 考点3、实数的运算及比较1.设a =19-1,a 在两个相邻整数之间,则这两个整数是【 】A .1和2B .2和3C .3和4D .4和5 2.计算:|2-|o 2o 12sin30((tan 45)-+-+本节主要考查实数的有关概念:相反数、倒数、绝对值、近似数、科学记数法及实数的分类、大小比较等,一般是以基础题出现,以选择题和填空题为主,对科学记数法的考查一般以实际生活为背景,结合社会热点问题考查。

考点4、平方根、算术平方根与立方根 1.(2010=_________。

2. 2的平方根是( )A .4BC.D.3.( )A .8 B .-8C .-4D .44.若440-=m ,则估计m 的值所在的范围是( ) A .21<<m B .32<<m C .43<<m D .54<<m5.)A .5- B .0C .3D6.计算:4-20110=二、整式考点1代数式的相关概念:单项式系数、次数,多项式1.若实数a 、b 互为相反数,则下列等式中恒成立的是( )A .0a b -=B . 0a b +=C . 1ab =D . 1ab =- 2.化简()m n m n +--的结果为( ) A .2m B .2m - C .2n D .2n - 3.若20x ++=,则xy 的值为( )A .8-B .6-C .5D .64.某商场2006年的销售利润为a ,预计以后每年比上一年增长b %,那么2008年该商场的销售利润将是( ) A .()21a b +B . ()21%a b +C .()2%a a b +D .2a ab +5.(2008年)写出一个含有字母x 、y 的四次单项式 . 考点2、整式及其运算:1.下列计算中,正确的是( )A .33x x x =∙B .3x x x -=C .32x x x ÷=D .336x x x += 2.下列运算正确的是( ) A .321x x -= B .22122x x--=-C .236()a a a -=·D .236()a a -=-3.下列各式中,与2(1)a -相等的是( )A .21a -B .221a a -+C .221a a --D .21a + 4.下列运算正确的是( )A .x 3·x 4=x 12B .(-6x 6)÷(-2x 2)=3x 3C .2a-3a=-aD .(x-2)2=x 2-45. 计算x x ÷3)2(的结果正确的是【 】A )28x B )26x C )38x D )36x 6.下列运算正确的是【 】A .234a a a = B .44()a a -=C .235a a a += D .235()a a =7.(2008年)先化简,再求值:(2a +b)(2a -b)+b (2a +b)-4a 2b ÷b ,其中a =- 12,b =2.考点3、因式分解1.因式分解:a 2b +2ab +b =2.因式分解:2233ax ay -= . 3.(2011年)分解因式:a 2-4a +4=本节主要考查整式的运算、分解因式,题型以选择题和填空题为主。

(完整版)2012年湘教版中考数学系统复习资料(全面)

(完整版)2012年湘教版中考数学系统复习资料(全面)

《株洲中考》目录第一部分数与代数第一节:实数课时1:有理数课时2:实数课时3:实数的运算第二节:代数式课时4:整式及其运算课时5:因式分解课时6:分式及其运算课时7:二次根式第三节:方程与方程组课时8:一元一次方程与二元一次方程组课时9:一元二次方程与分式方程课时10:列方程(组)解应用题第四节:不等式与不等式组课时11:一元一次不等式(组)及其解法课时12:列一元一次不等式(组)解应用题第五节:函数及其图象课时13:函数及其图象课时14:一次函数课时15:反比例函数课时16:二次函数第二部分:空间与图形第六节:图形的初步认识课时17:点、线、面、角课时18:相交线、平行线第七节:三角形与四边形课时19:三角形课时20:全等三角形课时21:四边形课时22:特殊四边形的性质与判定第八节:图形与变换课时23:图形的平移、轴反射与旋转课时24:相似三角形课时25:位置的确定、平面直角坐标系第九节:解直角三角形。

