九年级12月月考数学试卷
江苏省盐城市大丰区2023-2024学年九年级上学期12月月考数学试题

江苏省盐城市大丰区2023-2024学年九年级上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A.20°B.3A .B .C .D .7.将一条抛物线向左平移5个单位后得到了23y x =的函数图象,则这条抛物线是()A .235y x =+B .235y x =--C .()235y x =-D .()235y x =+8.若二次函数y =(x -m )2-1,当x ≤3时,y 随x 的增大而减小,则m 的取值范围是()A .m =3B .m >3C .m ≥3D .m ≤3二、填空题13.抛物线2y x =-14.如图,在Rt ABC △中,斜边AB 的中点,则OD 长是15.已知二次函数2y ax =+值为.16.在矩形ABCD 中,AB =的中点,点M 运动过程中线段三、解答题17.(1)解方程:22510x x --=;(2)()()23430x x x -+-=18.如图,点D 在⊙O 的直径AB 的延长线上,点C 在⊙O 上,AC =CD ,∠ACD =120°.(1)求证:CD 是⊙O 的切线;(2)若⊙O 的半径为4,求图中阴影部分(弧BC 、线段BD 及CD 围成的图形)的面积.19.如图,在由边长为1的单位正方形组成的网格中,按要求画出坐标系及111A B C △及222A B C △;点A 、C 的坐标分别为(30)(23)--,,,(1)画出ABC 关于y 轴对称再向上平移(2)以图中的点D 为位似中心,将11A B △222A B C △.20.如图,用18米长的木方条做一个有一条横档的矩形窗子,窗子的宽米.为使透进的光线最多,求:(1)则窗子的长多少米?(2)并求出最大透光面积.(横柱遮光忽略)21.如图1,Rt ABC △两直角边的边长为(1)如图2,O 与Rt ABC △的边AB 相切于点X ,出并标明O 的圆心(用尺规作图,保留作图痕迹,不写作法和证明)(2)P 是这个Rt ABC △上和其内部的动点,以P 为圆心的AB BC 、相切.设P 的面积为S ,能否求出最大值是多少?22.三(1)班为奖励期中考试的优秀学生,派小明到商店购买某种奖品,他看到如图所示的关于该奖品的销售信息,便用1600元买回了奖品,求小明购买该奖品的件数.购买件数销售价格不超过30件单价50元(1)求证:ABD ECA ∽△△(2)若86AC CE ==,,求24.如图,已知抛物线y (1)求抛物线的解析式和顶点坐标;(2)点P 为抛物线上一点,若S 25.如图,在平面直角坐标系中,点Q 从点O 、动点P 从点A 同时出发,分别沿着秒和1个单位长度/秒的速度匀速运动,长为半径的P 与AB OA 、的另一个交点分别为点(1)设QCD 的面积为S ,试求(2)若P 与线段QC 只有一个交点,请写出26.如图,已知二次函数y =-交于点4(0)C ,.(1)求该二次函数的解析式;(2)点D 在线段OA 上运动,过点D 作x 轴的垂线,与AC 交于点Q ,与抛物线交于点P .①连接AP CP ,,当三角形ACP 的面积最大时,求此时点P 的坐标;②探究是否存在点P 使得以点P ,C ,Q 为顶点的三角形与ADQ △相似?若存在,求出点P 的坐标;若不存在,说明理由.27.有一副直角三角板,在三角板ABC 中,907BAC AB AC Ð=°==,,在三角板DEF 中,9068FDE DF DE Ð=°==,,,将这副直角三角板按如图(1)所示位置摆放,点B 与点F 重合,直角边BA 与FD 在同一条直线上.现固定三角板ABC ,将三角板DEF 沿射线BA 方向平行移动,当点F 运动到点A 时停止运动.(1)如图(2),在三角板DEF 运动过程中,当EF 经过点C 时,求FC 的长;(2)在三角板DEF 运动过程中,当D 在BA 的延长线上时,设BF x ,两块三角板重叠部分的面积为y .求:y 与x 的函数关系式,并求出对应的x 取值范围.。
江苏省南京市2023~2024学年九年级上学期12月月考数学试卷

数学(满分120分,考试时间120分钟)一、选择题(本大题共6小题,每小题2分,共12分.在每个小题所给出的四个选项中,恰有一项符合题目要求,请将正确选项前的字母代号填涂在答题卡相应位置上)1.一元二次方程x (x -1)=0的根是A .x =1B .x =0C .x 1=2,x 2=1D .x 1=0,x 2=12.平面内,若⊙O 的半径为2,OPP 在⊙OA .内B .上C .外D .内或外3.若二次函数y =ax 2的图象经过点P (-2,4),则该图象必经过点A .(-4,2)B .(-2,-4)C .(2,4)D .(4,-2)4.某班9名学生参加定点投篮测试,每人投篮10次,投中的次数统计如下:3,6,4,6,4,3,6,5,7.这组数据的中位数和众数分别是A .5,4B .5,6C .6,5D .6,65.如图,二次函数y =ax 2+bx +c 的图象经过A (1,0),B (5,0),下列说法正确的是A .c <0B .b 2-4ac <0C .a -b +c <0D .图象的对称轴是直线x =36.如图,已知点C 为圆锥母线SB 的中点,AB 为底面圆的直径,SB =6,AB =4.一只蚂蚁沿着圆锥的侧面从A 点爬到C 点,则蚂蚁爬行的最短路程为A .5B.C.D.二、填空题(本大题共10小题,每小题2分,共20分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)7.二次函数y =(x +1)2+2图象的顶点坐标为▲.8.一组数据:2,3,-1,5的极差为▲.9.已知x 1、x 2是方程x 2-2x -4=0的两个根,则x 1+x 2-x 1x 2的值为▲.10.在平面直角坐标系中,将二次函数y =2x 2的图象向右平移3个单位,再向上平移1个单位,则平移后的图象所对应的函数表达式为▲.(第5题)(第6题)11.如图,若甲、乙比赛成绩平均数相等,则2S 甲▲2S 乙(填“>”、“<”或“=”).12.已知圆锥的底面半径为6cm ,母线长为8cm ,它的侧面积为▲2cm .13.某产品原来每件成本是100元,连续两次降低成本后,现在成本是81元,设平均每次降低成本的百分率为x ,可得方程▲.14.如图,四边形ABCD 内接于⊙O ,延长AD 至点E ,已知∠AOC =140°,那么∠CDE=▲°.15.如图,点E 在y 轴上,⊙E 与x 轴交于点A 、B ,与y 轴交于点C 、D ,若C (0,9),D (0,-1),则线段AB 的长度为▲.16.如图,△ABC 为等腰直角三角形,∠BAC =90°,AB =AC =22,点D 为平面内一点,且∠BDC =90°,以AC 、CD 为边作□ACDE ,则CE 的最小值为▲.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(8分)解下列方程:(1)x 2+4x -1=0;(2)2x (x -3)=x -3.(第11题)(第14题)(第15题)(第16题)18.(8分)为了从甲、乙两人中选拔一人参加射击比赛,现对他们的射击成绩进行了测试,5次打靶命中的环数如下:甲:8,7,10,7,8;乙:9,5,10,9,7(1)将下表填写完整:平均数极差方差甲▲3▲乙8▲ 3.2(2)根据以上信息,若你是教练,你会选择谁参加射击比赛,理由是什么?