灰色系统新陈代谢模型源码(matlab)

合集下载

灰色预测模型及MATLAB实例

灰色预测模型及MATLAB实例

灰⾊预测模型及MATLAB实例下⾯将主要从三⽅⾯进⾏⼤致讲解,灰⾊预测概念及原理、灰⾊预测的分类及求解步骤、灰⾊预测的实例讲解。

⼀、灰⾊预测概念及原理:1.概述:关于所谓的“颜⾊”预测或者检测等,⼤致分为三⾊:⿊、⽩、灰,在此以预测为例阐述。

其中,⽩⾊预测是指系统的内部特征完全已知,系统信息完全充分;⿊⾊预测指系统的内部特征⼀⽆所知,只能通过观测其与外界的联系来进⾏研究;灰⾊预测则是介于⿊、⽩两者之间的⼀种预测,⼀部分已知,⼀部分未知,系统因素间有不确定的关系。

细致度⽐较:⽩>⿊>灰。

2.原理:灰⾊预测是通过计算各因素之间的关联度,鉴别系统各因素之间发展趋势的相异程度。

其核⼼体系是灰⾊模型(Grey Model,GM),即对原始数据做累加⽣成(或者累减、均值等⽅法)⽣成近似的指数规律在进⾏建模的⽅法。

⼆、灰⾊预测的分类及求解步骤:1.GM(1,1)与GM(2,1)、DGM、Verhulst模型的分类⽐较:预测模型适⽤场景涉及的序列GM(1,1)模型⼀阶微分⽅程,只含有1个变量的灰⾊模型。

适⽤于有较强指数规律的序列。

累加序列均值序列GM(2,1)模型适⽤于预测预测具有饱和的S形序列或者单调的摆动发展序列缺陷。

累加序列累减序列均值序列DGM模型累加序列累减序列Verhulst模型累加序列均值序列2.求解步骤思维导图:其中预测过程可能会涉及以下三种序列、⽩化微分⽅程、以及⼀系列检验,由于⼤致都相同,仅仅是某些使⽤累加和累减,⽽另外⼀些则使⽤累加、累减和均值三个序列的差别⽽已。

于是下⾯笔者将对其进⾏归纳总结再进⾏绘制思维导图,帮助读者理解。

(1)原始序列(参考数据列):(2)1次累加序列(1-AGO):(3)1次累减序列(1-IAGO ):(也就是原始序列中,后⼀项依次减去前⼀项的值,例如,[x(2)-x(1),x(3-x(2),...,x(n)-x(n-1))]。

