(整式的乘除)2019年秋季初二年数学期末复习提纲
八年级数学复习提纲

八年级数学复习提纲八年级数学复习提纲(一)整式的乘除与分解因式一、知识框架:二、知识概念:1.基本运算:⑴同底数幂的乘法:am an am n⑵幂的乘方:am amn n⑶积的乘方:ab anbn2.整式的乘法:⑴单项式单项式:系数系数,同字母同字母,不同字母为积的因式.⑵单项式多项式:用单项式乘以多项式的每个项后相加.⑶多项式多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3.计算公式:⑴平方差公式:a b a b a2b2⑵完全平方公式:a b a22ab b2;a b a22ab b24.整式的除法:⑴同底数幂的除法:am an am n⑵单项式单项式:系数系数,同字母同字母,不同字母作为商的因式.⑶多项式单项式:用多项式每个项除以单项式后相加.⑷多项式多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:a2b2a b a b22n②完全平方公式:a22ab b2a b③立方和:a3b3(a b)(a2ab b2)④立方差:a3b3(a b)(a2ab b2)⑶十字相乘法:某2p q 某pq 某p 某q⑷拆项法⑸添项法八年级数学复习提纲(二)分式一、知识框架:二、知识概念:1.分式:形如A,A、B是整式,B中含有字母且B不等于0的整式叫做分式.其中A叫做分式的B分子,B叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:aba b ccc⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分 acad cb式,然后再按同分母分式的加减法法则进行计算.用字母表示为: bdbd⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分第6 / 7页acac母相乘的积作为积的分母.用字母表示为: bdbd⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:acadad bdbcbcnan a⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:n b b8.整数指数幂:⑴am an am n(m、n是正整数)⑵am amn(m、n是正整数) n⑶ab anbn(n是正整数)⑷am an am n(a0,m、n是正整数,m n) an a ⑸n(n是正整数) b b nn⑹a n 1(a0,n是正整数) an9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).八年级数学复习提纲(三)轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质①点P(某,y)关于某轴对称的点的坐标为P'(某,y).②点P(某,y)关于y轴对称的点的坐标为P"(某,y).⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.八年级数学复习提纲。
八年级数学上册整式的乘除知识点归纳

在八年级数学上册的整式乘除部分,可以归纳以下几个知识点:1. 同底数幂相乘:当两个幂数的底数相同时,可以将它们的指数相加,得到新的幂数。
例如:a^m * a^n = a^(m+n)。
2. 幂的乘法法则:当有多个幂相乘时,可以将它们的底数保持不变,指数相乘,得到新的幂。
例如:(a^m) * (a^n) = a^(m+n)。
3. 同底数幂相除:当两个幂数的底数相同时,可以将它们的指数相减,得到新的幂数。
例如:a^m / a^n = a^(m-n)。
4. 幂的除法法则:当有多个幂相除时,可以将它们的底数保持不变,指数相减,得到新的幂。
例如:(a^m) / (a^n) = a^(m-n)。
5. 同底数幂的乘方:当一个幂的指数再次取幂时,可以将它们的指数相乘,得到新的幂。
例如:(a^m)^n = a^(m*n)。
6. 幂的整数指数相除:当一个幂的指数是整数,且除以另一个整数时,可以将它们的指数相除,得到新的幂。
例如:(a^m)^(1/n) = a^(m/n)。
7. 化简整式:将整式中的同类项进行合并,即将具有相同字母和相同指数的项合并成一个项,并进行系数的运算。
例如:3x + 2x = 5x。
8. 整式的乘法:将整式中的每一项按照分配律逐个与另一个整式的每一项相乘,并将结果合并。
例如:(2x + 3) * (4x - 5) = 8x^2 + 2x -15x -15。
9. 整式的除法:将整式的被除式与除式进行长除法运算,按照整数除法的规则进行计算,得到商式和余式。
这些是八年级数学上册整式的乘除的主要知识点,通过理解和掌握这些知识点,可以更好地解决相关的题目和应用。
八年级上册数学整式的乘除知识点

文章标题:深度剖析八年级上册数学整式的乘除知识点在八年级上册的数学课程中,整式的乘除是一个重要的知识点。
通过学习整式的乘除,我们可以更好地理解代数表达式的变化规律,掌握数学运算的技巧和方法,为进一步学习代数知识打下坚实的基础。
本文将深度剖析八年级上册数学整式的乘除知识点,帮助读者全面、深刻地理解这一重要内容。
1. 整式的乘法整式的乘法是整式运算中的基本内容之一。
在整式的乘法中,我们需要掌握多项式之间的乘法规律和技巧。
我们需要了解乘法分配律的应用,即将一个多项式的每一项与另一个多项式的每一项分别相乘,并将结果相加得到最终的乘积。
我们需要熟练掌握多项式中的同类项的合并和系数的运算。
我们还需要注意乘法中的特殊情况,如平方公式的运用和多项式的高次项乘法。
2. 整式的除法整式的除法是整式运算中的另一个重要内容。
在整式的除法中,我们需要掌握多项式之间的除法规律和方法。
我们需要了解除法的基本步骤,即先将被除式与除数进行逐项相除,然后合并同类项得到商,最后再进行余数的判断和处理。