课时26:锐角三角函数课时27:解直角三角形第十节:圆课时28:圆的有关性质课时29:点与圆的位置关系、直线与圆的位置关系。

课时30:圆与圆的位置关系、圆锥课时31:视图与投影第十一节:图形与证明:课时32:命题、证明、反证法课时33:尺规作图。

第三部分:统计与概率课时34:统计课时35:概率第四部分:实践与综合应用课时36:方程与函数综合课时37:圆与相似综合课时38:代数与几何综合测试卷:综合测试(一)数与代数卷综合测试(二)空间与图形综合测试(三)统计与概率综合测试(四)实践与综合应用中考数学模拟试卷(一)中考数学模拟试卷(二)中考数学模拟试卷(三)中考数学模拟试卷(四)中考数学备考策略初中数学学业考试是具有合格考试和选拔功能的考试,是义务教育阶段的终结性考试,也是全面、正确反映初中毕业生在学科学习目标方面所达到的水平考试,考试结果既是学生是否达到毕业标准的主要依据,也是高中阶段学校招生的重要依据之一。

2012中考数学热点知识归纳61【4】

2012中考数学热点知识归纳61【4】

2012中考数学热点知识归纳61【4】2.4数形结合思想(用好几何性质)代表性题型:函数与几何综合题。

例4.在平面直角坐标系xOy中,已知抛物线y=a(x+1)+c(a >0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,其顶点为M,若直线MC的函数表达式为,与x轴的交点为N,且COS∠BCO=。

⑴求次抛物线的函数表达式。

(2)在此抛物线上是否存在异于点C的点P,使以N、P、C为顶点的三角形是以NC为一条直角边的直角三角形?若存在,求出点P的坐标:若不存在,请说明理由;(3)过点A作x轴的垂线,交直线MC于点Q.若将抛物线沿其对称轴上下平移,使抛物线与线段NQ总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?解析:⑴由直线y=kx-3与y轴交点坐标为C(0,-3)抛物线y=a(x+1)+c(a>0)开口向上,过C(0,-3)∴A、B在y轴两侧,B在y轴右侧。

如图。

Rt△AOC中,OC=3,cos∠BCO=∴BC=,OB=1∴B(1,0)又B(1,0),C(0,-3)在y=a(x+1)+c上∴抛物线解析式y=x+2x-3⑵由⑴抛物线顶点M(-1,-4),直线y=kx-3过M,∴直线解析式y=x-3∴N(3,0)∴△NOC为等腰直角三角形假设抛物线上存在点P使△NPC为以NC为一条直角边的直角三角形。

①PC为另一条直角边。

PC⊥CN,而A与N关于y轴对称在抛物线上。

∴存在P1(-3,0)使△NPC为以NC为一条直角边的直角三角形②PN为另一条直角边。

PN⊥CN,则∠PNO=45°设PN交y轴于点D,则D(0,3)PN所在直线y=-x+3由解得∴存在P2(,),P3(,)使△NPC为以NC为一条直角边的直角三角形。

满足条件的点有P1(-3,0),P2(,),P3(,)⑶①若抛物线沿对称轴向上平移。

设向上平移b个单位(b>0)。

此时抛物线的解析式为:y=x+2x-3+b抛物线与线段NQ总有交点,即由抛物线解析式、直线MC所在直线解析式组成的方程组有解。

2012年山西省数学中考题考查知识点

2012年山西省数学中考题考查知识点

2008、2009、2010、2011、2012年山西省中考数学各题考点
折叠纸片裁剪后展开判断
已知一个外角求边数
给定三视图求体积
解一元二次方程
观察抛物线判断说法
阴影部
分面积
C
补全扇形图,绘制条形
图,计算,信息分析
用列表法或画树状图概率
利用尺规作图、证明、计算
切线的证明
数学建模(分式方程),
销售问题求利润
图形的平移变换;猜想,证
明(双垂直图形)角平分线
动态问题两个动点,求直线解析式,三角形面积(二次函数),等腰三角动态问题、两个动点、平行四边形,(点的坐标、直线解析式,分类讨论,三角形面积最大)等腰三角形
幂的乘方与积的乘方;实
一次函数图
象与系数的
圆周角
反比例函数图象的对称菱形的性质;
解一元一次不等式组。

分式的混合运算。

(中奖)概率公式。

规律型:图形的变化类。

的应用。


坐标与
图形性质;