)(4)均值⽣成序列:(这是对累加序列"(前⼀项+后⼀项)/2"得出的结果。

灰色预测模型matlab程序精确版

灰色预测模型matlab程序精确版

%x=[1019,1088,1324,1408,1601];gm1(x); 测试数据%二次拟合预测GM(1,1)模型function gmcal=gm1(x)if nargin==0x=[1019,1088,1324,1408,1601]endformat long gsizex=length(x);%求数组长度k=0;for y1=xk=k+1;if k>1x1(k)=x1(k-1)+x(k);%累加生成z1(k-1)=-0.5*(x1(k)+x1(k-1));%z1维数减1,用于计算Byn1(k-1)=x(k);elsex1(k)=x(k);endend%x1,z1,k,yn1sizez1=length(z1);%size(yn1);z2 = z1';z3 = ones(1,sizez1)';YN = yn1'; %转置%YNB=[z2 z3];au0=inv(B'*B)*B'*YN;au = au0';%B,au0,auafor = au(1);ufor = au(2);ua = au(2)./au(1);%afor,ufor,ua%输出预测的 a u 和 u/a的值constant1 = x(1)-ua;afor1 = -afor;x1t1 = 'x1(t+1)';estr = 'exp';tstr = 't';leftbra = '(';rightbra = ')';%constant1,afor1,x1t1,estr,tstr,leftbra,rightbrastrcat(x1t1,'=',num2str(constant1),estr,leftbra,num2str(afor1),tstr,rightbra,'+ ',leftbra,num2str(ua),rightbra)%输出时间响应方程%******************************************************%二次拟合k2 = 0;for y2 = x1k2 = k2 + 1;if k2 > kelseze1(k2) = exp(-(k2-1)*afor);endend%ze1sizeze1=length(ze1);z4 = ones(1,sizeze1)';G=[ze1' z4];X1 = x1';au20=inv(G'*G)*G'*X1;au2 = au20';%z4,X1,G,au20Aval = au2(1);Bval = au2(2);%Aval,Bval%输出预测的 A,B的值strcat(x1t1,'=',num2str(Aval),estr,leftbra,num2str(afor1),tstr,rightbra,'+',lef tbra,num2str(Bval),rightbra)%输出时间响应方程nfinal = sizex-1 + 1;(其中+1可改为+5等其他数字,即可预测更多的数字)%决定预测的步骤数5 这个步骤可以通过函数传入%nfinal = sizexd2 - 1 + 1;%预测的步骤数 1for k3=1:nfinalx3fcast(k3) = constant1*exp(afor1*k3)+ua;end%x3fcast%一次拟合累加值for k31=nfinal:-1:0if k31>1x31fcast(k31+1) = x3fcast(k31)-x3fcast(k31-1);elseif k31>0x31fcast(k31+1) = x3fcast(k31)-x(1);elsex31fcast(k31+1) = x(1);endendendx31fcast%一次拟合预测值for k4=1:nfinalx4fcast(k4) = Aval*exp(afor1*k4)+Bval;end%x4fcastfor k41=nfinal:-1:0if k41>1x41fcast(k41+1) = x4fcast(k41)-x4fcast(k41-1);elseif k41>0x41fcast(k41+1) = x4fcast(k41)-x(1);elsex41fcast(k41+1) = x(1);endendendx41fcast,x%二次拟合预测值%***精度检验p C************////////////////////////////////// k5 = 0;for y5 = xk5 = k5 + 1;if k5 > sizexelseerr1(k5) = x(k5) - x41fcast(k5);endend%err1%绝对误差xavg = mean(x);%xavg%x平均值err1avg = mean(err1);%err1avg%err1平均值k5 = 0;s1total = 0 ;for y5 = xk5 = k5 + 1;if k5 > sizexelses1total = s1total + (x(k5) - xavg)^2;endends1suqare = s1total ./ sizex;s1sqrt = sqrt(s1suqare);%s1suqare,s1sqrt%s1suqare 残差数列x的方差 s1sqrt 为x方差的平方根S1 k5 = 0;s2total = 0 ;for y5 = xk5 = k5 + 1;if k5 > sizexelses2total = s2total + (err1(k5) - err1avg)^2; endends2suqare = s2total ./ sizex;%s2suqare 残差数列err1的方差S2Cval = sqrt(s2suqare ./ s1suqare);Cval%nnn = 0.6745 * s1sqrt%Cval C检验值k5 = 0;pnum = 0 ;for y5 = xk5 = k5 + 1;if abs( err1(k5) - err1avg ) < 0.6745 * s1sqrtpnum = pnum + 1;%ppp = abs( err1(k5) - err1avg )elseendendpval = pnum ./ sizex;pval%p检验值%arr1 = x41fcast(1:6)%预测结果为区间范围预测步长和数据长度可调整程序参数进行改进运行结果x =1019 1088 1324 1408 1601ans =x1(t+1)=8908.4929exp(0.11871t)+(-7889.4929)ans =x1(t+1)=8945.2933exp(0.11871t)+(-7935.7685)x31fcast =Columns 1 through 31019 1122.89347857097 1264.43142178303 Columns 4 through 61423.80987235488 1603.27758207442 1805.36675232556 x41fcast =Columns 1 through 31019 1118.05685435129 1269.65470492098 Columns 4 through 61429.69153740195 1609.90061644041 1812.82460377782 x =1019 1088 1324 1408 1601Cval =0.139501578334155 pval =1。

灰色预测MATLAB程序

灰色预测MATLAB程序

灰色预测心设尹曲⑴#为原始数列,其1次累<加生成数列为炉=(孝①宀2\S,其中©=2^°:⑺卫=12…止i-1尋定文沙的灰导数为d(Jt)=玄㈣(Jt)=尤⑴的-工⑴(*-1).令尹为数列壬⑴的邻值生成数列,即尹)(町=加小(町十(1—a)x山(k-1).于是定文GM(1T1)的灰微分方程模型为d(k)+az①(上)=&_即或.严⑹+盘⑴懐)=乩⑴在式(1)中口①的称为灰导数’熬称为发展系数'弧称为白化背景值,b称为灰作用量。