我们需要注意整式除法中的特殊情况,如整式除不尽时的余数处理和除式中的零系数问题。
总结回顾通过对整式的乘除知识点的深度剖析,我们不仅掌握了整式的乘法和除法的基本规律和方法,还能够灵活运用和应用这些知识解决实际问题。
整式的乘法和除法在数学中具有重要的地位,它不仅是代数表达式的基本运算,还是后续学习中多项式、因式分解等内容的重要基础。
我们应该认真学习整式的乘除知识点,深入理解其中的原理和技巧,为今后的学习打下坚实的基础。
个人观点在学习整式的乘除知识点时,我认为重点在于深入理解其运算规律和方法,而不仅仅是死记硬背。
通过多做习题和实际应用,我相信我能更好地掌握整式的乘除知识点,并能够灵活运用于解决实际问题中。
在本文中,我们深度剖析了八年级上册数学整式的乘除知识点,侧重从简到繁、由浅入深地探讨了整式的乘法和除法。
通过本文的阐述,相信读者对整式的乘除知识点有了更全面、深刻的理解。
初二数学整式的乘除与因式分解复习

整式的乘除与因式分解一、学习目标:1.掌握与整式有关的概念;2.掌握同底数幂、幂的乘法法则,同底数幂的除法法则,积的乘方法则;3.掌握单项式、多项式的相关计算;4.掌握乘法公式:平方差公式,完全平方公式。
5..掌握因式分解的常用方法。
二、知识点总结:1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。
如:bc a 22-的 系数为2-,次数为4,单独的一个非零数的次数是0。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。
3、整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式。
也不是单项式和多项式。
4、多项式按字母的升(降)幂排列: 如:1223223--+-y xy y x x按x 的升幂排列:3223221x y x xy y +-+-- 按x 的降幂排列:1223223--+-y xy y x x 按y 的升幂排列:3223221y y x xy x --++- 按y 的降幂排列:1223223-++--x xy y x y 5、同底数幂的乘法法则:m n m n aa a +=(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。
注意底数可以是多项式或单项式。
如:235()()()a b a b a b ++=+ 6、幂的乘方法则:mnnm aa =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。
如:10253)3(=- 幂的乘方法则可以逆用:即m n n m mna a a)()(==如:23326)4()4(4==7、积的乘方法则:nnnb a ab =)((n 是正整数) 积的乘方,等于各因数乘方的积。
八年级数学全册复习提纲

初二数学全册总复习提纲第十一章全等三角形复习一、全等三角形能够完全重合的两个三角形叫做全等三角形;一个三角形经过平移、翻折、旋转可以得到它的全等形;2、全等三角形有哪些性质1:全等三角形的对应边相等、对应角相等;2:全等三角形的周长相等、面积相等;3:全等三角形的对应边上的对应中线、角平分线、高线分别相等;3、全等三角形的判定边边边:三边对应相等的两个三角形全等可简写成“SSS”边角边:两边和它们的夹角对应相等两个三角形全等可简写成“SAS”角边角:两角和它们的夹边对应相等的两个三角形全等可简写成“ASA”角角边:两角和其中一角的对边对应相等的两个三角形全等可简写成“AAS”斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等可简写成“HL”4、证明两个三角形全等的基本思路:二、角的平分线:1、性质角的平分线上的点到角的两边的距离相等.2、判定角的内部到角的两边的距离相等的点在角的平分线上;三、学习全等三角形应注意以下几个问题:1:要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;2:表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;3:“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;4:时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形;这条直线就是它的对称轴;这时我们也说这个图形关于这条直线成轴对称;2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称;这条直线叫做对称轴;折叠后重合的点是对应点,叫做对称点3、轴对称图形和轴对称的区别与联系4.轴对称的性质①关于某直线对称的两个图形是全等形;②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线;④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称;二、线段的垂直平分线1. 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线;2.线段垂直平分线上的点与这条线段的两个端点的距离相等3.与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.点x, y关于x轴对称的点的坐标为______.点x, y关于y轴对称的点的坐标为______.2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等四、等腰三角形知识点回顾1.等腰三角形的性质①.