利用旋转、轴对称设计图案。

条形统计图;扇形统计图。

解直角三角形的应用-仰角俯角问题。

一元二次方程的应用。

(卖核桃问题)
山西特产专卖店销售核桃,其进价为每千克40
元出售,平均每天可售出100千克,后来经过市场调查发现,(1
与性质。

二次函数综合题。

如图,在平面直角坐标系中,抛物线y=﹣x2+2x+3与.B两点,与y轴交于点C,点D是该抛
为顶点的四边形
请直
标;若不存在,请说明理由.。

2012年全国中考数学试题分类解析汇编专题44:矩形、菱形、正方形

2012年全国中考数学试题分类解析汇编专题44:矩形、菱形、正方形

2012年全国中考数学试题分类解析汇编(159套63专题)专题44:矩形、菱形、正方形一、选择题1. (2012天津市3分)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD 至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为【】(A1(B)3(C(D1【答案】D。

【考点】正方形的性质,勾股定理。

【分析】利用勾股定理求出CM的长,即ME的长,有DM=DE,所以可以求出DE,从而得到DG的长:∵四边形ABCD是正方形,M为边AD的中点,∴DM=12DC=1。

∴CM=1。

∵四边形EDGF1。

故选D。

2. (2012安徽省4分)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为【】A.22a B. 32a C. 42a D.52a【答案】A 。

【考点】正多边形和圆,等腰直角三角形的性质,正方形的性质。

【分析】图案中间的阴影部分是正方形,面积是2a ,由于原来地砖更换成正八边形,四周一个阴影部分是对角线为a 的正方形的一半,它的面积用对角线积的一半来计算:222114222a a a +⨯⨯=。

故选A 。

3. (2012山西省2分)如图,已知菱形ABCD 的对角线AC .BD 的长分别为6cm 、8cm ,AE⊥BC 于点E ,则AE 的长是【 】A .B .C .48cm 5D .24cm 5 【答案】D 。

【考点】菱形的性质,勾股定理。

【分析】∵四边形ABCD 是菱形,∴CO=12AC=3,BO=12BD=,AO⊥BO,∴5=。

∴ABCD 11S BD AC 682422=⋅=⨯⨯=菱形。

又∵ABCD S BC AE =⋅菱形,∴BC·AE=24,即()24AE cm 5=。

故选D 。

4. (2012陕西省3分)如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE⊥AB,垂足为E ,若∠ADC=1300,则∠AOE 的大小为【 】A .75°B .65°C .55°D .50°【答案】B 。

2012中考数学知识点总结(浩轩整理)

2012中考数学知识点总结(浩轩整理)

中考数学复习资料 第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

2012年重庆市中考数学知识点总复习以及大题分解

试卷结构1、内容结构与比例:数与代数 50% 空间与图形 35% 统计与概率 15%二、一、有理数1、有理数有理数的意义,会比较有理数的大小2、借助数轴理解相反数绝对值的意义,会求相反数与绝对值3、掌握有理数的加、减、乘、除、乘方以及简单的混合运算4、运用有理数运算律简化运算,并解决简单问题二、实数1、了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根2、了解开方与乘方互为逆运算,知道实数与数轴上的点一一对应3、用有理数估计一个无理数的大致范围4、了解近似数的概念并会进行近似数的运算5、了解二次根式的概念及其加减乘除运算法则,会用它们进行有关的实数的简单四则运算(不要求分母有理化)三、代数式1、能分析简单问题的数量关系,并用代数式表示2、会求代数式的值,能根据简单的实际问题,探索所需的公式,并会进行计算四、整式与分式1、了解整数指数幂的意义和基本性质,会用科学计数法表示数2、了解正式的概念,会进行简单的正式加减运算,会进行简单的整式乘法运算3、会推导乘法公式:(a+b)(a—b)=a2-b2 (a+b)2=a2+2ab+b2,并能进行简单计算4、会提公因式、分式法进行因式分解5、了解分式的概念,会运用分式的基本性质进行约分和通分,会进行简单的分式加减乘除运算1、能够用等式表示具体问题中的数量关系2、用观察、画图等的手段估计方程解的过程3、会解一元一次方程、二元一次方程组、可化为一元一次方程的分式方程4、理解配方法5、根据具体问题实际意义,检验结果是否合理6、能用不等式表示具体问题中的大小关系7、会解简单的一元一次方程不等式(不等式组),并能在数轴上表示出解集8、能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的实际问题1、了解函数的概念和3中表示方法2、结合图像,对简单实际问题中的函数关系进行分析3、能确定自变量的取值范围,并求出函数值4、结核函数关系的分析,尝试对变量的变化规律进行初步预测5、根据已知条件确定函数的表达式6、会画一次函数的图像并理解kx+b=y(k不等于0)的性质7、理解正比例函数8、用一次函数结局实际问题9、会用描点法画出二次函数的图像,并从图像上认识二次函数的性质1、会比较角的大小,认识度分秒,并进行简单换算2、了解平行线及其性质3、了解补角、余角对顶角4、了解垂线、垂线段的概念5、会做垂线6、了解垂直平分线及其性质7、了解三角形的有关性质(内角、外角、中线、高、角平分线),了解三角形的稳定性质8、了解全等三角形的概念9、了解等腰三角形的相关概念10、了解直角三角形的概念11、会用勾股定理解决问题12、了解四边形的概念13、等腰梯形14、圆(弧、玄、圆心角),了解点与圆、直线与圆的位置关系15、圆心角、圆周角16、三角形的内心与外心17、了解切线18、计算弧长和扇形面积、圆锥的侧面积和全面积19、会做线段、角、角平分线、线段垂直平分线20、做三角形21、作圆22、判断简单物体的三视图及其侧面展开图23、轴对称24、作轴对称25、图形的平移26、图形的旋转27、图形的相似28、图形与坐标29、证明1、统计:个体、样本2、扇形统计图表示数据3、加权平均数4、会计算极差、方差,并明确其意义5、计算简单事件发生的频率第一章 数与代数第二章 方程与不等式第三章 函数第四章 空间与图形第五章 概率与统计考点一、有理数 1.有理数: (1)凡能写成)0p q ,p (pq 为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.(相反数的证明) 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (aa 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; (3)0a 1aa >⇔=;0a 1aa <⇔-=; (4)|a|是重要的非负数,即|a|≥0=5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0. 6.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 7.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 8.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).9.有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 10.有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .11.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .12.有理数乘方的法则: (1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时:(-a)n=-a n或(a -b)n=-(b-a)n,当n 为正偶数时:(-a)n=a n或(a-b)n =(b-a)n.13.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0⇔a=0,b=0;14.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.15.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明. 考点二、实数1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