将时刻表庄=23…用代入(O式有j<0)(2)-az⑴(2)=工®⑶—俺叫巧=»于是GMIL)樫型可表示为r=现在问题归结为求巧h在值。

用一元绒性回归,即最小二垂進求它们的估计值住=[]卜护跖护F奕厢上回归分析中求诂计值是用软件计算的,有标淮程博求解,如山訥甜等。

GM(1.1)的白化型对于的(1-1)的获微分方程⑴,如果将解导教矿悶的时報=%…屮观対连续叢里"则工⑴衩为时间i函敕卅®,于是-<'W耐应于导敕重级必%),白化背杲值刃(時对应于导數申⑴。

于是GM(1,1)的换微分方嗨对应于的白微分方程为写®4曲%「)=也⑵GAI(1>1)换色预刪的步叢1-數堀的椅噓弓处理为了保证©M(B1)屋複方达的可行性・需要対已却皴堀锁必要的检峻处Ho 设療皓数攥列为了-计算埶列的级比如果所有的级比都落在可容覆盖区间盂-內・则數摒列X糾可咲建立G*ICL-1)複型且可以避行页色预测。

否则,丙軌据懺适当的叢换处理,如平移銮换:取C使得敕培列严⑹二工蚀盘)+匚用二12…”的级比都落在可啓禎盖内。

(1)残差檢验:计算相对薙差Z 建立GM (L T 1)複型不妬设少弋以m 叫唠霸足上面的要求,以它芮議堀列建立GM(1>1)型蛊(仍(i)+血C1\A)=b ・用回归分祈求得目上的估计值"于是相应的白化模型为 气^十小卄工解为工叱)=0)①—勺中1-色-⑶ 应Q于是停到预测值壬⑴(上+1)=0叫1)一勺>加+仝血二12…卫一1=aa伙而相应地得到预«=x co \t +1)=x 0)(t+l)-x a)(i)3i =1,2,-?n-l ?如果对所有的^<0.1・则认为达到鞭嵩的要求:否则,若耐所有的|^)1<0^,则认対达到一般要求©(2)级比偏差値桧验:计算能)=1-呂学©如果对所有的|,则认为达列较高的要求孑吾则若对斫有的,则认为达到一般要求O灰色预测计算实例^…;=:=-■■■■昏例北方某城市1986—1992年道路交通噪声平均声级数据见表6序号年吶寺表拆市近年来交通噪声数据[眶(应)]二諾;二319S872.4第—爭:级比检验建立丢通噪屛均声级数锯时间序列如下:4198972.1j 1990?1.4 619?17201199771.6艸=(•严①卫购(2)厂卅⑺) =(711,72.4.71.4,72.1.71.4,7UQ.71.6)些(1)求级比k(k)忠防护住T)2=(几⑵山⑶.…也⑺)g=(0.982JJ.0042J.0098-0.9917J.0056)(2)级比判断由于所有的X.(10e[0.982J.009S],k=2,3.6故可以用双0)作满意的GM(1,1)建模’第二步:GM(1,1)建模(1)对原始数据X®作一次累加,即卞⑴=(71.L143.5215.9.288359.4.431.4,503)(2)构造数据矩阵B及数据向量Y-2)—H 弋3/>1⑶讦算1T心求解得F'⑴=(工倒〔1〉_-)e 弋Q f+-1*^+1)=0<l,U)--)£-t +-=-3092^--^+31000⑶求生咸数列值歸型齊看:n令“is 那血由上面的碉醯数可甲得,其中取菱由龙⑴(i}=恥壮曲5加得丁I —"炉閃=进悶-进德-尊(71儿72.4.72.2:72.1:71.9:71.7,71.6)^}=(s"a >亍⑴⑵,…,网⑺A<第三步;模型检验•>模型的各种检验指标值的计算结果见表工 •t*表7GM(1检验表<序号年俯原始值模型值残差相对误差级比偏差•>1 19S6 71.1 71.1<219S7 72.4 72.4 -0.0057 0.01%0.0023 <3 19S S 72.4 72.2 0.163S 0.23%0.0203 •>4 19S9 72.1 72.1 0.0329 0.05%-O.(K H8 •>5199071.4 71.9 -0-49S4 0.7%-0.0074 <61991 72.0 71.7 0.21599 037%0.0107<71992 71.6 71.6 0.037S0.05%-0.0032于是得到目=山的餡,立欖型7-B)'1B TY=(dt0.0023 72.6573dt+0.002ix (1>=72.657^心经验证・该模型的精度较高.