等腰三角形的两个底角相等;等边对等角②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合;三线合一2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等;等角对等边五、等边三角形知识点回顾1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600 ;2、等边三角形的判定:①三个角都相等的三角形是等边三角形;②有一个角是600的等腰三角形是等边三角形;3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半;第十三章实数知识要点归纳一、实数的分类:2、数轴:规定了、和的直线叫做数轴画数轴时,要注童上述规定的三要素缺一个不可,实数与数轴上的点是一一对应的;数轴上任一点对应的数总大于这个点左边的点对应的数;3、相反数与倒数;4、绝对值5、近似数与有效数字;6、科学记数法7、平方根与算术平方根、立方根;8、非负数的性质:若几个非负数之和为零 ,则这几个数都等于零;二、复习方案二1. 无理数:无限不循环小数第十四章一次函数一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量;二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.三、函数中自变量取值范围的求法:1.用整式表示的函数,自变量的取值范围是全体实数;2用分式表示的函数,自变量的取值范围是使分母不为0的一切实数;3用寄次根式表示的函数,自变量的取值范围是全体实数;用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数;4若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围;5对于与实际问题有关系的,自变量的取值范围应使实际问题有意义;四、函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.五、用描点法画函数的图象的一般步骤1、列表表中给出一些自变量的值及其对应的函数值;注意:列表时自变量由小到大,相差一样,有时需对称;2、描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点;3、连线:按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来;六、函数有三种表示形式:1列表法 2图像法 3解析式法七、正比例函数与一次函数的概念:一般地,形如y=kxk为常数,且k≠0的函数叫做正比例函数.其中k叫做比例系数; 一般地,形如y=kx+bk,b为常数,且k≠0的函数叫做一次函数.当b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例.八、正比例函数的图象与性质:1图象:正比例函数y= kx k 是常数,k≠0 的图象是经过原点的一条直线,我们称它为直线y= kx ;2性质:当k>0时,直线y= kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y= kx经过二,四象限,从左向右下降,即随着 x的增大y反而减小;九、求函数解析式的方法:待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法;1.一次函数与一元一次方程:从“数”的角度看x为何值时函数y= ax+b的值为0.2.求ax+b=0a, b是常数,a≠0的解,从“形”的角度看,求直线y= ax+b与x 轴交点的横坐标3.一次函数与一元一次不等式:解不等式ax+b>0a,b是常数,a≠0 .从“数”的角度看,x为何值时函数y= ax+b的值大于0.4.解不等式ax+b>0a,b是常数,a≠0 .从“形”的角度看,求直线y= ax+b在x轴上方的部分射线所对应的的横坐标的取值范围.解方程组 从“数”的角度看,自变量x 为何值时两个函数的值相等.并求出这 个函数值解方程组 从“形”的角度看,确定两直线交点的坐标. 第十五章 整式乘除与因式分解 一.回顾知识点1、主要知识回顾:幂的运算性质:a m ·a n =a m +n m 、n 为正整数同底数幂相乘,底数不变,指数相加.()nm a = a mn m 、n 为正整数幂的乘方,底数不变,指数相乘. ()n n n b a ab = n 为正整数积的乘方等于各因式乘方的积.n m a a ÷= a m -n a ≠0,m 、n 都是正整数,且m >n同底数幂相除,底数不变,指数相减.零指数幂的概念:a 0=1 a ≠0任何一个不等于零的数的零指数幂都等于l .负指数幂的概念:a -p =p a 1a ≠0,p 是正整数任何一个不等于零的数的-pp 是正整数指数幂,等于这个数的p 指数幂的倒数.也可表示为:pp n m m n ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-m ≠0,n ≠0,p 为正整数 单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. 单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.⎪⎩⎪⎨⎧=-=+c b a c b a y x y x 222111⎪⎩⎪⎨⎧=-=+c b a c b a y x y x 222111多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.2、乘法公式:①平方差公式:a+ba-b=a2-b2文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.②完全平方公式:a+b2=a2+2ab+b2a-b2=a2-2ab+b2文字语言叙述:两个数的和或差的平方等于这两个数的平方和加上或减去这两个数的积的2倍.3、因式分解:因式分解的定义.把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.