海盗分金
(完整word版)经典的博弈论分析案例——“海盗分金”问题

经典的博弈论分析案例一一“海盗分金”问题5个海盗抢得100枚金币,他们按抽签的顺序依次提方案:首先由1号提出分配方案,然后5人表决,超过半数同意方案才被通过,否则他将被扔入大海喂鲨鱼,依此类推。
“海盗分金”其实是一个高度简化和抽象的模型,体现了博弈的思想。
在“海盗分金”模型中,任何“分配者”想让自己的方案获得通过的关键是事先考虑清楚“挑战者”的分配方案是什么,并用最小的代价获取最大收益,拉拢“挑战者”分配方案中最不得意的人们。
假设前提假定“每个海盗都是绝顶聪明且很理智”,那么“第一个海盗提出怎样的分配方案才能够使自己的收益最大化?” 推理过程从后向前推,如果1至3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。
所以,4号惟有支持3号才能保命。
3号知道这一点,就会提出(100,0,0)的分配方案,对4号、5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票,他的方案即可通过。
不过,2号推知3号的方案,就会提出(98,0,1,1)的方案,即放弃3 号,而给予4号和5号各一枚金币。
由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。
这样,2号将拿走98枚金币。
同样,2号的方案也会被1号所洞悉,1号并将提出(97, 0,1, 2, 0)或(97, 0,1, 0,2)的方案,即放弃2号,而给3号一枚金币,同时给4号(或5号)2枚金币。
由于1号的这一方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案可获通过,97枚金币可轻松落入囊中。
这无疑是1号能够获取最大收益的方案了!答案是:1号强盗分给3号1枚金币,分给4号或5号强盗2枚,自己独得97枚。
分配方案可写成(97, 0, 1, 2, 0)或(97, 0, 1, 0, 2)。
分析1号看起来最有可能喂鲨鱼,但他牢牢地把握住先发优势,结果不但消除了死亡威胁,还收益最大。
【博弈论】海盗分金问题

【博弈论】海盗分⾦问题HDU 1538 A Puzzle for Pirates这是⼀个经典问题,有n个海盗,分m块⾦⼦,其中他们会按⼀定的顺序提出⾃⼰的分配⽅案,如果50%或以上的⼈赞成,则⽅案通过,开始分⾦⼦,如果不通过,则把提出⽅案的扔到海⾥,下⼀个⼈继续。
现在给出n,问第k个海盗(第n个海盗先提⽅案,第1个最后提⽅案)可以分到多少⾦⼦,还是会被扔到海⾥去。
⾸先我们讲⼀下海盗分⾦决策的三个标准:保命,拿更多的⾦⼦,杀⼈,优先级是递减的。
同时分为两个状态稳定状态和不稳定状态:如果当n和m的组合使得最先决策的⼈(编号为n)不会被丢下海, 即游戏会⽴即结束, 就称这个状态时"稳定的". 反之, 问题会退化为n-1和m的组合, 直到达到⼀个稳定状态, 所以称这种状态为"不稳定的".接下来我们从简单的开始分析:如果只有两个⼈的话:那么2号开始提出⽅案,这时候知道不管提什么,他⾃⼰肯定赞成,⼤于等于半数,⽅案通过,那么2号肯定把所有的⾦⼦都给了⾃⼰。
如果只有三个⼈的话:那么3号知道,如果⾃⼰死了,那么2号肯定能把所有⾦⼦拿下,对于1号来说没有半点好处。
那么他就拿出⾦⼦贿赂1号,1号拿到1个⾦⼦,总⽐没有好,肯定赞成3号,剩下的3号拿下。
如果只有四个⼈的话:那么4号知道,如果⾃⼰死了,那么1号拿到1个⾦⼦,2号什么都没有,3号拿下剩下的⾦⼦。