可进行预测和预报计算的Matlab 程序如下:仃坝测和预报n=length(x); z=0;%取输入数据的样本量for i=1:nz=z+x(i,:)be(i,:)=z; %计算累加值,并将值赋予矩阵beend for i=2:n %对y(i-1,:)=x(i,:)%对原始数列平行移位 endfor i=1:n-1%计算数据矩阵B 的第一列数据c(i,:)=-0.5*(be(i,:)+be(i+1,:)); clCjdearxO=[71H 72.472A 72J71477m c n.lengthtxO);*'b%注意这里为列帖lamda =xD(l :n-1),A0(2:n)%计算级比range =minmaxflamda f )%计算级比的范阖 X1=cumsum(xO);%累加运算B=['0,5*(xl(l ;n ^l)+xl(2:n))t ones(n -1,1)]TY 二甸(2:町;口=B\Y%拟合参数u(l>=a .u(2)=bx=dsolve (+a 'x =b\f x(0)-xO^J ;%求徴分方程的特号解x =subs(xJ*a\,b r /xO ,Mu(l)P u(2)t xO(l)|)i%代入荷计痹擞值和初蜡值yucel =subs %求巳知数擁的扳测位y-vpa(x,6)奄其中的石表示显不白位数字yuce=[x0(l)T diff(yucel)]%羔分运算,还原数据 epsiIon=-yuce%计算战羞作用:求累加数列、求ab 的值、求预测方程、求残差clc %清屏,以使结果独立显示x=[71.172.472.472.171.472.071.6]; format long ;%设置计算精度if length(x(:,1))==1%对输入矩阵进行判断,如不是一维列矩阵,进行转置变换x=x endM.I-JTVorhlllst 模型endfor j=1:n-1%计算数据矩阵B的第二列数据e(j,:)=1;endfor i=1:n-1%构造数据矩阵BB(i,1)=c(i,:);B(i,2)=e(i,:);endalpha=inv(B'*B)*B'*y;%计算参数矩阵即ab的值for i=1:n+1%计算数据估计值的累加数列,如改为n+1为n+m可预测后m-1个值ago(i,:)=(x(1,:)-alpha(2,:)/alpha(1,:))*exp(-alpha(1,:)*(i-1))+alpha( 2,:)/alpha(1,:);%显示输出预测值的累加数列endvar(1,:)=ago(1,: )for i=1:n%显示输出预测值%如改n为n+m-1,可预测后m-1个值var(i+1,:)=ago(i+1,:)-ago(i,:);%估计值的累加数列的还原,并计算出下一预测值endfor i=1:nerror(i,:)=x(i,:)-var(i,:);%计算残差endc=std(error)/std(x);%调用统计工具箱的标准差函数计算后验差的比值cago alpha var%显示输出预测值的累加数列%显示输出参数数列%显示输出预测值error %显示输出误差c %显示后验差的比值作用:数据处理判断是否可以用灰色预测、求级比、求累加数列、求ab的值、求预测方程clc,clearx0=[71.172.472.472.171.472.071.6]';%注意这里为列向量n=length(x0);lamda=x0(1:n-1)./x0(2:n)%计算级比range=minmax(lamda')%计算级比的范围x1=cumsum(x0)%累加运算B=[-0.5*(x1(1:n-1)+x1(2:n)),ones(n-1,1)];Y=x0(2:n);u=B\Y%拟合参数u(1)=a,u(2)=bx=dsolve('Dx+a*x=b','x(0)=x0');%求微分方程的符号解x=subs(x,{'a','b','x0'},{u(1),u(2),x0(1)})%代入估计参数值和初始值yuce1=subs(x,'t',[0:n-1]);%求已知数据的预测值y=vpa(x,6)%其中的6表示显示6位数字yuce=[x0(1),diff(yuce1)]%差分运算,还原数据。