掌握其定义应注意以下几点:1分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;2因式分解必须是恒等变形;3因式分解必须分解到每个因式都不能分解为止.弄清因式分解与整式乘法的内在的关系.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.二、熟练掌握因式分解的常用方法.1、提公因式法1掌握提公因式法的概念;2提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;3提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.4注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.2、公式法运用公式法分解因式的实质是把整式中的乘法公式反过来使用;常用的公式:①平方差公式: a2-b2= a+ba-b②完全平方公式:a2+2ab+b2=a+b2a2-2ab+b2=a-b2第十六章 分式1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式; 分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零 2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变; 0≠C 3.分式的通分和约分:关键先是分解因式 4.分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母;分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘;分式乘方法则: 分式乘方要把分子、分母分别乘方;,aba bac ad bc ad bcc c c bd bd bd bd ±±±=±=±=分式的加减法则:同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先通分,变为同分母分式,然后再加减混合运算:运算顺序和以前一样;能用运算率简算的可用运算率简算;5. 任何一个不等于零的数的零次幂等于1, 即)0(10≠=a a ;当n 为正整数时,n n a a 1=- )0≠a6.正整数指数幂运算性质也可以推广到整数指数幂.m,n 是整数1同底数的幂的乘法:n m n m a a a +=⋅;2幂的乘方:mn n m a a =)(;3积的乘方:n n n b a ab =)(;4同底数的幂的除法:n m n m a a a -=÷ a ≠0;5商的乘方:n nn b ab a =)(;b ≠07. 分式方程:含分式,并且分母中含未知数的方程——分式方程;解分式方程的过程,实质上是将方程两边同乘以一个整式最简公分母,把分式方程转化为整式方程; 解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根;解分式方程的步骤 :1能化简的先化简2方程两边同乘以最简公分母,化为整式方程;3解整式方程;4验根.增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根; 分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解;列方程应用题的步骤是什么 1审;2设;3列;4解;5答.应用题有几种类型;基本公式是什么 基本上有五种: 1行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题. 2数字问题 在数字问题中要掌握十进制数的表示法. 3工程问题 基本公式:工作量=工时×工效. 4顺水逆水问题 v 顺水=v 静水+v 水. v 逆水=v 静水-v 水.8.科学记数法:把一个数表示成n a 10⨯的形式其中101<≤a ,n 是整数的记数方法叫做科学记数法.用科学记数法表示绝对值大于10的n 位整数时,其中10的指数是1-n bc ad c d b a d c b a bd ac d c b a =⋅=÷=⋅;n ba b a =)(C B C A B A ⋅⋅=CB C A B A ÷÷=A C BD 用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数包括小数点前面的一个0第十七章 反比例函数1.定义:形如y =xk k 为常数,k≠0的函数称为反比例函数;其他形式xy=k 1-=kx y xky 1= 2.图像:反比例函数的图像属于双曲线;反比例函数的图象既是轴对称图形又是中心对称图形;有两条对称轴:直线y=x 和 y=-x;对称中心是:原点3.性质:当k >0时双曲线的两支分别位于第一、第三象限,在每个象限内y 值随x 值的增大而减小; 当k <0时双曲线的两支分别位于第二、第四象限,在每个象限内y 值随x 值的增大而增大;4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积;第十八章 勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a 2+b 2=c 2;2.勾股定理逆定理:如果三角形三边长a,b,c 满足a 2+b 2=c 2;,那么这个三角形是直角三角形;3.经过证明被确认正确的命题叫做定理;我们把题设、结论正好相反的两个命题叫做互逆命题;如果把其中一个叫做原命题,那么另一个叫做它的逆命题;例:勾股定理与勾股定理逆定理第十九章 四边形平行四边形定义: 有两组对边分别平行的四边形叫做平行四边形;平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分;平行四边形的判定1.两组对边分别相等的四边形是平行四边形2.对角线互相平分的四边形是平行四边形;3.