求函数解析式的方法
求函数解析式的五种方法及其例子

求函数解析式的五种方法及其例子在数学领域中,求解函数解析式是一项重要的任务。
本文将介绍五种常用的方法来求解函数解析式,并通过例子来展示其应用。
1. 数列法:该方法适用于已知函数的输出序列,并希望找到一个函数解析式来描述它。
通过观察函数输出值之间的规律,可以尝试找到相应的数学模式。
例如,若某函数的输出序列为1,4,9,16,25,...,我们可以观察到这是个平方数序列,因此函数解析式为f(x) = x^2。
2. 经验法:该方法适用于已知函数的输入和输出值,但不清楚具体的数学关系。
通过绘制出函数的散点图,可以尝试通过经验找到适合的函数类型。
例如,若某函数的输入和输出值如下表所示:| x | 1 | 2 | 3 | 4 | 5 ||-------|-------|-------|-------|-------|-------|| y | 3 | 5 | 7 | 9 | 11 |我们可以观察到y值递增2,因此猜测函数解析式为f(x) = 2x + 1。
3. 代数法:该方法适用于通过已知函数的性质和结构来推导函数解析式。
例如,若需要求解一个线性函数,已知它通过点(1, 3)和(2, 5),可以使用直线的斜率公式来得到函数解析式。
根据两点之间的斜率公式,我们可以得到函数解析式f(x) = 2x + 1。
4. 差分法:该方法适用于已知函数的差分序列,即函数输出值之间的差异。
通过观察差分序列之间的规律,可以尝试找到函数的解析式。
例如,若某函数的输出值差分序列为1, 3, 5, 7,我们可以观察到差分序列的差值为2,因此猜测函数解析式为f(x) = 2x。
5. 推理法:该方法适用于已知函数的一些特殊性质或限制条件。
通过寻找函数性质和限制条件的推理,可以得到函数解析式。
例如,若某函数是一个偶函数且通过原点(0, 0),我们知道偶函数具有对称性,并且f(0) = 0。
因此,猜测函数解析式为f(x) = ax^2。
通过以上五种方法中的一种或多种方法,我们可以在求解函数解析式时获得准确的结果。
高中数学-求函数解析式的六种常用方法

求函数解析式的六种常用方法一、换元法已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式.令g (x )= t ,求f (t )的解析式,再把t 换为x 即可.例1 已知f (xx 1+)= x x x 1122++,求f (x )的解析式. 解: 设x x 1+= t ,则 x= 11-t (t ≠1), ∴f (t )= 111)11(1)11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2-x+1 (x ≠1).评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域.二、配凑法例2 已知f (x +1)= x+2x ,求f (x )的解析式.解: f (x +1)= 2)(x +2x +1-1=2)1(+x -1,∴ f (x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x ,则有f (x )= x 2-1 (x ≥1).评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错.三、待定系数法例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式.解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ①f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得⎩⎨⎧=++=+822b a b b a 解得 ⎩⎨⎧==.7,1b a 故f (x )= x 2+7x. 评注: 已知函数类型,常用待定系数法求函数解析式.x ≥0, x <0. 四、消去法例4 设函数f (x )满足f (x )+2 f (x1)= x (x ≠0),求f (x )函数解析式. 分析:欲求f (x ),必须消去已知中的f (x 1),若用x1去代替已知中x ,便可得到另一个方程,联立方程组求解即可. 解:∵ f (x )+2 f (x1)= x (x ≠0) ① 由x 1代入得 2f (x )+f (x 1)=x1(x ≠0) ② 解 ①② 构成的方程组,得 f (x )=x 32-3x (x ≠0). 五、特殊值法例5 设是定义在R 上的函数,且满足f (0)=1,并且对任意的实数x ,y , 有f (x -y )= f (x )- y (2x -y+1),求f (x )函数解析式.分析:要f (0)=1,x ,y 是任意的实数及f (x -y )= f (x )- y (2x -y+1),得到f (x )函数解析式,只有令x = y.解: 令x = y ,由f (x -y )= f (x )- y (2x -y+1) 得f (0)= f (x )- x (2x -x+1),整理得 f (x )= x 2+x+1.六、对称性法即根据所给函数图象的对称性及函数在某一区间上的解析式,求另一区间上的解析式.例6 已知是定义在R 上的奇函数,当x ≥0时,f (x )=2x -x 2,求f (x )函数解析式.解:∵y=f (x )是定义在R 上的奇函数, ∴y=f (x )的图象关于原点对称. 当x ≥0时,f (x )=2x -x 2的顶点(1,1),它关于原点对称点(-1,—1),因此当x<0时,y=2)1(+x -1= x 2 +2x.故 f (x )=⎩⎨⎧+-xx x x 2222 评注: 对于一些函数图象对称性问题,如果能结合图形来解,就会使问题简单化.。