(3)若乙再射击一次,命中8环,则乙这六次射击成绩的方差会▲(填“变大”或“变小”或“不变”).19.(8分)已知一个二次函数图象上部分点的横坐标x与纵坐标y的对应值如表所示:x…-3-2-101…y…0-3-4-30…(1)这个二次函数的表达式是▲;(2)在给定的平面直角坐标系中画出这个二次函数的图象;(3)观察图象,当-4<x<0时,y的取值范围为▲.20.(7分)如图,在⊙O 中,AB =AC .(1)若∠BOC =100°,则⌒AB 的度数为▲°;(2)若AB =13,BC =10,求⊙O 的半径.21.(6分)如图,已知线段a 及∠ACB .请仅用直尺..和.圆规..作⊙O ,使⊙O 在∠ACB 的内部,CO =a ,且⊙O 与∠ACB 的两边分别相切.(不写作法,保留.......作.图痕迹...).22.(8分)若关于x 的方程x 2+bx +c =0有两个实数根,且其中一个根比另一个根大2,那么称这样的方程为“隔根方程”.例如,方程x 2+2x =0的两个根是x 1=0,x 2=-2,则方程x 2+2x =0是“隔根方程”.(1)方程x 2-x -20=0是“隔根方程”吗?判断并说明理由;(2)若关于x 的方程x 2+mx +m -1=0是“隔根方程”,求m 的值.23.(8分)如图,四边形ABCD是⊙O的内接四边形,AB是直径,C是⌒BD的中点,过点C 作CE⊥AD交AD的延长线于点E.(1)求证:CE是⊙O的切线;(2)若BC=6,AC=8,求CE、DE的长.24.(9分)某淘宝网店销售台灯,成本为每个30元.销售大数据分析表明:当每个台灯售价为40元时,平均每月售出600个;若售价每下降1元,其月销售量就增加200个.(1)若售价下降1元,每月能售出▲个台灯,若售价下降x元(x>0),每月能售出▲个台灯;(2)为迎接“双十一”,该网店决定降价促销,在库存为1210个台灯的情况下,若预计月获利恰好为8400元,求每个台灯的售价.25.(8分)已知二次函数y=(x-m)2-1(m为常数).(1)求证:不论m为何值,该函数图象与x轴总有两个公共点;(2)当-1≤x≤3时,y的最小值为3,求m的值.26.(8分)掷实心球是南京市高中阶段学校招生体育考试的选考项目.如图1,一名女生投掷实心球,实心球行进路线是一条抛物线,行进高度y (m )与水平距离x (m )之间的函数关系如图2所示,已知掷出时起点处高度为35m ,当水平距离为3m 时,实心球行进至最高点3m 处.(1)求y 关于x 的函数表达式;(2)根据南京市高中阶段学校招生体育考试评分标准(女生),投掷过程中,实心球从起点到落地点的水平距离大于等于6.9m ,此项考试得分为满分.该女生在此项考试中是否得满分,请说明理由.27.(10分)在探究“四点共圆的条件”的数学活动课上,小霞小组通过探究得出:在平面内,一组对角互补的四边形的四个顶点共圆.请运用..此结论...,解决以下问题:如图1,△ABC 中,AB =AC ,∠BAC =α(60°<α<180°).点D 是BC 边上的一动点(点D 不与B 、C 重合),将线段AD 绕点A 顺时针旋转α到线段AE ,连接BE .(1)求证:A 、E 、B 、D 四点共圆;(2)如图2,当AD =CD 时,⊙O 是四边形AEBD 的外接圆,求证:AC 是⊙O 的切线;(3)已知α=120°,BC =6,点M 是边BC 的中点,此时⊙P 是四边形AEBD 的外接圆,直接写出圆心P 与点M 距离的最小值.图1图2图1图2备用图。
山东省济南市市中区济南育秀中学2023-2024学年九年级上学期12月月考数学试题

山东省济南市市中区济南育秀中学2023-2024学年九年级上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A ....2.已知43a b=,则a b-的值是(A .34.433133.已知反比例函数y =图象经过点(2,-,则下列点中不在此函数图象上的是(A .()3,2-()1,6-(1,6-4.将抛物线2y x =向右平移A .2(3)4y x =-+C .2(3)4y x =+-5.一个不透明的袋子中装有次试验发现,摸出红球的频率稳定在A .12A .()1,5B .()4,28.如图,点A ,B ,C 均在O 上,若A .120°B .130°9.一次函数()0,0y ax b a b =+≠≠和反比例函数能是()A ..C .D .二、填空题13.如图,在平面直角坐标系中心,在第三象限内作与是.14.如图,B、C分别是反比例函数轴,过点C作BC的垂线交于15.如图,用10m 长的篱笆围成一个一面靠墙的矩形场地,墙的最大长度为场地的最大面积为m 2.16.如图,等边ABC 中,10AB =,点连接DF ,CF ,则FB FD +的最小值为三、解答题17.计算:()20232sin 60121︒-+-18.已知:如图,在ABC 中,D 求AC 的长.19.如图,已知小华、小强的身高都是在同一盏路灯下,小华的影长AB20.某校在举行运动会时成立了志愿者服务队,设立四个服务监督岗:A .安全监督岗;B .卫生监督岗;C .文明监督岗;D .检录服务岗.小明和小丽报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.(1)小明被分配到文明监督岗的概率为___________;(2)用列表法或画树状图法,求小明和小丽被分配到同一个服务监督岗的概率.21.如图,某电影院的观众席成“阶梯状”,每一级台阶的水平宽度都为1m ,垂直高度都为0.3m .测得在C 点的仰角42ACE ∠=︒,测得在D 点的仰角35ADF ∠=︒.求银幕A 的高度.(参考数据:sin 350.57︒≈,cos350.82︒≈,tan 350.7︒≈,sin 420.67︒≈,cos 420.74︒≈,tan 420.9︒≈)22.某工厂生产地方特色手工老棉鞋,它的成本价为20元/双.该工厂利用网络平台销售某一批老棉鞋,每天销售量y (双)与销售单价x (元)之间的函数图象如图,已知图象是直线的一部分.(1)求y 与x 之间的函数表达式;(2)若该工厂要求每天销售量不低于320双,当销售单价为多少元时,每天获得的利润最大,最大利润是多少元?(1)计算:sad60︒=______;sad90︒=______;(2)对于0180A <<︒︒,则A ∠的正对值sad A 的取值范围是(3)如图②在直角三角形ABC 中AC BC ⊥,已知24.如图,在矩形OABC 中,6OA =,4OC =,分别以y 轴建立平面直角坐标系.反比例函数(k y x x=>4BE =.(1)求k 的值与点F 的坐标;(2)在x 轴上找一点M ,使EMF V 的周长最小,请求出点(3)在(2)的条件下,若点P 是x 轴上的一个动点,点是否存在这样的点P ,Q ,使得以点P ,Q ,M ,直接写出符合条件的点P 坐标;若不存在,请说明理由.25.【问题情境】:(1)如图1,四边形ABCD 是正方形,点E 是AD 右侧作正方形CEFG ,连接DG BE 、,则DG 与【类比探究】:(2)如图2,四边形ABCD 是矩形,3AB =,6BC =,点E 是AD 边上的一个动点,以CE 为边在CE 的右侧作矩形CEFG ,且:1:2CG CE =,连接DG 、BE .判断线段DG 与BE 有怎样的数量关系,并说明理由:【拓展提升】:(3)如图3,在(2)的条件下,连接BG ,求2BG BE +的最小值.26.如图1,若二次函数24y ax bx =++的图像与x 轴交于点()10A -,、(40)B ,,与y 轴交于点C ,连接AC BC 、.(1)求二次函数的解析式;(2)若点P 是抛物线在第一象限上一动点,连接PB PC 、,当PBC 的面积最大时,求出点P 的坐标;(3)如图2,若点Q 是抛物线上一动点,且满足45QBC ACO ∠︒∠=-,请直接写出点Q 坐标.。