两组对角分别相等的四边形是平行四边形;4.一组对边平行且相等的四边形是平行四边形;三角形的中位线平行于三角形的第三边,且等于第三边的一半; 直角三角形斜边上的中线等于斜边的一半;矩形的定义:有一个角是直角的平行四边形;矩形的性质: 矩形的四个角都是直角;矩形的对角线平分且相等;AC=BD矩形判定定理: 1.有一个角是直角的平行四边形叫做矩形; 2.对角线相等的平行四边形是矩形;3.有三个角是直角的四边形是矩形;菱形的定义 :邻边相等的平行四边形;菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角; 菱形的判定定理: 1.一组邻边相等的平行四边形是菱形; 2.对角线互相垂直的平行四边形是菱形;3.四条边相等的四边形是菱形;S 菱形=1/2×aba、b 为两条对角线正方形定义:一个角是直角的菱形或邻边相等的矩形;正方形的性质:四条边都相等,四个角都是直角; 正方形既是矩形,又是菱形;正方形判定定理: 1.邻边相等的矩形是正方形; 2.有一个角是直角的菱形是正方形; 梯形的定义: 一组对边平行,另一组对边不平行的四边形叫做梯形;直角梯形的定义:有一个角是直角的梯形等腰梯形的定义:两腰相等的梯形;等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等; 等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形;解梯形问题常用的辅助线:如图线段的重心就是线段的中点; 平行四边形的重心是它的两条对角线的交点; 三角形的三条中线交于疑点,这一点就是三角形的重心; 宽和长的比是21-5约为的矩形叫做黄金矩形;第二十章数据的分析1.加权平均数:加权平均数的计算公式; 权的理解:反映了某个数据在整个数据中的重要程度;学会权没有直接给出数量,而是以比的或百分比的形式出现及频数分布表求加权平均数的方法;2.将一组数据按照由小到大或由大到小的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数median;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;3.一组数据中出现次数最多的数据就是这组数据的众数mode;4.一组数据中的最大数据与最小数据的差叫做这组数据的极差range;5. 方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定;数据的收集与整理的步骤:1.收集数据2.整理数据3.描述数据4.分析数据5.撰写调查报告6.交流6. 平均数受极端值的影响众数不受极端值的影响,这是一个优势,中位数的计算很少不受极端值的影响;。
新人教版八年级上册数学[整式的乘除与因式分解 全章复习与巩固(提高)知识点整理及重点题型梳理]
![新人教版八年级上册数学[整式的乘除与因式分解 全章复习与巩固(提高)知识点整理及重点题型梳理]](https://img.taocdn.com/s3/m/9ad35dbde53a580217fcfe0e.png)
新人教版八年级上册数学知识点梳理及巩固练习重难点突破课外机构补习优秀资料整式的乘除与因式分解全章复习与巩固(提高)【学习目标】1. 掌握正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算;4. 理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解.【知识网络】【要点梳理】【整式的乘除与因式分解单元复习知识要点】要点一、幂的运算,为正整数);同底数幂相乘,底数不变,指数相加.1.同底数幂的乘法:(m n,为正整数);幂的乘方,底数不变,指数相乘.2.幂的乘方: (m n3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1. 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++. 4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式:22()()a b a b a b +-=-两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.要点四、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.要点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项完全或十字;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次.【典型例题】类型一、幂的运算1、已知25m x =,求6155m x -的值. 【思路点拨】由于已知2m x的值,所以逆用幂的乘方把6m x 变为23()m x ,再代入计算. 【答案与解析】解:∵25m x=, ∴62331115()55520555m m x x -=-=⨯-=. 【总结升华】本题培养了学生的整体思想和逆向思维能力.举一反三:【 整式的乘除与因式分解单元复习 例1】【变式】(1)已知246122,9,5===a b c ,比较,,a b c 的大小.(2)比较3020103,9,27大小。
八年级数学上学期期末复习提纲第十五章整式乘除与因式分解
八年级数学上学期期末复习提纲 第十五章 整式乘除与因式分解二、整式的乘法1.单项式与单项式乘法法则:把系数、同底数幂分别相乘,作为积的因式,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式与多项式的乘法法则:用单项式与多项式的每一项分别相乘,再把所得的积相加.m(a+b+c) = ma+mb+mc3.多项式与多项式的乘法法则:先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.(a+b)(m+n) = am+an+bm+bn4.乘法公式: ①平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差,即()()a b a b a b +-=-22; ②完全平方公式:两数和(或差)的平方等于它们的平方和,加(或减)它们的积的2倍,即()a b a ab b ±=±+2222。