求函数解析式的七种方法

函 数 解 析 式 的 七 种 求 法一、 待定系数法:在已知函数的解析式结构时,用待定系数法。
例1 已知)(x f 是一次函数,且34)]([+=x x f f ,求)(x f解:设b ax x f +=)( )0(≠a ,则b ab x a b b ax a b x af x f f ++=++=+=2)()()]([∴⎩⎨⎧=+=342b ab a ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 二、 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。
但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。
例2 已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 解:2)1()1(2-+=+x x x x f , 21≥+xx 2)(2-=∴x x f )2(≥x三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
与配凑法一样,要注意所换元的定义域的变化。
例3 已知x x x f 2)1(+=+,求)1(+x f解:令1+=x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+∴,1)1(2)1()(22-=-+-=t t t t f1)(2-=∴x x f )1(≥xx x x x f 21)1()1(22+=-+=+∴ )0(≥x四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。
例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点则⎪⎩⎪⎨⎧=+'-=+'3222y y x x ,解得:⎩⎨⎧-='--='y y x x 64 , 点),(y x M '''在)(x g y =上x x y '+'='∴2把⎩⎨⎧-='--='yy x x 64代入得: )4()4(62--+--=-x x y整理得672---=x x y ∴67)(2---=x x x g五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
函数解析式的七种求法

一)求函数的解析式1、函数的解析式表示函数与自变量之间的一种对应关系,就是函数与自变量建立联系的一座桥梁,其一般形式就是y =f(x),不能把它写成f(x,y)=0;2、求函数解析式一般要写出定义域,但若定义域与由解析式所确定的自变量的范围一致时,可以不标出定义域;一般地,我们可以在求解函数解析式的过程中确保恒等变形;3、求函数解析式的一般方法有:(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y 。
(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值;(3)换元法:若给出了复合函数f [g(x)]的表达式,求f(x)的表达式时可以令t =g(x),以换元法解之;(4)构造方程组法:若给出f(x)与f(-x),或f(x)与f(1/x)的一个方程,则可以x 代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式;(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y 的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。
(二)求函数定义域1、函数定义域就是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型就是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y =f [g(x)]的定义域的求解,应先由y =f(u)求出u 的范围,即g(x)的范围,再从中解出x 的范围I1;再由g(x)求出y =g(x)的定义域I2,I1与I2的交集即为复合函数的定义域;5、分段函数的定义域就是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;(三)求函数的值域1、函数的值域即为函数值的集合,一般由定义域与对应法则确定,常用集合或区间来表示;2、在函数f:A→B 中,集合B 未必就就是该函数的值域,若记该函数的值域为C,则C 就是B 的子集;若C =B,那么该函数作为映射我们称为“满射”;3、分段函数的值域就是各个区间上值域的并集;4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述;5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集;6、求函数值域的方法十分丰富,应注意总结函 数 解 析 式 的 七 种 求 法一、 待定系数法:在已知函数解析式的构造时,可用待定系数法。