灰色系统预测GM(1-1)模型及其Matlab实现

灰色系统预测GM(1-1)模型及其Matlab实现

灰色系统预测GM(1,1)模型及其Matlab 实现预备知识(1)灰色系统白色系统是指系统内部特征是完全已知的;黑色系统是指系统内部信息完全未知的;而灰色系统是介于白色系统和黑色系统之间的一种系统,灰色系统其内部一部分信息已知,另一部分信息未知或不确定。

(2)灰色预测 灰色预测,是指对系统行为特征值的发展变化进行的预测,对既含有已知信息又含有不确定信息的系统进行的预测,也就是对在一定范围内变化的、与时间序列有关的灰过程进行 预测。

尽管灰过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此得到的数据集合具备潜在的规律。

灰色预测是利用这种规律建立灰色模型对灰色系统进行预测。

目前使用最广泛的灰色预测模型就是关于数列预测的一个变量、一阶微分的GM(1,1)模型。

它是基于随机的原始时间序列,经按时间累加后所形成的新的时间序列呈现的规律可用一阶线性微分方程的解来逼近。

经证明,经一阶线性微分方程的解逼近所揭示的原始时间序列呈指数变化规律。

因此,当原始时间序列隐含着指数变化规律时,灰色模型GM(1,1)的预测是非常成功的。

1 灰色系统的模型GM(1,1)1.1 GM(1,1)的一般形式设有变量X (0)={X (0)(i ),i =1,2,...,n}为某一预测对象的非负单调原始数据列,为建立灰色预测模型:首先对X(0)进行一次累加(1—AGO , Acum ul at ed Ge nera ting Opera to r)生成一次累加序列: X (1)={X(1)(k ),k =1,2,…,n}其中X (1)(k )=∑=ki 1X (0)(i)=X (1)(k-1)+ X (0)(k) (1)对X(1)可建立下述白化形式的微分方程:dtdX )1(十)1(aX =u (2)即G M(1,1)模型。

上述白化微分方程的解为(离散响应): ∧X(1)(k +1)=(X (0)(1)-a u )ake -+au (3)或∧X (1)(k )=(X (0)(1)-a u ))1(--k a e +au (4)式中:k 为时间序列,可取年、季或月。

Matlab灰色预测模型GM(1,1)代码

Matlab灰色预测模型GM(1,1)代码
end
s=0;xx0(1)=X0(1);
for jj=2:1:m2;
xx0(jj)=xx1(jj)-xx1(jj-1);
end
disp('GM(1,1)对数列进行预测结果');xx0
disp('数列1原始观测数据');X0
disp('a');AU(1)
disp('u');AU(2)
z=z+x(i,:);
be(i,:)=z;
end
for i=2:n %对原始数列平行移位
y(i-1,:)=x(i,:);
end
for i=1:n-1 %计算数据矩阵B的第一列数据
c(i,:)=-0.5*(be(i,:)+be(i+1,:));
% 本程序主要用来计算根据灰色理论建立的模型的预测值。
% 应用的数学模型是 GM(1,1)。
% 原始数据的处理方法是一次累加法。
y=input('请输入数据 ');
n=length(y);
yy=ones(n,1);
yy(1)=y(1);
for i=2:n
yy(i)=yy(i-1)+y(i);
disp(['再下个拟合值为',num2str(ys(n+2))]);
x(0)={x(0)(1),x(0)(2),……,x(0)(N)}=
{ 724.57, 746.62, 778.27, 800.8, 827.75,871.1, 912.37, 954.28, 995.01, 1037.2}
function c7fun73

