线性代数:第四章 向量组的线性相关性 (2)

合集下载

《线性代数》教学课件—第4章 向量线性相关 第二节 向量组的线性相关性

《线性代数》教学课件—第4章 向量线性相关 第二节 向量组的线性相关性

9 6
,
有 3 = 21 - 2 , 4 = 1 + 22 , 所以向量组 1,
2 , 3 , 4 线性相关, 其几何意义为: 该向量组所
对应的非齐次线性方程组中的四个方程所表示的
四个平面交于同一条直线. 如图 4.3 .
2x+3y+z=4 3x+8y-2z=13 x-2y+4z=-5 4x-y+9z=-6
x
O M1
图 4.2
M3 a3 RM3 (0,2,2) ,
3y
向量组 a1 , a2 , a3
线性相关,因为
2a1 - a2 - a3 = 0.
(3) 4 维向量组线性相关的几何意义 设有 4 维向量组
2
1
3
4
1T
3
1 4
, 2T
2
45
,
T 3
8
132
, 4T
1
在直线 y =2x 上取三点M1, M2 , M3 , 作三个向量:
6y
5
M3(3,6)
4 3
M2(2,4)
2 1
M1(1,2)
O 123456 x
图 4.1
a1 OM1 (1,2) ,
a2 OM2 (2,4) ,
a3 OM3 (3,6) ,
显然, 这三个向量中的 任意两个向量构成的向 量组都是线性相关的.
证明 向量证组明A 线向性量相组关A, 线等性价相于关齐,次等线价性于齐次线
方程组 方程组 x1a1 + x2a2 x+1a··1·+ x2maa2m+=··0·,+即xmAaxm = 0, 即 Ax = 0

线性代数 第四章 第2节

线性代数 第四章 第2节
§2 向量组的线性相关性
★矩阵、线性方程组的向量表示 ★向量组的线性相关与线性无关 ★向量组的等价性
本节中向量组的线性相关性与第三节中向量组的秩 的概念是本章的重点和难点。同学们必须熟练且准确地 掌握。通过理清“矩阵”,“向量组”和“线性方程组”的密 切关系可以更好地理解概念和解决问题。
下页 关闭
矩阵的向量表示
定义3 设有两个 n 维向量组


A : a1, a2 , , am; B : b1, b2 , , bs .
如果向量组 A 中每一个向量都能由 B 组中的向量
线性表示,则称向量组 A 能由向量组 B 线性表示。
如果向量组 A 与 B 能相互线性表示,则称向量组 A 与 B 等价。
由上章定理2,可得

定理2 向量组 a1 , a2 , 条件是它所构成的矩阵A
, am (a1 ,
线性相关的充分必要
a2 , , am ) 的秩小于
向量的个数 m ;向量组线性无关的充分必要条件是 R(A)= m。
上页 下页 返回
1 0
0


例4
n 维向量
4,
试讨论向量组
a1
,
a2
,a13及向量 组5
a1
,
a2的 7线 性相关性。
解法一 (同例4解法一的方法)
上页 下页 返回
5
1
a1
,
a2
,
a3



1
0 2
2 r2 r1 1 4 ~ 0
0 2
2 r3 2 r2 1 2 ~ 0
.
上页 下页 返回
线性方程组的向量表示

线性代数课件(高教版)4-2

线性代数课件(高教版)4-2
T
a 1n a 2n a in a mn

T 1 T 2
T i
T m

向量组 , , …, m称为矩阵A的行向量组.
反之,由有限个向量所组成的向量组可以构 成一个矩阵.
m 个 n 维列向量所组成的向量 组 , , , , 1 2 m 构成一个 n m 矩阵
即线性方程组 x x x b 1 1 2 2 m m 有解 .
向量组的等价 定义2.2 设有两个向量组
A: ,m及 B: 1, 2, , s. 1, 2, 称 A 与向 向量组B 能由向量组A 线性表示 .若向量组 量组 B 能相互线性表示,则称 这两个 向量组等价.
向量组 a1 , a2 ,…… , am线性无关的充分必要条件是
R(A)=m.
例2 已知向量组a1 a2 a3线性无关 b1a1a2 b2a2a3 b3a3a1 试证向量组b1 b2 b3线性无关 证法二 把已知的三个向量等式写成一个矩阵等式
1 0 1 ( b , b , b ) ( a , a , a ) 1 1 0 1 2 3 1 2 3 0 1 1 记作BAK 因为|K|20 知K可逆 所以R(B)R(A)
a 1, a2 , a n 称为矩 向量组 , A 的列 .
( a ) 又有 类似地 , 矩阵 A m 个 n 维行 ij m n
a 11 a 12 a 21 a 22 A a i1 a i 2 am1 am2
T 1 T 2