三、整式的除法1.单项式除以单项式法则:把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
2.多项式除以单项式的法则:先把这个多项式的每一项除以这个单项式,再把所得的商相加。
四、因式分解:1.因式分解的定义:把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解。
掌握其定义应注意以下几点:①分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;②因式分解必须是恒等变形;③因式分解必须分解到每个因式都不能分解为止。
2.弄清因式分解与整式乘法的内在的关系 因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式。
3.熟练掌握因式分解的常用方法.(1)提公因式法:ma+mb+mc = m(a+b+c)①提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:A 系数——各项系数的最大公约数;B 字母——各项含有的相同字母;C 指数——相同字母的最低次数。
整式的乘除八年级上册数学知识点
整式的乘除八年级上册数学知识点
一、整式的乘法:
1. 同底数相乘:将各项的系数相乘,底数相乘,并将指数相加得到新的指数。
2. 不同底数相乘:将各项的系数相乘,并将底数相乘得到新的底数。
3. 括号法则:对于带有括号的整式,使用分配率进行展开,然后合并同类项。
二、整式的除法:
1. 长除法:按照长除法的步骤进行计算,将除数乘以合适的倍数,依次减去被除数,并将减法结果作为商的系数。
2. 短除法:在除数和被除数的每一项上分别除以一个公因式,得到商式,然后再按照长除法的步骤进行计算。
3. 余式:整式的除法中,被除式除以除数得到的商式和余式,即表示被除式能不能整除除数,商式表示商,余式表示余数。
4. 最大公因式:求两个多项式的最高公因式,可以使用因式分解、综合除法等方法进行求解。
三、整式的因式分解:
1. 公因式提取法:找到各项的最大公因式,并提取出来,剩下的部分作为新的因式。
2. 公式法则:利用二次方差、完全平方公式、立方差和立方和等公式进行因式分解。
四、整式的展开与配方法:
1. 分配率:利用分配率将整式展开成多个单项式的和。
2. 配方法:对于特定形式的整式,使用配方法进行展开,例如二次三角恒等式、完全平方式等。
以上是八年级上册数学中关于整式的乘除的知识点,希望对你有帮助!。
第十四章 整式的乘除与因式分解知识点清单-八年级数学上册期末复习通关秘笈(人教版)
人教版八年级上册第14章《整式的乘除与因式分解》知识清单一、幂的乘法运算1.同底数幂的乘法:底数________,指数______.字母表达:a m·a n =_____.(m、n是正整数).2.幂的乘方:底数________,指数______.字母表达:(a m)n = ________.(m、n是正整数).3.积的乘方:积的每一个因式分别_____,再把所得的幂_____.字母表达:(ab)n =_____(n为正整数)二、整式的乘法1.单项式乘单项式:(1)将_____________相乘作为积的系数;(2)相同字母的因式,利用_________的乘法,作为积的一个因式;(3)单独出现的字母,连同它的______,作为积的一个因式;注:单项式乘单项式,积为________.2.单项式乘多项式:(1)单项式分别______多项式的每一项;(2)将所得的积________.注:单项式乘多项式,积为多项式,项数与原多项式的项数________.3.多项式乘多项式:先用一个多项式的每一项分别乘另一个多项式的______,再把所得的积________.三、整式的除法1.同底数幂的除法:同底数幂相除,底数_______,指数_________.字母表达:a m÷a n=_______(a ≠0,m,n都是正整数,且m>n)2.0次幂:任何不等于0的数的0次幂都等于________.字母表达:a0 =1(a_____)3.单项式除以单项式:单项式相除, 把_______、____________分别相除后,作为商的因式;对于只在被除式里含有的字母,则连它的_______一起作为商的一个因式.4.多项式除以单项式:多项式除以单项式,就是用多项式的除以这个,再把所得的商 .四、乘法公式1.平方差公式:两数______与这两数______的积,等于这两数的______.字母表达:(a+b)(a-b) =_________.【方法总结】应用平方差公式计算时,应注意以下几个问题:(1)左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;(2)右边是相同项的平方减去相反项的平方;(3)公式中的a和b可以是具体数,也可以是单项式或多项式.2.完全平方公式:两个数的和(或差)的平方,等于它们的_______,加上(或减去)它们的______的2倍.字母表达:(a±b)2=_____________.【方法总结】1.公式左边都是二项式的平方,右边是一个二次三项式;2.公式右边第一、三项分别是左边第一、第二项的平方.3.另一项是左边两项积的_____倍.4.公式中的字母a,b可以表示数,单项式和多项式.五、因式分解1.因式分解的定义:把一个多项式化为几个________的________的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.2. 