苏州新区实验初中2023-2024学年上学期12月月考九年级数学试题及参考答案

2023-2024学年新区实验学校初三年级12月份月考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分)1.下列方程中是关于x 的一元二次方程的是()A.x +1x=0 B.2x 2-x =0C.3x 2=1D.ax 2-4x =02.将抛物线y =x 2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y =(x -2)2-1B.y =(x -2)2+1C.y =(x +2)2-1D.y =(x +2)2+13.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x ,根据题意所列方程正确的是()A.36(1-x )2=-25B.36(1-2x )=25C.36(1-x )2=25D.36(1-x 2)=254.二次函数y =x 2-2x -3的图象如图所示.当y <0时,自变量x 的取值范围是()A.-1<x <3B.x <-1C.x >3D.x <-1或x >35.已知线段AB ,按如下步骤作图:①作射线AC ,使AC ⊥AB ;②作∠BAC 的平分线AD ;③以点A 为圆心,AB 长为半径作弧,交AD 于点E ;④过点E 作EP ⊥AB 于点P ,则AP :AB =()A.1:5B.1:2C.1:3D.1:26.下列说法正确的是()A.平分弦的直径垂直于弦,并且平分弦所对的两条弧B.长度相等的弧是等弧C.三角形的外心到三角形三边的距离相等D.90°的圆周角所对的弦是圆的直径7.如图,⊙O 的直径为AB ,弦AC 长为6,BC 长为8,∠ACB 的平分线交⊙O 于D ,则弦AD 的长为()A.52B.7C.82D.98.如图是二次函数y =ax 2+bx +c 的图象,下列结论:①y 最大值为4;②4a +2b +c >0;③一元二次方程ax 2+bx +c =-1的两根为m ,n (m <n ),则-3<m <n <1;④使y ≤3成立的x 的取值范围是x ≥0.其中正确的个数有()A.4个B.3个C.2个D.1个二、填空题(本大题共有8小题,每小题3分,共24分)2第7题图(第4题图)第5题图第8题图10.甲、乙两同学最近的5次数学测验中数学成绩的方差分别是S 2甲=2.17,S 2乙=3.45,则数学成绩比较稳定的同学是.11.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形均全等,两条直角边之比均为1:2.若向该图形内随机投掷一枚小针,则针尖落在阴影区域的概率为.第11题图12.如图,四边形ABCD 为⊙O 的内接四边形,∠AOC =110°,则∠ADC =.13.一条上山直道的坡度为1:7,沿这条直道上山,则前进100米所上升的高度为米.14.如图,在正方形网格中,每个小正方形的边长都是1,⊙O 是ΔABC 的外接圆,点A ,B ,O 在网格线的交点上,则sin ∠ACB 的值是.15.直角三角形的两条边长分别为6和8,那么这个三角形的外接圆半径为16.如图,在矩形ABCD 中,AB =8,BC =5,E 是矩形ABCD 内一点,∠BCE =∠CDE ,点F 是AD 边上的动点,则BF +EF 的最小值为.三、解答题(本大题共有11小题,共82分)17.计算:(-1)2021+8-4sin45°+|-2|;18.解方程:-x (4-x )-3=0.19.先化简,再求值:1-3a +2 ÷a 2-1a +2.其中,a 是方程a 2-2a -3=0.第14题图第12题图A B C DEF第16题图20.(1)在图中画出经过A、B、C三点的圆弧所在圆的圆心M的坐标为;(2)这个圆的半径为;(3)直接判断点D(5,-3)与⊙M有何位置关系,点D(5,-3)在⊙M(填内、外、上).21.为了响应“全民全运,同心同行”的号召,某学校要求学生积极加强体育锻炼,坚持做跳绳运动,跳绳可以让全身肌肉匀称有力,同时会让呼吸系统、心脏、心血管系统得到充分锻炼.学校为了了解学生的跳绳情况,在七年级随机抽取了10名男生和10名女生,测试了这些学生一分钟跳绳的个数,测试结果统计如下:请你根据统计图提供的信息,回答下列问题:(1)所测学生一分钟跳绳个数的众数是,中位数是;(2)求这20名学生一分钟跳绳个数的平均数;(3)若该校七年级共有学生960人,若一分钟跳绳个数在160个以上(含160)为优秀,则该校七年级学生跳绳成绩优秀的大约有多少人?22.从起点站新区实验金山路校区(记作J站)开往终点站新区实验马云路校区(记作M站)的某接送车,中途停靠A站和B站,甲、乙两名互不相识的学生同时从金山路校区上车(1)甲同学从M站下车的的概率为.(2)甲、乙两名同学在同一个车站下车的概率是多少?(要求:列表或画树状图求解)23.如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC-AC=2,求CE的长.24.如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上.图2是其侧面结构示意图,量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上,求CD旋转的角度.(参考数据,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin26.6°≈0.44,cos26.6°≈0.89,tan26.6°≈0.50,3≈1.73)25.为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=-10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为元;(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?26.关于x的方程ax2+2cx+b=0,如果a、b、c满足a2+b2=c2且c≠0,那么我们把这样的方程称为“顾神方程”.请解决下列问题:(1)请写出一个“顾神方程”:;(2)求证:关于x的“顾神方程”ax2+2cx+b=0必有实数根;(3)如图,已知AB、CD是半径为6的⊙O的两条平行弦,AB=2a,CD=2b,且关于x的方程ax2+62x+b=0是“顾神方程”,求∠BAC的度数.27.如图,抛物线y=ax2+bx+c经过点A(-2,0),B(4,0),与y轴正半轴交于点C,且OC=2OA,抛物线的顶点为D,对称轴交x轴于点E.直线BC经过B,C两点.