那他就可以拿出部分⾦⼦贿赂2号,2号知道如果4号死了,⾃⼰将什么都没有,他肯定赞成4号。
如此类推下去,如果n<=2*m时候,前⾯与n相同奇偶性的得到1个⾦⼦,剩下的第n个⼈全部拿下。
但是会有⼀个问题便是,如果⾦⼦不够贿赂怎么办:我们将问题具体化:如果有500个海盗,只有100个⾦⼦,那么前⾯200个已经分析过了。
对于201号来说,拿出100个⾦⼦贿赂前⾯的第200号分⾦⼦时拿不到⾦⼦的100个⼈。
⾃⼰不拿⾦⼦,这样刚好有101票保证⾃⼰不死,如果分给之前能拿到⾦⼦的⼈,那么之前拿不到⾦⼦的⼈反正⽆论如何也拿不到⾦⼦,不如把你杀了。
海盗分金问题总结

海盗分金题目:5名海盗抢得了窖藏的100块金子,并打算瓜分这些战利品。
这是一些讲民主的海盗(当然是他们自己特有的民主),他们的习惯是按下面的方式进行分配:最厉害的一名海盗提出分配方案,然后所有的海盗(包括提出方案者本人)就此方案进行表决。
如果50%或更多的海盗赞同此方案,此方案就获得通过并据此分配战利品。
否则提出方案的海盗将被扔到海里,然后下一名最厉害的海盗又重复上述过程。
所有的海盗都乐于看到他们的一位同伙被扔进海里,不过,如果让他们选择的话,他们还是宁可得一笔现金。
他们当然也不愿意自己被扔到海里。
所有的海盗都是有理性的,而且知道其他的海盗也是有理性的。
此外,没有两名海盗是同等厉害的——这些海盗按照完全由上到下的等级排好了座次,并且每个人都清楚自己和其他所有人的等级。
这些金块不能再分,也不允许几名海盗共有金块,因为任何海盗都不相信他的同伙会遵守关于共享金块的安排。
这是一伙每人都只为自己打算的海盗。
最凶的一名海盗应当提出什么样的分配方案才能使他获得最多的金子呢?一、经济学上的“海盗分金”模型经济学上有个“海盗分金”模型,是说5个海盗抢得100枚金币,他们按抽签的顺序依次提方案:首先由1号提出分配方案,然后5人表决,超过半数同意方案才被通过,否则他将被扔入大海喂鲨鱼,依此类推。
假定“每人海盗都是绝顶聪明且很理智”,那么“第一个海盗提出怎样的分配方案才能够使自己的收益最大化?”推理过程是这样的:从后向前推,如果1至3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。
所以,4号惟有支持3号才能保命。
3号知道这一点,就会提出“100,0,0”的分配方案,对4号、5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票,他的方案即可通过。
不过,2号推知3号的方案,就会提出“98,0,1,1”的方案,即放弃3号,而给予4号和5号各一枚金币。
由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。
海盗分金博弈

方案。
海盗分金策略:海盗们需要根据自己和其他海盗的等级、
02
人数、分配方案等因素,制定出最优的分配方案,以获得
最大的收益。
03
海盗分金博弈:海盗们需要在博弈过程中,根据其他海盗 的行为和决策,调整自己的策略,以实现最优的分配方案。
04
海盗分金策略的优化:海盗们可以通过合作、沟通等方式, 优化自己的策略,以实现更高的收益。
参与者角色
2019
船长:海盗的 头领,负责分
配金条
2021
旁观者:观察海 盗分金的过程,
不参与决策
01
02
海盗:参与分 金的主要角色,
有决策权
2020
03
04
船员:海盗的 成员,服从船
长的命令
2022
博弈目标
01
海盗分金:每个 海盗都希望获得 尽可能多的金币
02