2012年中考初三数学的知识点和考点

2012年中考初三的知识点和考点第21章二次根式这一章在中考中大约占12分,同学们主要掌握二次根式有意义的条件;会把二次根式化成最简二次根式;准确进行二次根式的混合运算。

只要掌握这三点,在中考中就能稳拿这12分。

1、二次根式定义2、两个重要公式3、积的算术平方根4、二次根式的乘法法则5、二次根式比较大小的方法6、商的算术平方根7、二次根式的除法法则。

注意:分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。

8、最简二次根式9、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。

10、二次根式的混合运算第22章一元二次方程这一章是工具,单独命题的分数在6分左右,但是二次函数知识的考查中往往用到这一章的知识点,这又往往是拉分的题目,所以不容忽视!要准确掌握一元二次方程的解法,灵活运用各种解法,为后面二次函数的学习奠定坚实的基础。

1、一元二次方程的一般形式:ax2+bx+c=0(a≠0)2、一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少。

3、一元二次方程根的判别式:当ax2+bx+c=0 (a≠0)时,Δ=b2-4ac 叫一元二次方程根的判别式。

请注意以下等价命题:Δ>0《=》有两个不等的实根;Δ=0《=》有两个相等的实根;Δ<0《=》无实根;4、一元二次方程的应用(1)平均增长率问题(2)利润率问题第23章旋转这一章的知识在中考题目中大约占6分,图形的变换包括平移、轴对称和旋转,要求同学们直观感觉图形的变换,并且把这些变化运用到几何证明题和代数几何的综合题中,从而更好地提高解题能力。

1、概念2、旋转的性质3、中心对称4、中心对称的性质5、中心对称图形6、坐标系中的中心对称第24章圆这一章的知识在中考命题中占10~15分,同学们重点掌握切线的判定方法、切线的性质,弧长、扇形面积与圆锥的侧面积的计算。

2012年中考复习北师大初中数学重要知识点集锦(实用)

a n a n a ambm a bab a b a b -=-=-)(121n x x x nx +++=)(212211n f f f nf x f x f x x k kk =++++++=])()()[(1222212x x x x x x ns n -++-+-= 2s s=2012北师大初中数学重要知识点集锦1.数的分类及概念:整数和分数统称有理数(有限小数和无限循环小数),像√3,π,0.101001∙∙∙叫无理数;有理数和无理数统称实数。