(1)求抛物线的函数表达式;(2)点F是线段OC上一个动点,连接EF,当5EF+CF的值最小时,点F坐标为;(3)连接AC,若点P是抛物线上对称轴右侧一点,点Q是直线BC上一点,试探究是否存在以点E为直角顶点的RtΔPEQ,且满足tan∠EQP=tan∠OCA.若存在,求出点P的坐标;若不存在,请说明理由.2023-2024学年新区实验学校初三年级12月份月考数学试卷参考答案和解析一、选择题(本大题共有8小题,每小题3分,共24分)1.下列方程中是关于x的一元二次方程的是()A.x+1x=0B.2x2-x=0C.3x3=1D.ax2-4x=0【答案】B【解析】解:A.是分式方程,故本选项不符合题意;B.是一元二次方程,故本选项不符合题意;C.是一元三次方程,故本选项不符合题意;D.是否是一元二次方程,与a的值有关,故本选项不符合题意.故选:B.2.将抛物线y=x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=(x-2)2-1B.y=(x-2)2+1C.y=(x+2)2-1D.y=(x+2)2+1【答案】C【解析】解:原抛物线的顶点为(0,0),向左平移2个单位,再向下平移1个单位,那么新抛物线的顶点为(-2,-1).可设新抛物线的解析式为:y=(x-h)2+k,代入得:y=(x+2)2-1,故选:C.3.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程正确的是()A.36(1-x)2=-25B.36(1-2x)=25C.36(1-x)2=25D.36(1-x2)=25【答案】C【解析】解:第一次降价后的价格为36×(1-x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为36×(1-x)×(1-x),则列出的方程是36×(1-x)2=25.故选:C.4.二次函数y=x2-2x-3的图象如图所示.当y<0时,自变量x的取值范围是()A.-1<x<3B.x<-1C.x>3D.x<-1或x>3【答案】A【解析】解:当y=0时,x2-2x-3=0,解得x1=-1,x2=3.结合图象可见,-1<x<3时,y<0.5.已知线段AB,按如下步骤作图:①作射线AC,使AC⊥AB;②作∠BAC的平分线AD;③以点A为圆心,AB长为半径作弧,交AD于点E;④过点E作EP⊥AB于点P,则AP:AB=() A.1:5 B.1:2 C.1:3 D.1:2【答案】D【解析】解:∵AC⊥AB,∴∠CAB=90°,∵AD平分∠BAC,∴∠EAB=12×90°=45°,∵EP⊥AB,∴∠APE=90°,∴∠EAP=∠AEP=45°,∴AP=PE,∴设AP=PE=x,故AE=AB=2x,∴AP:AB=x:2x=1:2.故选:D.6.下列说法正确的是()A.平分弦的直径垂直于弦,并且平分弦所对的两条弧B.长度相等的弧是等弧C.三角形的外心到三角形三边的距离相等D.90°的圆周角所对的弦是圆的直径【答案】D【解析】解:A、平分弦(不是直径的直径垂直于弦,并且平分弦所对的两条弧,故本选项说法错误,不符合题意;B、等弧是在同圆或等圆中,故本选项说法错误,不符合题意;C、三角形的外心到三角形三个顶点的距离相等,故本选项说法错误,不符合题意;D、90°的圆周角所对的弦是圆的直径,本选项说法正确,符合题意;故选:D.7.如图,⊙O的直径为AB,弦AC长为6,BC长为8,∠ACB的平分线交⊙O于D,则弦AD的长为()A.52B.7C.82D.9【答案】A【解析】解:∵⊙O的直径为AB,∴∠ACB=90°.∵AC=6,BC=8⇒AB=AC2+BC2=62+82=10.连接BD,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵CD是∠ACB的平分线,∴∠ACD=12∠ACB=45°,∴∠ABD=∠ACD=45°,∴AD=BD,∵AB=10⇒AD=AB∙sin45°=52.8.如图是二次函数y =ax 2+bx +c 的图象,下列结论:①y 最大值为4;②4a +2b +c >0;③一元二次方程ax 2+bx +c =-1的两根为m ,n (m <n ),则-3<m <n <1;④使y ≤3成立的x 的取值范围是x ≥0.其中正确的个数有()A.4个B.3个C.2个D.1个【答案】D【解析】解:∵抛物线的顶点坐标为(-1,4),∴二次三项式ax 2+bx +c 的最大值为4,①正确;∵x =2时,y <0,∴4a +2b +c <0,②错误;根据抛物线的对称性可知,一元二次方程ax 2+bx +c =-1的两根m ,n 是y =ax 2+bx +cy =-1的两个交点的横坐标,在-3的左边,或1的右边。
九年级12月月考数学试题(word版)

初三月考数学试卷(时间:12020 满分:12020一、选择题:(本大题共16小题,共42分)1.在函数y=1x中,自变量x的取值范围是()A.x≠0 B.x>0 C.x<0 D.一切实数2.平面直角坐标系中,点P,Q在同一反比例函数图象上的是()A.P(-2,-3),Q(3,-2) B.P(2,-3),Q(3,2)C.P(2,3),Q(-4,-32) D.P(-2,3),Q(-3,-2)3.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C.ABBD =CBCDD.ADAB=ABAC4.当x<0时,反比例函数y=12x的图象()A.在第二象限内,y随x的增大而减小B.在第二象限内,y随x的增大而增大C.在第三象限内,y随x的增大而减小D.在第三象限内,y随x的增大而增大5.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()6.反比例函数y=k−2x的图象,当x>0时,y随x的增大而减小,则k的取值范围是()A.k<2 B.k≤2 C.k>2 D.k≥27.手工制作课上,小红利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相等,那么,每个图案中花边的内外边缘所围成的几何图形不相似的是()8.如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC的周长是()A.6 B.12 C.18 D.249.图中两个四边形是位似图形,它们的位似中心是()A.点M B.点N C.点O D.点P10.定义新运算:a⊕b={ab(b>0)−ab (b<0).例如:4⊕5=45,4⊕(−5)=−45,则函数y=2⊕x(x≠0)的图象大致是()11.志远要在报纸上刊登广告,一块10cm×5cm的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他该付广告费()A.540元 B.1080元 C.1620元 D.1800元12.如图,已知反比例函数y=kx(x>0),则k的取值范围是()A.1<k<2 B.2<k<3 C.2<k<4 D.2≤k≤413.如图,直线x =2与反比例函数y =2x ,y =−1x 的图象分别交于A,B 两点,若点P 是y 轴上任意一点,则△PAB 的面积是( )A .12B .1C .32D .214.