matlab灰色预测模型函数

matlab灰色预测模型函数

matlab灰色预测模型函数Matlab是一种广泛应用于科学计算和工程领域的软件工具,它提供了许多函数和工具箱,用于数据分析和建模。

其中一个重要的函数是灰色预测模型函数,它可以用来预测和分析时间序列数据。

本文将介绍灰色预测模型函数的原理和应用,并通过一个示例来演示其使用方法。

灰色预测模型是一种基于灰色系统理论的预测方法,它适用于样本数据较少、不完整或不规律的情况。

在灰色预测模型中,数据被分为两类:发展数据和规律数据。

发展数据是指拥有较完整信息的数据,规律数据是指缺乏完整信息的数据。

通过对规律数据进行处理和建模,可以预测未来数据的趋势和变化。

在Matlab中,可以使用灰色预测模型函数进行数据预测和分析。

该函数可以通过输入历史数据和需要预测的时间步长来生成预测结果。

具体的使用方法如下:1. 导入数据:首先需要导入需要预测的时间序列数据。

可以使用Matlab中的数据导入函数来读取数据文件或手动输入数据。

2. 数据预处理:对导入的数据进行预处理,包括去除异常值、平滑数据等。

可以使用Matlab中的数据处理函数来完成这些操作。

3. 构建灰色模型:使用灰色预测模型函数来构建灰色模型。

该函数需要输入历史数据和需要预测的时间步长。

4. 模型评估:对构建的灰色模型进行评估,包括计算预测误差、拟合度等指标。

可以使用Matlab中的统计函数来完成这些计算。

5. 预测结果:根据构建的灰色模型,可以生成未来数据的预测结果。

可以使用Matlab中的预测函数来完成这一步骤。

下面通过一个示例来演示灰色预测模型函数的使用方法。

假设我们有一个销售数据的时间序列,我们希望预测未来三个月的销售额。

首先,我们需要导入销售数据,并进行数据预处理。

然后,我们可以使用灰色预测模型函数来构建灰色模型。

最后,我们可以通过预测函数来生成未来三个月的销售额预测结果。

在实际操作中,我们可能还需要对模型进行参数调优和模型选择。

可以使用交叉验证等方法来选择最优的参数和模型。

灰色模型 matlab 代码

灰色模型 matlab 代码

function GM1_1(X0)%format long ;[m,n]=size(X0);X1=cumsum(X0); %累加X2=[];for i=1:n-1X2(i,:)=X1(i)+X1(i+1);endB=-0.5.*X2 ;t=ones(n-1,1);B=[B,t] ; % 求B矩阵YN=X0(2:end) ;P_t=YN./X1(1:(length(X0)-1)) %对原始数据序列X0进行准光滑性检验,%序列x0的光滑比P(t)=X0(t)/X1(t-1)A=inv(B.'*B)*B.'*YN.' ;a=A(1)u=A(2)c=u/a ;b=X0(1)-c ;X=[num2str(b),'exp','(',num2str(-a),'k',')',num2str(c)];strcat('X(k+1)=',X)%syms k;for t=1:length(X0)k(1,t)=t-1;endkY_k_1=b*exp(-a*k)+c;for j=1:length(k)-1Y(1,j)=Y_k_1(j+1)-Y_k_1(j);endXY=[Y_k_1(1),Y] %预测值CA=abs(XY-X0) ; %残差数列Theta=CA %残差检验绝对误差序列XD_Theta= CA ./ X0 %残差检验相对误差序列AV=mean(CA); % 残差数列平均值R_k=(min(Theta)+0.5*max(Theta))./(Theta+0.5*max(Theta)) ;% P=0.5 R=sum(R_k)/length(R_k) %关联度Temp0=(CA-AV).^2 ;Temp1=sum(Temp0)/length(CA);S2=sqrt(Temp1) ; %绝对误差序列的标准差%----------AV_0=mean(X0); % 原始序列平均值Temp_0=(X0-AV_0).^2 ;Temp_1=sum(Temp_0)/length(CA);S1=sqrt(Temp_1) ; %原始序列的标准差TempC=S2/S1*100; %方差比C=strcat(num2str(TempC),'%') %后验差检验%方差比%----------SS=0.675*S1 ;Delta=abs(CA-AV) ;TempN=find(Delta<=SS);N1=length(TempN);N2=length(CA);TempP=N1/N2*100;P=strcat(num2str(TempP),'%') %后验差检验%计算小误差概率调用例子:X0=[2.874,3.278,3.337,3.39,3.679];GM1_1(X0)参考资料:我自己想的,算法不是很优,希望你自己改进吧。