求函数解析式的六种常用方法

求函数解析式的六种常用方法函数解析式指的是用代数式或公式来表示函数的方式。
以下是六种常用方法:一、明确函数定义域和值域在确定函数解析式之前,首先需要明确函数的定义域和值域。
函数的定义域是指函数可以取值的自变量的范围,而值域则是函数的函数值可以取的范围。
明确函数的定义域和值域可以帮助我们确定函数解析式的形式和特点。
二、利用已知条件和性质确定函数解析式在求函数解析式时,可以利用已知条件和性质来确定函数解析式的形式。
例如,已知函数的导函数,可以通过求导的逆运算确定原函数的解析式。
又如,已知函数的周期性质,可以利用周期性质来确定函数解析式的形式。
三、从实际问题中建立函数关系函数解析式可以从实际问题中建立起来。
在解决实际问题时,可以首先建立自变量和函数值之间的关系,然后根据问题中给出的条件来确定函数解析式。
例如,求解经济学中的需求函数、生长模型等。
四、利用已知函数的性质和运算建立函数解析式在求函数解析式时,可以利用已知函数的性质和运算来建立函数解析式。
例如,可以利用已知函数的线性性质、对称性质、指数性质等来建立函数解析式。
又如,可以利用已知函数的运算性质,如加减乘除、复合等来建立函数解析式。
五、利用恒等式和方程组建立函数解析式在求解一些复杂的函数问题时,可以利用恒等式和方程组来建立函数解析式。
通过列方程并求解,可以得到函数解析式中的一些未知系数。
例如,可以通过建立差分方程求解离散函数的解析式。
六、利用已知函数的级数展开建立函数解析式在求解一些函数的解析式时,可以利用已知函数的级数展开式来建立函数解析式。
通过逐项求和,可以得到函数解析式的形式。
例如,可以利用幂级数展开来确定一些特殊函数的解析式。
求函数解析式的六种常用方法

求函数解析式的九种常用方法一、换元法已知复合函数f [g (x)]的解析式,求原函数f(x)的解析式, 把g (x)看成一个整体t ,进行换元,从而求出f(x)的方法。
例1 已知f(xx 1+)= x x x 1122++,求f(x)的解析式. 解: 设x x 1+= t ,则 x= 11-t (t ≠1), ∴f (t)= 111)11(1)11(22-+-+-t t t = 1+2)1(-t +(t-1)= t 2-t+1 故 f (x)=x 2-x +1 (x ≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域.二、配凑法例2 已知f(x +1)= x+2x ,求f (x)的解析式.解: f (x +1)= 2)(x +2x +1-1=2)1(+x -1,∴ f(x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x,则有f(x)= x 2-1 (x ≥1). 评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错.三、待定系数法已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程,从而求出函数解析式的方法。
例3 已知二次函数f(x)满足f(0)=0,f(x+1)= f(x)+2x+8,求f (x )的解析式.解:设二次函数f(x )= ax 2+bx+c,则 f(0)= c= 0 ①f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a +b)x+a+b ② 由f(x+1)= f (x)+2x +8 与①、② 得⎩⎨⎧=++=+822b a b b a 解得 ⎩⎨⎧==.7,1b a 故f(x)= x 2+7x.评注: 已知函数类型,常用待定系数法求函数解析式.四、消去法(方程组法)例4 设函数f (x )满足f(x )+2 f(x 1)= x (x ≠0),求f (x )函数解析式. 分析:欲求f(x),必须消去已知中的f(x 1),若用x 1去代替已知中x,便可得到另一个方程,联立方程组求解即可.解:∵ f(x )+2 f(x1)= x (x ≠0) ① 由x 1代入得 2f(x)+f(x 1)=x1(x ≠0) ② 解 ①② 构成的方程组,得 f(x )=x 32-3x (x ≠0). 评注:方程组法求解析式的关键是根据已知方程中式子的特点,构造另一个方程 练习:已知定义在R 上的函数满足,求的解析式。
求函数解析式的四种常用方法

求函数解析式的四种常用方法函数是数学中的重要概念,它描述了变量之间的关系。
函数解析式是用代数表达式来表示函数的定义域、值域和具体的变化规律。