若点A(-6,y1),B(-2,y2),C(3,y3)在反比例函数y =a 2+1x (a 为常数)的图象上,则y1,y2,y3大小关系为( )A .y1>y2>y3B .y2>y3>y1C .y3>y2>y1D .y3>y1>y215.如图,在平面直角坐标系xOy 中,函数y =kx +b(k ≠0)与y =m x (m ≠0)的图象相交于点A(2,3),B(-6,-1),则不等式kx +b >m x 的解集为( )A .x<-6B .-6<x<0或x>2C .x>2D .x<-6或0<x<216.如图,已知E(-4,2),F(-1,1),以原点O 为位似中心,按比例尺1:2,把△EFO 放大,则点E 的对应点E’的坐标为( )A .(2,-1)或(-2,1)B .(8,-4)或(-8,4)C .(2,-1)D .(8,-4)二、填空题:(本大题共3小题,共10分)17.如图,在△ABC 中,M 、N 分别为AC ,BC 的中点,若S △CMN =1,则S 四边形ABMN = .18.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在的图象上,若点A的坐标为(-2,-2),则k的值为 .反比例函数y=kx19.如图,直线y=kx(k>0)与双曲线y=4交于A(x1,y1),B(x2,y2)两点,则x2x1y2-7x2y2的值等于 .三、解答题:(本大题共7小题,共68分,解答应写出文字说明、证明过程或演算步骤)20.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-2,4),B(-1,2),C(-3,1),△ABC与△A1B1C1关于y轴轴对称.(1)写出△A1B1C1的顶点坐标:A1 ,B1 ,C1 ,的解析式.(2)求过点C1的反比例函数y=kx21.(9分)如图,在4×3的正方形方格中,△ABC和△DEC的顶点都在边长为1的小正方形的顶点上.(1)填空:△ABC= ,BC= ;(2)判断△ABC与△CED是否相似,并证明你的结论.22.(9分)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药液浓度上升和下降阶段y与x之间的函数关系式. (2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?23.(9分)如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB 上的点E处.(1)求证:△BDE~△BAC(2)已知AC=5,BC=8,求线段AD的长度.24.(10分)如图,一段街道的两边缘所在直线分别为AB,PQ,并且AB∥PQ.建筑物的一端DE所在的直线MN⊥AB于点M,交PQ于点N.小亮从胜利街的A处,沿着AB方向前进,小明一直站在点P的位置等候小亮.(1)请你在图中画出小亮恰好能看见小明时的视线(虚线),以及此时小亮所在位置.(用点C标出);(2)已知:MN=20m,MD=8m,PN=24m,求(1)中的点C到胜利街口的距离CM.25.(11分)如图,在矩形OABC中,OA=3,OC=2,点F是AB上的一个动点(F不与A,的图象与BC边交于点E.B重合),过点F的反比例函数y=kx(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?(x>0)的图象与直线y=x−2 26.(12分)如图,在平面直角坐标系xOy中,函数y=kx交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),经过点P作平行于x轴的直线,交直线y=x−2于点M,过(x>0)的图象于点N.点P作平行于y轴的直线,交函数y=kx①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.。
九年级12月月考数学试卷

九年级12月月考数学试卷(本试卷共三大题24小题,共4页. 考试时间120分钟,满分120分)一、填空题(本大题共7小题,每小题3分,满分21分.)1.从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是 。
2.比较下列三角函数值的大小:sin400 sin500。
(填“>”或“<” )3.抛物线22y x =向右平移2个单位,再向下平移1个单位后的解析式为 . 4.某品牌的商品按标价打九折出售仍可获得20%的利润,若该商品标价为28元,则进价为 元。
5.若关于x 的一元二次方程0962=+-x kx 有两个不相等的实数根,则k 的取值范围是 。
6.如图1,△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB 交BC 于点D ,DE ⊥AB ,垂足为E ,且AB=6cm ,则△DEB 的周长为 cm 。
7. 如图2,反比例函数()0>=k xk y 在第一象限内,点M 是图像上一点,MP 垂直x 轴于点P ,如果△MOP 的面积为1,那么k 的值是 .(图1)2)二、选择题(本大题共8小题,每小题3分,满分24分.)8.小明从正面观察下图所示的两个物体,看到的是()9.如果反比例函数xk y =的图像经过点(-3,-4),那么函数的图像应在( ).A 、第一、三象限B 、第一、二象限C 、第二、四象限D 、第三、四象限 10.在同一时刻,身高1.6m 的小强的影长 是1.2m ,旗杆的影长是15m ,则旗杆高为 ( ) A 、16m B 、 18m C 、 20m D 、22m 11.等腰三角形底边长为7,一腰上的中线把其周长分成两部分的差为3,则腰长是 ( ) A 、4 B 、10 C 、4或10 D 、以上答案都不对 12.在ABC ∆中,,,A B C ∠∠∠对边分别为,,a b c ,5,12,13a b c ===,下列结论成立的是 ( )A .12sin 5A =B .5cos 13A =C .5tan 12A =D .12cos 13B =13.当m 不为何值时,函数2(2)45y m x x =-+-(m 是常数)是二次函数( ) A -2 B 2 C 3 D -314.菱形具有而矩形不一定具有的性质是 ( ) A .对角线互相垂直 B .对角线相等 C .对角线互相平分 D .对角互补15.在同一坐标系中一次函数y ax b =+和二次函数2y ax bx =+的图象可能为( )二.解答题(本大题共9小题,满分75分.) 16.(本小题6分)解方程 x 2-2x -3=017.(本小题6分)计算:0002060cos 30tan 345tan )160(sin ∙+--x B AC D九年级12月月考 数学答题卷(本试卷共三大题24小题,共4页. 考试时间120分钟,满分120分) 一、填空题(本大题共7小题,每小题3分,满分21分.)1. ; 2. ; 3. ;4. 元; 5. ; 6. cm ;7. ;二、选择题(本大题共8小题,每小题3分,满分24分.)二.解答题(本大题共9小题,满分75分.)16.(本小题6分)解方程 x 2-2x -3=0 解:17.(本小题6分)计算:0002060cos 30tan 345tan )160(sin ∙+--解:18.(本小题8分)需添加条件是 理由:19.(本小题8分)解:。
九年级数学月考(12月)测试题