因式分解的方法:(1)提公因式法※多项式中各项都含有的相同因式,叫作这个多项式的____________.【方法归纳】正确找出多项式的公因式的步骤:①定系数:公因式的系数是多项式各项系数的_______________.②定字母:字母取多项式各项中都含有的________的字母.③定指数:相同字母的指数取各项中______的一个,即字母最_____次数.※如果多项式的各项有_______,可以把这个_______提取出来,将多项式写成_______与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法.字母表达:ma+mb+mc=_____________.【方法归纳】提公因式法步骤(分两步)第一步:找出公因式;第二步:提取公因式,即将多项式化为两个因式的乘积.注意事项:1.公因式要提尽;2.不要漏项;3.提负号,要注意变号.(2)公式法●平方差公式※两个数的平方差,等于这两个数的_____与这两个数的______的________.字母表达:a2-b2=____________.【要点归纳】能利用平方差公式因式分解的多项式的特征:①左边是____次____项式,每项都是____的形式,两项的符号相反.②右边是两个多项式的____,一个因式是两数的____,另一个因式是这两个数的____.【方法归纳】平方差公式因式分解步骤一提:提______;二套:套______;三查:检查每一个多项式是否都不能再分解因式.●完全平方公式※完全平方公式的特点:左边:①项数必须是________;②其中有两项是________;③另一项是________.右边:________________________________________________.※用完全平方公式因式分解,即两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.字母表达:a2+2ab+b2=________; a2-2ab+b2=________.【要点归纳】将一个多项式因式分解的一般步骤:(1)利用公式把某些具有特殊形式(如__________,__________等)的多项式分解因式,这种分解因式的方法叫做公式法.(2)分解因式应根据多项式的特征,有公因式的一般先提_________,再套用公式,没有公因式的,则直接套用公式.分解因式应注意最后的结果中,多项式的每一个因式均不能再继续分解.。
整式的乘除期末复习总结
整式的乘除期末复习总结一、整式的基本概念和性质1. 整式的定义:整式是由常数、未知数和运算符号经过有限次数的加、减、乘、乘方组成的代数式。
例如,3x²+2xy-5y²是一个整式。
2. 整式的项和项数:整式中的每一部分被称为一个项。
例如,3x²、2xy和-5y²是上述整式的三个项。
整式中的项的个数被称为整式的项数。
3. 整式的次数:整式中所有项的最高次数被称为整式的次数。
例如,上述整式的次数为2,因为它的最高次项是3x²。
4. 加法和减法运算:整式的加法和减法运算与数的加法和减法运算类似。
对于整式a+b和a-b,只需将对应的项相加或相减即可。
二、整式的乘法运算1. 单项式的乘法:单项式的乘法结果仍然是一个单项式。
乘法的规则是,将各个项乘起来,然后对指数进行相加。
例如,(3x²)(4x³)=12x⁵。
2. 多项式的乘法:多项式的乘法结果仍然是一个多项式。
乘法的规则是,将每个项分别与另一个多项式的每个项相乘,然后将结果进行合并。
例如,(2x+3)(4x-5)=8x²-10x+12x-15=8x²+2x-15。
3. 多项式乘以常数:将多项式的每个项与常数相乘即可。
例如,2x(3x²-4x+5)=6x³-8x²+10x。
三、整式的除法运算1. 除法的定义:整式a除以整式b(b≠0)表示为a÷b,意味着a与b的乘积等于另一个整式q,并且剩余项r满足a=bq+r。
2. 长除法法则:长除法是一种用于计算整式除法的方法。
首先将被除式的最高次项除以除式的最高次项,然后将商从被除式中减去,得到一个新的被除式。
继续将新的被除式最高次项除以除式的最高次项,以此类推,直到无法再进行除法运算为止。
四、整式的乘除运算练习以下是一些乘除运算的练习题,供读者练习和巩固所学知识。
1. 计算(3x+2)(2x-4)的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年秋季初二年数学期末复习提纲
班级: 姓名
第12章 整式的乘除 一、幂运算的性质
1、同底数幂的乘法:同底数幂相乘,_______不变,指数_______. 公式:=⋅n m a a __________ (n m 、为正整数).
2、幂的乘方:幂的乘方,_______不变,指数_______. 公式:()
=n
m
a ___________ (n m 、为正整数).
3、积的乘方:积的乘方,等于把积的_____________分别_______,再把所得的幂_____________. 公式:()=n
ab ___________ (n 为正整数).
4、同底数幂相除:同底数幂相除,_______不变,指数_______. 公式:=÷n m a a ____________ (n m 、为正整数,0≠>a n m ,). △巩固练习:
1、填空:(1)32a a ⋅= ;(2)22232⨯⨯= ;(3)8247⨯⨯= ; (4)32)()(a a -⋅-= ;(5)32)()(x y y x --= .
2、填空:(1)23)(x - = ;(2)32)(x -= ;(3)1625⋅= ;
(4)234232)(5)(a a a a -⋅+= ;(5)32)2-(a = ;(6)20202019425.0⨯= .
3、填空:(1)47a a ÷= ;(2)38)()(m m -÷-= ;(3)47)()(xy xy ÷= ;
(4)222++÷m m x x = ;(5)34)()(x y y x -÷-= ;(6)x x x ⋅÷26= .
4、已知:8a a a n m n m =⋅-+,求m 的值.