公平分配:每个 海盗都希望分配
方案公平合理
博弈的结果取决于参与者 的策略选择,不同的策略 选择会导致不同的结果。
参与者需要根据对方的策 略选择来调整自己的策略, 以实现最优的结果。
博弈的结果分析可以帮助 我们更好地理解博弈论的 基本原理和应用场景。
博弈最优解
01
海盗分金博弈: 一种多人参与 的博弈游戏
02
博弈结果:参 与者根据策略 选择,获得不 同的收益
03
避免冲突:每个 海盗都希望避免 与其他海盗发生
冲突
04
生存优先:每个 海盗都希望在分 金过程中保证自
己的生存
2 博弈策略
海盗分金策略
海盗分金规则:海盗按照等级从高到低依次提出分配方案,
01
如果方案被半数以上海盗同意,则按照该方案分配;否则, 提出方案的海盗将被扔进大海,然后由下一位海盗提出新的
五海盗分金的管理经济学原理

五海盗分金的管理经济学原理五海盗分金问题是一个经典的经济学问题,它涉及到资源分配和决策制定等方面的管理经济学原理。
这个问题假设有五名海盗在分一笔价值不菲的金子,他们每个人都想尽可能多地获得金子。
五名海盗分别是A、B、C、D和E,他们按照顺序进行决策。
管理经济学原理在这个问题中扮演着重要的角色。
以下是介绍五海盗分金的管理经济学原理:1. 资源稀缺性与效用最大化首先,五海盗分金问题涉及到资源稀缺性和效用最大化的概念。
金子是有限的资源,而每个海盗都希望获得尽可能多的金子。
他们必须在分配金子的过程中平衡自己的利益和效用,以实现自己的目标。
在经济学中,效用最大化是个人或组织在资源稀缺的条件下追求最大化其收益的行为准则。
在这个问题中,每个海盗都试图最大化自己的金子份额,从而获得最大的效用。
2. 风险决策与信息不对称五海盗分金问题也涉及到风险决策和信息不对称的概念。
每个海盗在决策时都面临着风险,因为他们不知道其他海盗会做出什么样的决策。
此外,每个海盗都拥有不同的信息和知识,这使得信息不对称成为分金决策的一个重要因素。
在管理经济学中,风险决策是指在不确定条件下进行的决策。
在这个问题中,每个海盗都必须根据有限的信息做出决策,而这些信息可能不完全准确或者存在偏差。
由于信息不对称,每个海盗都面临着风险,因此他们必须权衡风险和收益之间的关系。
3. 权力与博弈论五海盗分金问题还涉及到权力与博弈论的概念。
每个海盗都有一定的权力来影响分金的决策,但他们的权力大小不一。
例如,第一个海盗可以提出一种分金方案,而其他四个海盗可以选择接受或拒绝这个方案。
如果第一个海盗提出的方案被接受,那么他可以获得更多的金子;如果方案被拒绝,那么他可能会失去更多的金子甚至一无所有。
在博弈论中,权力是指一个参与者能够影响其他参与者决策的能力。
在这个问题中,每个海盗都有一定的权力来影响分金的决策,但他们的权力大小取决于他们的威慑力、实力和策略等因素。
博弈论可以帮助我们理解每个海盗如何运用自己的权力来最大化自己的收益。
海盗分金

3、国际交易中的先发优势和后发劣势。1号看起来最有可能喂鲨鱼,但他牢牢地把握住先发优势,结果不但消除了死亡威胁,还收益最大。这不正是全球化过程中先进国家先发优势吗?而5号,看起来最安全,没有死亡的威胁,甚至还能坐收渔人之利。却因不得不看别人脸色行事而只能分得一小杯羹。这难道不是后发劣势的写照?可以预料,如果中国人总是处于5号位置,总是坐等别人制定规则,未来就不见得会比5号好到那里去!
自从几天前将“海盗分金”的问题贴出之后,已受到许多朋友的关注。或许你已经有了正确的答案,或许你还在思考之中。无论如何,在该题目的“假定”之下,答案总是可以得到的,但答案之后的思考,你想到了吗?