九年级数学月考(12月)测试题(满分:100分;考试时间:120分钟)一、填空题:(每空1分,共67分)31. 在RUABC 中,已知sin ,则cos:二____________532. 如果Sin a =——,则锐角a的余角是283. 已知:ZA为锐角,且sinA= 2 ,则tanA的值为______________ .174•等腰直角三角形的一个锐角的余弦值等于___________ 。
6. 如图(见背面),在离地面高度为5m的C处引拉线固定电线杆,拉线与地面成a角,则拉线AC的长为___________ m(用a的三角函数值表示).7. 在离旗杆20m的地方用测角仪测得旗杆杆顶的仰角为 a ,如果测角仪高1.5m,那么旗杆高为___________ m.8. 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s(m)与时间t(s)的数据如下表:5.若/ A是锐角,cosA 二,2 则.A-已知小球滚动的距离s是时间t的二次函数,则s与t的函数表达式为9. _________________________________________ 函数y= (2k + 1) x2—3x + k中,当k__________________________________________ 时,图象是直线,当k _______ 时,图象是抛物线;当k ______ 时,抛物线经过原点。
10. _______________________________________________________________ 已知二次函数y= ( 2a+ 1) x2的开口向下,贝U a的取值范围是___________________________a2 2a 611•函数y=ax 是二次函数,当a = _____ 时,其图象开口向上;当a = ______ 时,其图象开口向下•12 •已知函数y= —- x2,则其图象开口向,对称轴为,顶点坐标2为_________ ,当x> 0时,y随x的增大而 ______________13•抛物线y= —-x2—3的图象开口,对称轴是,顶点坐标为, 3当x = _____ 时,y有最 _______ 值为________当x=0时,函数y的值最大,最大值是__________ ,当x 0 时,y<0。
九年级十二月月考数学试卷及(答案)

九年级上学期十二月月考数 学 试 题考试说明:本试卷共三大题26小题,满分150分,考试时间120分钟。
注意事项:1.试卷分试题卷和答题卷,所有答案必须写在答题卷上相应位置,否则不得分。
考试结束后,监考老师只收答题卷,试题卷由考生本人保管。
2.必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图。
如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域。
不准使用铅笔和涂改液,不按以上要求作答的答案无效.一、选择题(本大题共7小题,每小题3分,共21分) 1.下列计算正确的是( )AB0 C9 D3=- 2.方程23x=的解是( )A .±3 B.; D.3.如图,Rt △ABC 中,∠C=90°,AB =10 ,BC =6,则sinA =( ) A .35B . 0.5C . 0.2D . 1 4.一布袋中有红球8个,白球12个和黄球5个, 它们除了颜色外没有其它区别,闭上眼睛,随机从袋中取出1球是黄球的概率为 ( ) A.45 B.15 C.1225 D.8255.下列结论正确的是( )A .所有的矩形都相似B .所有的菱形都相似C .所有的直角三角形都相似D .所有的等边三角形都相似6.用配方法解方程2420x x -+=,下列配方正确的是( )A .2(2)2x -= B .2(2)2x += C .2(2)2x -=- D .2(2)6x -=7.如图,客轮在海上以30km/h 的速度由向航行,在处测得灯塔的方位角为北偏东80°,测得处的方位角为南偏东25°,航行1小时后到达处,在处测得的方位角为北偏东20,北(第7题图)C(第3题图)则到的距离是( )A. B..km D.km 二、填空题(本大题共10小题,每小题4分,共40分) 8x 的取值范围是 ;9.计算:()223= 10.已知x =-2是方程x 2+5x -m =0的一个根,则m 的值是 ; 11.某个斜坡的坡角为30°,则它的坡度i = 12.已知:713=y x ,则=+y y x _____ _____; 13.已知,2x 是方程2630x x ++=的两实数根,则+2x 的值为__ ____; 14.梯形中位线长为12cm ,上底的长是8cm ,那么梯形下底的长是 cm 15.如图△ABC 中,点D 、E 分别在AC 、AB 上,AE=3,EB=5,AD=4,DC=2,则AED ACBSS= ;16.如图,在△ABC 中,∠C =90°,c os A =,AB =8,则BC = 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
扬州市梅岭中学九年级数学质量检测试卷 2016.12出卷人:叶祎 审核:曹加俊 一、精心选一选(每题3分,共24分) 1.下列函数是二次函数的是( ) A .y=3x ﹣4 B .y=ax 2+bx+cC .y=(x+1)2﹣5D .y=2.二次函数21y x x =-+的图象与x 轴的交点个数是( )A .0个B .1个C .2个D .不能确定3.袋中装有大小相同的3个绿球、3个黑球、6个蓝球,闭上眼睛从袋中摸出1个球,下列关于摸出的球的颜色说法正确的是( ) A .是绿球的概率大 B .是黑球的概率大C .是蓝球的概率大D .三种颜色的球的概率相同4.对于抛物线2(5)3y x =--+,下列说法正确的是( ) A .开口向下,顶点坐标(5,3)B .开口向上,顶点坐标(5,3)C .开口向下,顶点坐标(-5,3)D .开口向上,顶点坐标(-5,3) 5.函数2(3)y x =+的图象可以由函数2y x =的图象( )得到 A . 向左平移3个单位 B .向右平移3个单位 C . 向上平移3个单位D .向下平移3个单位6.已知二次函数2y ax bx c =++(其中a>0,b>0,c<0),关于这个二次函数的图象有如下说法:①图象的开口一定向上;①图象的顶点一定在第四象限;①图象与x 轴的交点有一个在y 轴的右侧.以上说法正确的个数有( ) A .0B .1C .2D .37. 已知烟花弹爆炸后某个残片的空中飞行轨迹可以看成为二次函数y=﹣x 2+2x+5 图象的一部分,其中x 为爆炸后经过的时间(秒),y 为残片离地面的高度(米),请问在爆炸后题号 1 2 3 4 5 6 7 8 答案……………………………………………装…………………………订…………………………线…………………………………………………………班 级 姓 名 序号 考试号1秒到6秒之间,残片距离地面的高度范围为( ) A .0米到8米 B .5米到8米 C .到8米 D .5米到米8.定义符号min{a ,b}的含义为:当a≥b 时min{a ,b}=b ;当a <b 时min{a ,b}=a . 如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.