实数按正负也可分为:正整数、正分数、0、负整数、负分数,正无理数、负无理数。

2.自然数(0和正整数);奇数2n-1、偶数2n ;科学记数法:na 10⨯(1≤a <10,n 是整数),有效数字。

3.(1)倒数积为1;(2)相反数和为0,商为-1;(3)绝对值是距离,非负数。

4.数轴:①定义(“三要素”);②点与实数的一一对应关系。

(2)性质:若干个非负数的和为0,则每个非负数均为0。

5非负数:正实数与零的统称。

(表示为:x ≥0)(1)常见的非负数有:6.去绝对值法则:正数的绝对值是它本身,“+( )”;零的绝对值是零,“0”; 负数的绝对值是它的相反数,“-( )”。

7.实数的运算:加、减、乘、除、乘方、开方;运算法则,定律,顺序要熟悉。

8.单项式、多项式统称整式。

(注意单项式的系数、次数;多项式的次数,项数、项) 9. 同类项。

合并同类项(系数相加,字母及字母的指数不变)。

10. 算术平方根、 (正数a 的正的平方根); 0的平方根为0 。

正数的平方根:a ±(a>0)11. (1)最简二次根式:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式;(2)同类二次根式:化为最简二次根式以后,被开方数相同的二次根式;(3)分母有理化:化去分母中的根号。

12.因式分解:把一个多项式化成几个整式的积的形式常用方法:一提二套三分组,十字相乘不离手:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法。

2012年中考数学系统复习资料(全面)

第一部分数与代数第一节:实数课时1:有理数课时2:实数课时3:实数的运算第二节:代数式课时4:整式及其运算课时5:因式分解课时6:分式及其运算课时7:二次根式第三节:方程与方程组课时8:一元一次方程与二元一次方程组课时9:一元二次方程与分式方程课时10:列方程(组)解应用题第四节:不等式与不等式组课时11:一元一次不等式(组)及其解法课时12:列一元一次不等式(组)解应用题第五节:函数及其图象课时13:函数及其图象课时14:一次函数课时15:反比例函数课时16:二次函数第二部分:空间与图形第六节:图形的初步认识课时17:点、线、面、角课时18:相交线、平行线第七节:三角形与四边形课时19:三角形课时20:全等三角形课时21:四边形课时22:特殊四边形的性质与判定第八节:图形与变换课时23:图形的平移、轴反射与旋转课时24:相似三角形课时25:位置的确定、平面直角坐标系第九节:解直角三角形。

课时26:锐角三角函数课时27:解直角三角形第十节:圆课时28:圆的有关性质课时29:点与圆的位置关系、直线与圆的位置关系。

课时30:圆与圆的位置关系、圆锥课时31:视图与投影第十一节:图形与证明:课时32:命题、证明、反证法课时33:尺规作图。

第三部分:统计与概率课时34:统计课时35:概率第四部分:实践与综合应用课时36:方程与函数综合课时37:圆与相似综合课时38:代数与几何综合课时1 有理数◆明纲亮标一、考标要求1.理解五个重要概念:有理数、数轴、相反数、绝对值、倒数。

2.掌握五条法则:有理数的加、减、乘、除、乘方法则及简单的混合运算。

3.能运用有理数的运算解决简单的问题。

4.对含有较大数字的信息作出合理解释。

二、知识要点1.有理数的分类:整数、分数统称有理数;整数又包括________,___,_____;分数又包括________,________。

2.相反数、倒数、绝对值的概念:只有符号不同的两个数是________,a的相反数为-a;0的相反数是0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

32.圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连。

同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦。

33.圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系。

34.正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n 边形在眼前.35.经过分点做切线,切线相交n个点.n个交点做顶点,外切正n边形便出现.正n边形很美观,它有内接,外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果n值为偶数,中心对称很方便.正n边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n个整,依此计算便简单.36.函数学习口决:正比例函数是直线,图象一定过圆点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b 向下减,图象经过三个限,两点决定一条线,选定系数是关键。

37.反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线x、y的顺序可交换。

38.二次函数抛物线,选定需要三个点,a的正负开口判,c 的大小y轴看,△的符号最简便,x轴上数交点,a、b同号轴左边抛物线平移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。

相关文档
最新文档