5、已知310,410==b a ,求b a 310+的值.
6、若,286434x =⨯求x 的值.
7、若3,5==n
m
x x ,求n
m x 2-3的值.
8、求182252⨯是几位数?
二、整式的乘除
1、单项式与单项式相乘:将它们的系数、相同字母的幂分别 ,对于只在一个单项式中出现的字母,连同它的指数一起作为 的一个因式.
例:计算:①)4(32ab a -⋅ ②3223)2()3(b a a -⋅-
2、单项式与多项式相乘:将单项式分别 多项式的每一项,再将所得的积 . 例:计算:①)23(22y xy x x +-⋅ ②)3()2(22mn n mn n m -⋅+-
3、多项式与多项式相乘:先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积 .
例:计算:①)12)(2(-+-x x ②))((22b ab a b a ++-
三、乘法公式
1、平方差公式:
例:计算:①)2)(2(y x y x -+ ②)21)(21(c c --+-
2、两数和的平方公式:
例:计算:①2)2(y x + ②2)2
1
(+x
3、两数差的平方公式: 例:计算:①2)2(-x ②2)12(-x
四、整式的除法
1、单项式除以单项式:把系数、同底数幂分别 作为商的因式,对于只在被除式中出现的字母,则连同它的指数一起作为 的一个因式.
例:计算:①xy yz x 242÷- ②23223)3(y x y x ÷
2、多项式除以单项式:先用这个多项式的每一项 这个单项式,再把所得的商 . 例:计算:①x bx ax 2)(÷+ ②)3()6159(2224x y x x x -÷+-
五、因式分解:把一个多项式化为几个整式的 的形式,叫做多项式的因式分解. 1、提公因式法:如:)(c b a m mc mb ma ++=++,其中公因式是 .
例:因式分解(1)y x 33-= ;(2)a a 2552+-= . 2、公式法:(1)=-22b a ;
(2)=++222b ab a ;(3)=+-222b ab a .
例:因式分解=-224)1(y x ;=++12)2(2m m ;=+-2296)2(n mn m . △巩固练习:
一、选择题:
1、下列各式中,运算结果为2236y x -的是( )
A 、()()x y x y --+-66
B 、()()x y y -+-616
C 、()()x y x y +-+94
D 、()()x y x y ---66 2、若M x y y x ()3942-=-2,那么代数式M 应是( ) A 、-+()32x y B 、 -+y x 23 C 、 32x y + D 、 32x y -
3、乘积等于22b a -的式子为( )
A 、()()b a b a --
B 、()()b a b a ---
C 、()()a b b a ---
D 、()()b a b a +-+ 4、下列各式是完全平方式的是( )
A 、x xy y 2224++
B 、 251022m mn n ++
C 、 a ab b 22++
D 、 x xy y 22214
-+ 5、若()222
1243by xy x y ax +-=+,则b a ,的值分别为( )
A 、2, 9
B 、2, -9
C 、-2 ,9
D 、-4, 9 6、要使等式()()2
2
b a M b a +=+-成立,则M 是( )
A 、ab 2
B 、ab 4
C 、-ab 4
D 、-ab 2 7、两个连续奇数的平方差一定是( )
A 、3的倍数
B 、5的倍数
C 、8的倍数
D 、16的倍数 二、填空题:
1、()()y x y x -+= , ()2
2y x -= .
2、如果=-+=-k a a k a 则),2
1
)(21(2 .
3、若()()a b a b -=+=22713,,则a b 22+=_________,ab =________.
4、若x y x y 22126-=+=,,则x =_____________,y =_____________.
5、若2216y mxy x ++是完全平方式,则m =_____________.
6、已知:,则m m m m
+
=+=131
22_____________. 7、边长为a 的正方形,边长增加b 以后,则所得新正方形的面积比原正方形的面积增加了 . 8、已知正方形的面积是()0,06922>>++y x y xy x ,则正方形的边长是___ ___. 9、若122=+a a ,则()2
1+a = .
10、有理数y x ,满足()x x y x 2-122
=++-,则()
2019
xy = .
三、计算:1、()()()()y x y x y x y x 22+---+ 2、()()()a b b a b a -+-+-22
四、因式分解:(1)1)3)(1(+--x x (2))()(22y x y y x x +-+ (3)x x x 4423---
五、解答题:
1、知a b +=5,ab =-10,求①a b 22+; ②()a b -2的值.
2、如果2)()1(2
=---y x x x ,求
xy y x -+2
2
2的值.
3、已知:32b a c =+,求代数式a b c ac 222944-++的值.。