则min{﹣x 2+1,﹣x}的最大值是( )A .B .C .1D .0二、细心填一填(每题3分,共30分)9.二次函数y=x 2+4x ﹣3的最小值是 . 10.当m = 时,函数21(1)m y m x+=-是二次函数.11.在一个不透明的袋子里装有黄色、白色乒乓球共40个,除颜色外其他完全相同.小明从这个袋子中随机摸出一球,然后放回.通过多次摸球实验后发现,摸到黄色球的频率稳定在15%附近,则袋中黄色球可能有_______个.12.某商场为了促销,凡购买1000元商品的顾客获抽奖券一张.抽奖活动设置了如下的电翻奖牌,一张抽奖券只能有一次机会在9个数字中选中一个翻牌,其对应的反面就是奖品(重新启动会自动随机交换位置),有两张抽奖券翻奖牌,;两张抽奖券是“谢谢参与”的概率是__________9翻奖牌正面翻奖牌反面13. 已知抛物线2(0)y ax bx c a =++>的对称轴为直线x =1,且经过点(-1,1y ), (2,2y ),试比较1y 和2y 的大小:1y __________2y (填“>”,“<”或“=”).14.校运动会铅球比赛时,小林推出的铅球行进的高度y (米)与水平距离x (米)满足关系式,则小林这次铅球推出的距离是 米.15. 已知二次函数的图象开口向下,且与y 轴的正半轴相交,请写出一个满足条件的表达式yxOA B 45°2第18题为 .16.若二次函数2(5)2(1)y m x m x m =++++的图象全部在x 轴的上方,则m 的取值范围是__________.17.二次函数y=ax 2+bx+c 的部分对应值如下表:x … ﹣3 ﹣2 0 1 3 5 … y…7﹣8﹣9﹣57…则当x=2时对应的函数值y= .18.如图,以扇形OAB 的顶点O 为原点,半径OB 所在的直线为 x 轴,建立平面直角坐标系,点B 的坐标为(2,0),若抛物线 k x y +=221与扇形OAB 的边界总有两个公共点,则实数k 的取值范 围是 .三、用心做一做(共10题,共96分)19. (本题8分) 已知二次函数y=﹣2x 2+8x ﹣6. (1)用配方法求这个二次函数图象的顶点坐标和对称轴; (2)求二次函数的图像与x 轴的交点坐标。
20. (本题8分)二次函数y=ax 2+bx+c 的图象如图所示,根据图象回答下列问题: (1)a 0; (2)b 0; (3)b 2﹣4ac 0;(4)y <0时,x 的取值范围是 .21.(本题8分)已知二次函数y=ax2+bx+c过点A(1,0),B(﹣3,0),C(0,﹣3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P使①ABP的面积为6,求点P的坐标.22.(本题8分)甲、乙、丙三位歌手进入“我是歌手”冠、亚、季军决赛,他们通过抽签来决定演唱顺序,(1)求甲第一位出场的概率;(2)求甲比乙先出场的概率.……………………………………装………………………………订………………………………线…………………………………………23.(本题8分)已知二次函数y=x 2+mx+m ﹣5(m 是常数). (1)求证:不论m 为何值,该函数的图象与x 轴一定有两公共点;(2)若该二次函数的图象过点(0,﹣3),则将函数图象沿x 轴怎样平移能使抛物线过原点?24.(本题10分)如图,已知二次函数221y x x =--的图象的顶点为A ,二次函数2y ax bx =+的图象与x 轴交于原点O 及另一点C ,它的顶点B 在函数221y x x =--的图象的对称轴上.(1) 求点A 与点C 的坐标;(2) 当四边形AOBC 为菱形时,求函数2y ax bx =+的关系式.……………………………………………装…………………………订…………………………线…………………………………………………………班 级 姓 名 序号 考试号25.(本题10分)我们常见的炒菜锅和锅盖都是抛物线面,经过锅心和盖心的纵断面是两端抛物线组合而成的封闭图形,不妨简称为“锅线”,锅口直径为6dm,锅深3dm,锅盖高1dm(锅口直径与锅盖直径视为相同),建立直角坐标系如图①所示(图①是备用图),如果把锅纵断面的抛物线记为C1,把锅盖纵断面的抛物线记为C2.(1)求C1和C2的解析式;(2)如果炒菜时锅的水位高度是1dm,求此时水面的直径;(3)如果将一个底面直径为3dm,高度为3dm的圆柱形器皿放入炒菜锅内蒸食物,锅盖能否正常盖上?请说明理由.26.(本题12分)在平面直角坐标系中,给出如下定义:形如y=(x﹣m)(x﹣m+1)与y=(x﹣m)(x﹣m﹣1)的两个二次函数的图象叫做兄弟抛物线.(1)试写出一对兄弟抛物线的解析式.(2)若二次函数y=x2﹣x(图象如图)与y=x2﹣bx+2的图象是兄弟抛物线.①求b的值.①若直线y=k与这对兄弟抛物线有四个交点,从左往右依次为A,B,C,D四个点,若点B,点C为线段AD三等分点,求线段BC的长.27.(本题12分)某经销店经销一种建筑材料,当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需成本及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).(1)求出y与x的函数关系式(不要求写出x的取值范围);(2)该经销店要获得最大月利润,售价应定为每吨多少元;(3)小王说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.28.(本题12分)抛物线2y x bx c =++经过点A(-4,0),B(2,0)且与y 轴交于点C . (1)求抛物线的解析式;(2)如图1,P 为线段AC 上一点,过点P 作y 轴平行线,交抛物线于点D ,当①ADC 的面积最大时,求点P 的坐标;(3)如图2,抛物线顶点为E ,EF①x 轴子F 点,M 、N 分别是x 轴和线段EF 上的动点,设M 的坐标为(m ,0),若①MNC =90°,请指出实数m 的变化范围,并说明理由.图1 图2……………………………………装………………………………订………………………………线…………………………………………扬州市梅岭中学2016—2017学年第一学期12月测试初三年级 学科 数学答案一、 选择题(每题3分)二、 填空题(每题3分)9、-7 10、-1 11、6 12、1913、> 14、10 15、 16、m >1317、-8 18、122k -<< 三、解答题19、(1)(2,2) X=2 4分(2)(3,0) (1,0) 4分 20、> < > -2<x<4.......................每个2分 21、(1)y=x 2+2x ﹣3...................4分(2)AB=4, 设P (m ,n ), ∵△ABP 的面积为6,∴AB •|n|=6, 解得:n=±3,当n=3时,m 2+2m ﹣3=3, 解得:m=71-或71--,C当n=﹣3时,m2+2m﹣3=﹣3,解得:m=0或-21,3)或(1-,3)...................8分22.