灰色预测的matlab实现,代码大全

灰色预测的matlab实现,代码大全

disp('确定的模型为:x1(k+1)=(x(1)-u_a)*exp(-k*a)+u_a') 改进灰色模型代码: for i=1:inf if i==1
e(i)=input('输入数据:'); else if e(i-1)==0 break; else end
e(i)=input('输入数据:');
6
1
x2(k+1)=(x0(1)-u_a)*exp(-k*a)+u_a; end %求出新数列的模拟值 x2 x3=x2; x3(m2+k0)=[]; x4=[0 x3]; x5=x2-x4;%利用累减生成法求出原始数据的模拟值 x5 disp('3.一次累加(1-AGO)生成的数据的模拟值:') Y=''; for z=1:m2+k0 Y=strcat(Y,'(',num2str(x2(z)),')'); end disp(Y); disp('4.原始数据的模拟值:') Y=''; for z=1:m2+k0 Y=strcat(Y,'(',num2str(x5(z)),')'); end disp(Y); % 4. 模型检验(算出的值到等级参照表中检查其精度等级) %计算后验差比 C 和残差序列 Q x6=x5(1:m2); Q=x0-x6;%Q 为残差序列 s1=std(Q);%s1 为残差序列 Q 的标准差 s2=std(x0);%s2 为初始序列 x0 的标准差 C=s1/s2;%后验差比 C(越小越好) w1=1:m2; w1=[ones(m2,1) w1']; w2=Q'; [bb,bint,r1,rint,stats]=regress(w2,w1); rcoplot(r1,rint) C1=strcat('5.后验差比(均方差比值): C=',num2str(C));disp(C1); if C<=0.35 disp(' 由于 C<=0.35,则此模型精度等级为 1 级(好) 。'); else if C<=0.5 disp(' 由于 0.35<C<=0.5,则此模型精度等级为 2 级(合格) 。'); else if C<=0.65 disp(' 由于 0.5<C<=0.65,则此模型精度等级为 3 级(勉强) 。'); else disp(' 由于 C>0.65,则此模型精度等级为 4 级(不合格) 。'); end end end
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

function g(x); %定义函数gm(x)
for j=1:10
clc; %清屏,以使计算结果独立显示
format long; %设置计算精度
if length(x(:,1))==1 %对输入矩阵进行判断,如不是一维列矩阵,进行转置变换x=x';
end;
n=length(x); %取输入数据的样本量
z=0;
for i=1:n %计算累加值,并将值赋与矩阵be
z=z+x(i,:);
be(i,:)=z;
end
for i=2:n %对原始数列平行移位
y(i-1,:)=x(i,:);
end
for i=1:n-1 %计算数据矩阵B的第一列数据
c(i,:)=-0.5*(be(i,:)+be(i+1,:));
end
for j=1:n-1 %计算数据矩阵B的第二列数据
e(j,:)=1;
end
for i=1:n-1 %构造数据矩阵B
B(i,1)=c(i,:);
B(i,2)=e(i,:);
end
alpha=inv(B.'*B)*B.'*y; %计算参数α、μ矩阵
for i=1:n+1 %计算数据估计值的累加数列,如改n+1为n+m可预测后m-1个值ago(i,:)=(x(1,:)-alpha(2,:)/alpha(1,:))*exp(-alpha(1,:)*(i-1))+alpha(2,:)/alpha(1,:);
end
var(1,:)=ago(1,:)
for i=1:n %如改n为n+m-1,可预测后m-1个值
var(i+1,:)=ago(i+1,:)-ago(i,:); %估计值的累加数列的还原,并计算出下一预测值end
for i=1:n
error(i,:)=var(i,:)-x(i,:); %计算残差
end
c=std(error)/std(x); %调用统计工具箱的标准差函数计算后验差的比值c
ago %显示输出预测值的累加数列
alpha %显示输出参数α、μ数列
var %显示输出预测值
error %显示输出误差
c %显示后验差的比值c
var=fix(var);
for i=2:11
x(i-1)=var(i);
end
end。

相关文档
最新文档