标准答案是:1号海盗分给3号1枚金币,4号或5号海盗2枚,独得97枚。分配方案可写成(97,0,1,2,0)或(97,0,1,0,2)。
思考:
1、当老大是不容易的,企业家就是要把各方面“摆平”。这里说的企业家包括熊比特说的政治家。
2、任何“分配者”想让自己的方案获得通过的关键是事先考虑清楚 “挑战者”的分配方案是什么,并用最小的代价获取最大收益,拉拢“挑战者”分配方案中最不得意的人们。想一想历朝历代的农民起义,想一想绵延起不断的宫廷斗争,想一想我们这个时代比比皆是的结盟与背叛,想一想企业内部的明争暗斗,想一想办公室脚下使绊的政治,哪一个得胜者不是采用的类似“海盗分金”的办法?
推理过程是这样的:从后向前推,如果1-3号海盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。所以,4号惟有支持3号才能保命。3号知道这一点,就会提(100,0,0)的分配方案,对4号、5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票他的方案即可通过。不过,2号推知到3号的方案,就会提出(98,0,1,1)的方案,即放弃3号,而给予4号和5号各一枚金币。由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。这样,2号将拿走98枚金币。不过, 2号的方案会被1号所洞悉,1号并将提出(97 ,0,1,2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号一枚金币,同时给4号(或5号)2枚金币。由于1号的这一方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案可获通过,97枚金币可轻松落入囊中。这无疑是1号能够获取最大收益的方案了!
(完整word版)经典的博弈论分析案例——“海盗分金”问题

经典的博弈论分析案例——“海盗分金”问题5个海盗抢得100枚金币,他们按抽签的顺序依次提方案:首先由1号提出分配方案,然后5人表决,超过半数同意方案才被通过,否则他将被扔入大海喂鲨鱼,依此类推。
“海盗分金”其实是一个高度简化和抽象的模型,体现了博弈的思想。
在“海盗分金”模型中,任何“分配者”想让自己的方案获得通过的关键是事先考虑清楚“挑战者”的分配方案是什么,并用最小的代价获取最大收益,拉拢“挑战者”分配方案中最不得意的人们。
假设前提假定“每个海盗都是绝顶聪明且很理智”,那么“第一个海盗提出怎样的分配方案才能够使自己的收益最大化?”推理过程从后向前推,如果1至3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。
所以,4号惟有支持3号才能保命。
3号知道这一点,就会提出(100,0,0)的分配方案,对4号、5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票,他的方案即可通过。
不过,2号推知3号的方案,就会提出(98,0,1,1)的方案,即放弃3号,而给予4号和5号各一枚金币。
由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。
这样,2号将拿走98枚金币。
同样,2号的方案也会被1号所洞悉,1号并将提出(97,0,1,2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号一枚金币,同时给4号(或5号)2枚金币。
由于1号的这一方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案可获通过,97枚金币可轻松落入囊中。
这无疑是1号能够获取最大收益的方案了!答案是:1号强盗分给3号1枚金币,分给4号或5号强盗2枚,自己独得97枚。
分配方案可写成(97,0,1,2,0)或(97,0,1,0,2)。
分析1号看起来最有可能喂鲨鱼,但他牢牢地把握住先发优势,结果不但消除了死亡威胁,还收益最大。
海盗分金

海盗分金经济学上有个“海盗分金”模型:是说5个海盗抢得100枚金币,他们按抽签的顺序依次提方案:首先由1号提出分配方案,然后5人表决,超过半数同意方案才被通过,否则他将被扔入大海喂鲨鱼,依此类推。
“海盗分金”其实是一个高度简化和抽象的模型,体现了博弈的思想。
在“海盗分金”模型中,任何“分配者”想让自己的方案获得通过的关键是事先考虑清楚“挑战者”的分配方案是什么,并用最小的代价获取最大收益,拉拢“挑战者”分配方案中最不得意的人们。