解:(1)∵甲、乙、丙三位歌手进入“我是歌手”冠、亚、季军决赛,∴甲第一位出场的概率为;...................................................4分(2)画出树状图∵出场情况为:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲共6种情况,∴甲比乙先出场的情况有:甲乙丙,甲丙乙,丙甲乙,∴甲比乙先出场的概率为:=....................................................8分23.解:(1)令y=0得关于x的一元二次方程:x2+mx+m﹣5=0,则△=b2﹣4ac=m2﹣4(m﹣5)=m2﹣4m+20=(m﹣2)2+16.∵不论m为何值,(m﹣2)2≥0,∴(m﹣2)2+16>0.∴不论m为何值,一元二次方程x2+mx+m﹣5=0一定有两个不相等的实数根,∴不论m为何值,该函数的图象与x轴一定有两公共点....................................................4分(2)∵函数图象过点(0,﹣3),∴m﹣5=﹣3,m=2,∴二次函数表达式为y=x2+2x﹣3,∵令y=0得:x2+2x﹣3=0解得:x1=1,x2=﹣3.∴函数的图象与x轴的两个交点为:(1,0)和(﹣3,0).∴将函数图象沿x 轴向右平移3个单位或向左平移1个单位就能使抛物线过原点....................................................8分24.解:(1)∵y=x2﹣2x﹣1=(x﹣1)2﹣2,∴顶点A的坐标为(1,﹣2)....................................................2分∵二次函数y=ax2+bx的图象与x轴交于原点O及另一点C,它的顶点B在函数y=x2﹣2x ﹣1的图象的对称轴上.∴二次函数y=ax2+bx的对称轴为:直线x=1,∴点C和点O关于直线x=1对称,∴点C的坐标为(2,0)....................................................5分(2)因为四边形AOBC是菱形,所以点B和点A关于直线OC对称,因此,点B的坐标为(1,2).因为二次函数y=ax2+bx的图象经过点B(1,2),C(2,0),所以,解得,所以二次函数y=ax2+bx的关系式为y=﹣2x2+4x....................................................10分25.解:(1)由于抛物线C1、C2都过点A(﹣3,0)、B(3,0),可设它们的解析式为:y=a (x﹣3)(x+3);抛物线C1还经过D(0,﹣3),则有:﹣3=a(0﹣3)(0+3),解得:a=即:抛物线C1:y=x2﹣3(﹣3≤x≤3);抛物线C2还经过C(0,1),则有:1=a(0﹣3)(0+3),解得:a=﹣即:抛物线C2:y=﹣x2+1(﹣3≤x≤3)...................................................4分(2)当炒菜锅里的水位高度为1dm时,y=﹣2,即x2﹣3=﹣2,解得:x=±,∴此时水面的直径为2dm...................................................7分(3)锅盖能正常盖上,理由如下:当x=时,抛物线C1:y=×()2﹣3=﹣,抛物线C2:y=﹣×()2+1=,而﹣(﹣)=3,∴锅盖能正常盖上...................................................10分26.解:(1)当m=0时,得到一对兄弟抛物线,y=x(x+1)与y=x(x﹣1);.................................................4分(2)①y=x2﹣x=x(x﹣1).情况一:若y=x(x﹣1)是形如y=(x﹣m)(x﹣m+1),则m=1,则另一个函数为y=(x﹣1)(x﹣2),即y=x2﹣3x+2,b=3.情况二:若y=x(x﹣1)是形如y=(x﹣m)(x﹣m﹣1),则m=0,则另一个函数为y=x(x ﹣1),即y=x2﹣x,与已知矛盾..................................................8分②y=x2﹣3x+2的图象可以看作是由y=x2﹣x的图象向右平移1个单位得到,如图.如果k>0,则点A与点B是平移对应点,AB=1,∵点B,点C为线段AD三等分点,∴AB=BC=CD=AD=1,即BC=1;如果k<0,则点A与点C是平移对应点,AC=1,∵点B,点C为线段AD三等分点,∴AB=BC=AC=,即BC=.故线段BC的长为1或..................................................12分27.解:由题意得(1),化简得:y=﹣.(4分)(2)=.故经销店要获得最大月利润,材料的售价应定为每吨210元.(8分)(3)我认为,小王说的不对.(7分)理由:方法一:当月利润最大时,x为210元,而对于月销售额=来说,当x为160元时,月销售额W最大.∴当x为210元时,月销售额W不是最大.∴小王说的不对.(10分)方法二:当月利润最大时,x为210元,此时,月销售额为17325元;而当x为200元时,月销售额为18000元.∵17325<18000,∴当月利润最大时,月销售额W不是最大.∴小王说的不对.(12分)(说明:如果举出其它反例,说理正确,也相应给分)28.解:(1)∵抛物线y=x2+bx+c经过点A(﹣4,0),B(2,0),∴,解得:.∴抛物线的解析式为y=x2+2x﹣8..................................................3分(2)如图1,令x=0,得y=﹣8,∴点C的坐标为(0,﹣8).设直线AC的解析式为y=kx+t,则,解得:,∴直线AC的解析式为y=﹣2x﹣8.设点P的坐标为(a,﹣2a﹣8),则点D(a,a2+2a﹣8),(﹣4<a<0),∴PD=(﹣2a﹣8)﹣(a2+2a﹣8)=﹣a2﹣4a,∴S△ADC=S△APD+S△CPD=PD•[a﹣(﹣4)]+PD•(0﹣a)=2PD=﹣2(a2+4a)=﹣2(a+2)2+8,∴当a=﹣2时,S△ADC取到最大值为8,此时点P的坐标为(﹣2,﹣4).......................7分(3)由y=x2+2x﹣8=(x+1)2﹣9得E(﹣1,﹣9)、C(0,﹣8),则有OF=1、EF=9、OC=8.设FN=n,(0≤n≤9),Ⅰ.当M与点F重合时,此时m=﹣1,n=8,显然成立;Ⅰ.当M在点F左侧,作NQ⊥y轴于点Q,如图2①,此时m<﹣1.∵∠MNC=∠FNQ=90°,∴∠MNF=∠CNQ.∵∠MFN=∠CQN=90°,∴△MFN∽△CQN,∴=,∴=,∴m=﹣n2+8n﹣1.Ⅰ.当M在点F右侧,作NQ′⊥y轴于点Q′,如图2②,此时m>﹣1.∵∠MNC=∠FNQ′=90°,∴∠MNF=∠CNQ′.∵∠MFN=∠CQ′N=90°,∴△MFN∽△CQ′N,∴=,∴=,∴m=﹣n2+8n﹣1.综上所述:m=﹣n2+8n﹣1,(0≤n≤9).∴m=﹣n2+8n﹣1=﹣(n﹣4)2+15,∴当n=4时,m取到最大值为15.∵n=0时m=﹣1,n=9时m=﹣10,∴m取到最小值为﹣10,∴m的取值范围是﹣10≤m≤15..................................................12分。