常用的四种方法来得到函数的解析式是:通过公式、通过图像、通过数据和通过给定条件。
一、通过公式:一些函数的解析式可以通过简单的数学公式来得到。
例如,直线函数y = kx + b、二次函数y = ax^2 + bx + c以及指数函数y = a^x等。
这些函数可以根据已知的系数和常数来确定解析式。
例如,对于直线函数y = 2x + 3,我们可以知道它的斜率是2,截距是3,因此解析式为y = 2x + 3二、通过图像:函数的解析式可以通过观察图像来确定。
例如,可以根据函数的特点,如对称性、切线的斜率等,来确定解析式。
对于一元函数来说,可以通过绘制函数的图像来判断函数的特点,从而得到函数的解析式。
例如,对于一次函数来说,可以通过观察图像的直线特点来确定解析式;对于二次函数来说,可以根据开口方向、抛物线的顶点位置等来确定解析式。
三、通过数据:有时候可以通过给定的数值表格或函数的值来确定函数的解析式。
通过列举一组合适的输入和输出值,然后观察数值的规律,可以找到函数的解析式。
例如,已知函数的自变量为x,函数的值为y,通过给定一些具体的x和对应的y值,可以通过观察它们之间的关系来确定函数的解析式。
四、通过给定条件:在一些具体的问题中,函数的解析式可以通过给定的条件来确定。
例如,在几何问题中,根据给定的几何条件和函数的特性,可以建立函数的解析式。
例如,根据直线过点的条件和斜率的特性,可以确定直线的解析式。
综上所述,函数解析式的四种常用方法是通过公式、通过图像、通过数据和通过给定条件。
通过这些方法,可以确定函数的解析式,进而研究函数的性质和变化规律,以及解决一些实际问题。
如何求函数的解析式

如何求函数的解析式求解函数的解析式是数学中的基本问题之一,有多种方法可以用于求解。
下面将介绍三种常见的方法:代数法、绘图法和数值法。
一、代数法代数法是一种利用代数运算和等式关系的方法,通过对函数的性质和已知条件进行分析和推导,从而得到函数的解析式。
1.根据已知条件列方程当已知函数满足一些条件时,可以通过列方程的方式求解函数的解析式。
例如,已知函数f(x)满足以下条件:-f(0)=1-f'(x)=x^2根据条件可得出以下方程:-f(0)=1,即f(0)=1-f'(x)=x^2,即f(x)=x^3/3+C(其中C为常数)通过解以上方程组,可以得到函数f(x)的解析式为f(x)=x^3/3+12.求导或积分函数的微分和积分运算是代数法求解函数的常用手段。
如果已知函数的导函数(一阶导数),可以进行导函数的积分求解。
例如,已知函数f'(x)=6x,则可以通过积分得出函数的解析式为f(x)=3x^2+C。
(其中C为常数)相反,如果已知函数的解析式,可以进行函数的导函数求解。
例如,已知函数f(x)=3x^2,则可以通过求导得出函数的导函数为f'(x)=6x。
通过对函数进行导函数和积分的运算,可以得到更多关于函数的性质和解析式的信息。
3.利用函数的性质一些函数具有特定的性质,通过利用这些性质可以求解函数的解析式。
例如,假设已知函数满足以下条件:-f(x)在区间[a,b]上是连续的-f(x)在区间(a,b)上是可导的-f(a)=0-f(b)=1根据函数的性质,可以得出函数的解析式为f(x)=(x-a)/(b-a)。
二、绘图法绘图法是一种通过绘制函数的图像,观察图像的特征和性质,从而推测函数的解析式的方法。
绘图法主要用于简单函数的求解,对于复杂函数则不太适用。
通过绘制函数的图像,可以观察函数的周期性、对称性、增减性等特征,进而推测函数的解析式。
例如,通过观察正弦函数的图像可以推测出其解析式为f(x) = sin(x)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求函数的解析式的方法
求函数的解析式是函数的常见问题,也是高考的常规题型之一,方法众多,下面对一些常用的方法一一辨析.
一.换元法:已知f (g(x)),求f(x)的解析式,一般的可用换元法,具体为:令t=g(x),在求出f(t)可得f (x )的解析式。
换元后要确定新元t 的取值范围。
例题1.已知f(3x+1)=4x+3, 求f(x)的解析式.
令t=3x+1, x=
31-t 3
54)(3314)(-=⇒+-⨯=⇒t t f t t f 练习1.若x x x f -=1)1(,求)(x f . 二.配凑法:把形如f(g(x))内的g(x)当做整体,在解析式的右端整理成只含有g(x)的形式,再把g(x)用x 代替。
一般的利用完全平方公式。
例题2.已知221)1(x
x x x f +=-, 求)(x f 的解析式. 练习2.若x x x f 2)1(+=+,求)(x f .
三.待定系数法:已知函数模型(如:一次函数,二次函数,指数函数等)求解析式,首先设出函数解析式,根据已知条件代入求系数
例题3.设)(x f 是一元二次函数, )(2)(x f x g x ⋅=,且212)()1(x x g x g x ⋅=-++,
求)(x f 与)(x g .
解;设c bx ax x f =+=2)(,则g(x)=2x (ax 2+bx+c)
练习3.设二次函数)(x f 满足)2()2(--=-x f x f ,且图象在y 轴上截距为1,在x 轴上截得的线段长为22,求)(x f 的表达式.