海盗分金假设前提假定“每个海盗都是绝顶聪明且很理智”,那么“第一个海盗提出怎样的分配方案才能够使自己的收益最大化?”海盗分金推理过程推理过程是这样的:从后向前推,如果1至3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。
所以,4号惟有支持3号才能保命。
3号知道这一点,就会提出“100,0,0”的分配方案,对4号、5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票,他的方案即可通过。
不过,2号推知3号的方案,就会提出“98,0,1,1”的方案,即放弃3号,而给予4号和5号各一枚金币。
由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。
这样,2号将拿走98枚金币。
同样,2号的方案也会被1号所洞悉,1号并将提出(97,0,1,2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号一枚金币,同时给4号(或5号)2枚金币。
由于1号的这一方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案可获通过,97枚金币可轻松落入囊中。
这无疑是1号能够获取最大收益的方案了!答案是:1号强盗分给3号1枚金币,分给4号或5号强盗2枚,自己独得97枚。
分配方案可写成(97,0,1,2,0)或(97,0,1,0,2)。
企业中的一把手,在搞内部人控制时,经常是抛开二号人物,而与会计和出纳们打得火热,就是因为公司里的小人物好收买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
要解决这类问题,我们总是从最后的情形向前推,这样 我们就知道在最后这一步中什么是好的和坏的决定。然 后运用这个知识,我们就可以得到最后第二步应该作怎 样的决定,等等。要是直接就从开始入手解决问题,我 们就很容易被这样的问题挡住去路:“要是我作这样的 决定,下面一个海盗会怎么做?”
从后向前推,如果1至3号强盗都喂了鲨鱼,只剩4号和 5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部 金币。所以,4号惟有支持3号才能保命。
下的分赃制。
最可怕的是其他四人形成一个反1号的大联盟并制定出新规 则:四人平分金币,将1号扔进大海……这就是阿Q式的革命 理想:高举平均主义的旗帜,将富人扔进死亡深渊……
当然“海盗分金”的隐含假设是所有海盗的价值取向都是一 致的,理性的。而在现实生活背景下,海盗的价值取向并不都 一样,有些人的脾性是宁可同归于尽都不让你独占便宜,有些 人则只求安稳,不计较利益。
的不符,就会有人大闹……当大家都闹起来的时候,1号能拿
着97枚金币毫发无损、镇定自若地走出去吗?最大的可能就是,
海盗们会要求修改规则,然后重新分配。想一想二战前的希特
勒德国吧!
而假如由一次博弈变成重复博弈呢?比如,大家讲清楚下
次再得100枚金币时,先由2号海盗来分……然后是3号……这
颇有点像美国总统选举,轮流主政。说白了,其实是民主形式
3号知道这一点,就会提出“100,0,0”的分配方 案,对4号、5号一毛不拔而将全部金币归为已有,因 为他知道4号一无所获但还是会投赞成票,再加上自 己一票,他的方案即可通过。
不过,2号推知3号的方案,就会提出“98,0,1, 1”的方案,即放弃3号,而给予4号和5号各一枚金币。 由于该方案对于4号和5号来说比在3号分配时更为有 利,他们将支持他而不希望他出局而由3号来分配。 这样,2号将拿走98枚金币。
ห้องสมุดไป่ตู้
1号看起来最有可能喂鲨鱼,但他牢牢地把握住先发优 势,结果不但消除了死亡威胁,还收益最大。这不正是 全球化过程中先进国家的先发优势吗?而5号,看起来 最安全,没有死亡的威胁,甚至还能坐收渔人之利,却 因不得不看别人脸色行事而只能分得一小杯羹。
不过,模型任意改变一个假设条件,最终结果都不一样。 而现实世界远比模型复杂。
同样,2号的方案也会被1号所洞悉,1号并将提出 (97,0,1,2,0)或(97,0,1,0,2)的方 案,即放弃2号,而给3号一枚金币,同时给4号(或5 号)2枚金币。由于1号的这一方案对于3号和4号(或 5号)来说,相比2号分配时更优,他们将投1号的赞 成票,再加上1号自己的票,1号的方案可获通过,97 枚金币可轻松落入囊中。这无疑是1号能够获取最大 收益的方案了!