四.解方程组法:求抽象函数的解析式,往往通过变换变量构造一个方程,组成方程组,利用消元法求f (x )的解析式
例题4.设函数)(x f 是定义(-∞,0)∪(0,+ ∞)在上的函数,且满足关系式
x x
f x f 4)1(2)(3=+,求)(x f 的解析式. 解;令x x 1=,x
x f x f 14)(2)1(3⨯=+ 联立方程,得: ⎪⎪⎩
⎪⎪⎨⎧=+=+x x f x f x x f x f 4)(2)1(34)1(2)(3 , 解得x x x f 58512)(-= 练习4.若x x
x f x f +=-+1)1()(,求)(x f . 五.利用给定的特性求解析式:一般为已知x>0时, f(x)的解析式,求x<0时,f(x)的解析式。
首先求出f(-x)的解析式,根据f (x )=f(-x)或f(x)=-f(-x)求得f(x)
例题5设)(x f 是偶函数,当x >0时, x e x e x f +⋅=2)(,求当x <0时,)(x f 的表
达式.
由x>0时,x e x e x f +⋅=2)(,则x x e ex e x e x f --+=+-⋅=-22)()(
由f(x)为偶函数,得f(x)=f(-x). 当x<0时,x e ex x f -+=2)(
故: f(x)=⎪⎩
⎪⎨⎧<+>+-0,0,22x e ex x e ex x x
练习6.对x ∈R, )(x f 满足)1()(+-=x f x f ,且当x ∈[-1,0]时,
x x x f 2)(2+=求当x ∈[9,10]时)(x f 的表达式.
六.归纳递推法:利用已知的递推公式,写出若干几项,利用数列的思想从中找出规律,得到f(x)的解析式。
(通项公式)
例题6.设)(x f 是定义在*N 上的函数,且2)1(=f ,2
1)()1(+=
+x f x f ,求)(x f 的解析式. 解:1
121221)1()(```````````16
1721)4()5(8
921)3()4(4
521)2()3(2
321)1()2(2)1(--+=+-==+==+==+==+==x x x f x f f f f f f f f f f 显然,
有时证明需要用数学归纳发去证明结论。
练习5.若)()()(y f x f y x f ⋅=+,且2)1(=f , 求值)
2004()2005()3()4()2()3()1()2(f f f f f f f f ++++Λ. 题7.设1
1)(+-=x x x f ,记{})]([)(x f f f x f n Λ=,求)(2004x f . 七.相关点法:一般的,设出两个点,一点已知,一点未知,根据已知找到两点之间的联系,把已知点用未知点表示,最后代入已知点的解析式整理出即可。
(轨迹法)
例题7:已知函数y=f(x)的图像与y=x 2+x 的图像关于点(-2,3)对称,求f(x)的解析式。
解:设(x,y )为f(x)上与y=x 2+x 关于(-2,3)的对称点,(a,b )为y=x 2+x 上的点
故,⎪⎩⎪⎨⎧=+-=+32
22b y a x ,⎩⎨⎧-=--=⇒y b x a 64,代入y=x 2+x ,得 练习8.已知函数12)(+=x x f ,当点P(x,y)在y=)(x f 的图象上运动时,点Q(3
,2x y -)在y=g(x)的图象上,求函数g(x).
八.特殊值法:一般的,已知一个关于x,y 的抽象函数,利用特殊值去掉一个未知数y ,得 出关于x 的解析式。
例题8:函数f(x)对一切实数x,y 均有f(x+y)-f(y)=(x+2y+1)x 成立,且f(1)=0.求f(x)的解析式。
解;令x=1,y=0代入得,
f(1+0)-f(0)=(1+2×0+1)×1,整理得f(0)=-2
故,令y=0,得
f(x+0)-f(0)=(x+0+1)x
所以: 2)(2-+=x x x f
九.图像法:观察图像的特点和特殊点,可用代入法,或根据函数图像的性质进行解题。
注意定义域的变化。
例题9(安徽07).
图中的图象所表示的函数的解析式为( B ) A.312
y x =- (02)x ≤≤
B.33122
y x =-- (02)x ≤≤ C.312
y x =-- (02)x ≤≤ D.11y x =-- (02)x ≤≤ 总结:求函数的解析式的方法较多,应根椐题意灵活选择,但不论是哪种方法都应注意自变量的取值范围的变化,对于实际问题材,同样需注意这一点,应保证各种有关量均有意义。
求出的函数的解析式最后要写上函数的定义域,这是容易遗漏和疏忽的地方。
第7题图。