最优化的答案是:1号强盗分给3号1枚金币, 分给4号或5号强盗2枚,自己独得97枚。分 配方案可写成(97,0,1,2,0)或(97, 0,1,0,2)。
“海盗分金”其实是一个高度简化和抽象的模型, 体现了博弈的思想。在“海盗分金”模型中,任何 “分配者”想让自己的方案获得通过的关键是事先 考虑清楚“挑战者”的分配方案是什么,并用最小 的代价获取最大收益,拉拢“挑战者”分配方案中 最不得意的人们。企业中的一把手,在搞内部人控 制时,经常是抛开二号人物,而与会计和出纳们打 得火热,就是因为公司里的小人物好收买。
现在船上有5个海盗,要分抢来的100枚金币。自然,这样的 问题他们是由投票来解决的。投票的规则如前面所说:首先 由1号提出分配方案,然后5人表决,超过半数同意方案才被 通过,否则他将被扔入大海喂鲨鱼,依此类推。
我们先要对海盗们作一些假设。 1) 每个海盗的凶猛性都不同,而且所有海盗都知道别人的凶 猛性,也就是说,每个海盗都知道自己和别人在这个提出方 案的序列中的位置。另外,每个海盗的数学和逻辑都很好, 而且很理智。最后,海盗间私底下的交易是不存在的,因为 海盗除了自己谁都不相信。 2) 一枚金币是不能被分割的,不可以你半枚我半枚。 3) 每个海盗当然不愿意自己被丢到海里去喂鱼,这是最重要 的。 4) 每个海盗当然希望自己能得到尽可能多的金币。 5) 每个海盗都是现实主义者,如果在一个方案中他得到了1 枚金币,而下一个方案中,他有两种可能,一种得到许多金 币,一种得不到金币,他会同意目前这个方案,而不会有侥 幸心理。总而言之,他们相信二鸟在林,不如一鸟在手。 6) 最后,在不损害自己利益的前提下,他会尽可能投票让自 己的同伴喂鱼。
首先,现实中肯定不会是人人都“绝对理性”。回到 “海盗分金”的模型中,只要3号、4号或5号中有一个 人偏离了绝对聪明的假设,海盗1号无论怎么分都可能 会被扔到海里去了。所以,1号首先要考虑的就是他的 海盗兄弟们的聪明和理性究竟靠得住靠不住,否则先分 者倒霉。
如果某人偏好看同伙被扔进海里喂鲨鱼。果真如此,1号自 以为得意的方案岂不成了自掘坟墓!
经济学上的“海盗分金”模型
经济学上有个“海盗分金”模型,是说5个海盗抢得100枚金币, 他们按抽签的顺序依次提方案:首先由1号提出分配方案,然 后5人表决,超过半数同意方案才被通过,否则他将被扔入大 海喂鲨鱼,依此类推。
海盗,大家听说过吧。这是一帮亡命之徒,在海上抢人钱财,夺人性 命,干的是刀上舔血的营生。在我们的印象中,他们一般都瞎一只眼, 用条黑布或者讲究点的用个黑皮眼罩把坏眼遮上。他们还有在地下埋 宝的好习惯,而且总要画上一张藏宝图,以方便后人掘取。不过大家 是否知道,他们是世界上最民主的团体。参加海盗的都是桀骜不驯的 汉子,是不愿听人命令的,船上平时一切事都由投票解决。船长的唯 一特权,是有自己的一套餐具——可是在他不用时,其他海盗是可以 借来用的。船上的唯一惩罚,就是被丢到海里去喂鱼。
再就是俗话所说的“人心隔肚皮”。由于信息不对称,谎
言和虚假承诺就大有用武之地,而阴谋也会像杂草般疯长,并
借机获益。如果2号对3、4、5号大放烟幕弹,宣称对于1号所
提出任何分配方案,他一定会再多加上一个金币给他们。这样,
结果又当如何?
通常,现实中人人都有自认的公平标准,因而时常会嘟嚷:
“谁动了我的奶酪?”可以料想,一旦1号所提方案和其所想