a a a 0
1 1 2 2 m m
于是
a a a 1 a 0

同济大学第四版线性代数习题解答

同济大学第四版线性代数习题解答

线性代数答案解答第一章 行列式1.利用对角线法则计算下列三阶行列式:(1)381141102---; (2)b a c a c b cb a(3)222111c b a c b a ; (4)yxyx x y x y y x y x +++.解 (1)=---381141102811)1()1(03)4(2⨯⨯+-⨯-⨯+⨯-⨯)1()4(18)1(2310-⨯-⨯-⨯-⨯-⨯⨯- =416824-++- =4-(2)=ba c a cb cb a ccc aaa bbb cba bac acb ---++ 3333c b a abc ---=(3)=222111c b a c b a 222222cb ba ac ab ca bc ---++ ))()((a c c b b a ---=(4)yxyx x y x y y x y x+++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n2 4 … )2(n ;(6)1 3 … )12(-n )2(n )22(-n … 2.解(1)逆序数为0(2)逆序数为4:4 1,4 3,4 2,3 2(3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3(5)逆序数为2)1(-n n :3 2 1个 5 2,54 2个 7 2,7 4,7 6 3个 ……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n)1(-n 个(6)逆序数为)1(-n n3 2 1个 5 2,54 2个 ……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n)1(-n 个4 2 1个 6 2,6 4 2个 ……………… …)2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个3.写出四阶行列式中含有因子2311a a 的项.解 由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢71100251020214214; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-260523********12; (3)⎥⎥⎥⎦⎥⎢⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c ba100110011001 解(1)7110025102021421434327c c c c --010142310202110214---=34)1(143102211014+-⨯---=143102211014--321132c c c c ++141717201099-=0(2)2605232112131412-24c c -260532122130412-24r r -0412032122130412-14r r -0000032122130412-=0(3)efcfbfde cd bd ae ac ab---=ecbe c b e c badf ---=111111111---adfbce=abcdef 4(4)d cb a10110011001---21ar r +d cb a ab 10011011010---+=12)1)(1(+--d c a ab 101101--+ 23dc c +010111-+-+cd c ada ab=23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明:(1)1112222b b a a b aba +=3)(b a -; (2)bz ay by ax bx az by ax bx az bzay bxaz bzay byax +++++++++=yxzx z y z yxb a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c cb b b b a a a a ;(4)444422221111d c b a dcbad c b a))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅; (5)1221100000100001a x a a a a x xx n n n +----- n n n n a x a x a x ++++=--111 . 证明(1)122222221312a b a b aa b a ab a c c c c ------=左边ab a b ab a ab 22)1(22213-----=+ 21))((ab a a b a b +--=右边=-=3)(b a (2)bzay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bz ay by ax x by ax bx az z bxaz bz ay y b +++++++++++++002yby ax z x bxaz y zbzay x a 分别再分bzay y x byax x zbxaz z y b +++zyxy x z x z yb y x z x z y z y x a 33+分别再分右边=-+=233)1(yxzx z yzy x b yxzx z yz y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c964496449644964422222++++++++d d dd c c c cb b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a949494949464222224232423dd c cb b a ac c c c c c c c ----第二项第一项06416416416412222=+d dd c c cb b b a a a(4) 444444422222220001a d a c ab a ad ac ab aa d a c ab a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b a d a c a b --------- =)()()(111))()((222a d d a c c a b b ad ac ab a d ac a b++++++---=⨯---))()((a d a c a b)()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b)()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a xD n ++=+-==假设对于)1(-n 阶行列式命题成立,即,122111-----++++=n n n n n a x a x a x D :1列展开按第则n D1110010001)1(11----+=+-x x a xD D n n n n 右边=+=-n n a xD 1所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得nnnn a a a a D 11111=, 11112n nnn a a a a D = ,11113a a a a D n nnn=,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnn n n n nnnn a a a a a a a a a a D 2211111111111)1(--==∴=--=--nnn n nn n n a a a a a a a a 331122111121)1()1( nn n nn n a a a a111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-= 同理可证nnnn n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-=D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)aaD n11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaa x a a a xD n=; (3); 1111)()1()()1(1111n a a a n a a a n a a a D n n n n n n n ------=---+提示:利用范德蒙德行列式的结果.(4) nnnnnd c d c b a b a D000011112=;(5)ji a a D ij ij n -==其中),det(;(6)nna a a D +++=11111111121,021≠n a a a 其中.解(1)aa aa aD n 00010000000001000=按最后一行展开)1()1(100000000010000)1(-⨯-+-n n n a aa)1)(1(2)1(--⋅-+n n n a aa(再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax xa a x xa a x x a a a a xD n ------=0000000 ax a x a x a a a an x D n ----+=0000000)1(再将各列都加到第一列上,得)(])1([1a x a n x n --+=-(3)从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得nnn n n n n n n n a a a n a a a n a a a D )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=1121)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4)nnnnn d c d c b a b a D 0011112=nn n n n nd d c d c b a b a a 00000011111111----展开按第一行0)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i i i nD c b d a D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)ji a ij -=432140123310122210113210)det(--------==n n n n n n n n a D ij n,3221r r r r --0432111111111111111111111--------------n n n n ,,141312c c c c c c +++1524232102221002210002100001---------------n n n n n=212)1()1(----n n n(6)nn a a a D +++=11111111121,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10100010000100010001000011433221展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------0000000000000000000000000022433221n n n a a a a a a a a ----+--000000000000000001133221 ++nn n a a a a a a a a -------000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑+==n i in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D812073503211111------=145008130032101111---=142142005410032101111-=---=112105132412211151------=D 112105132********----=1121023313090509151------=233130905112109151------= 1202300461000112109151-----=14200038100112109151----=142-=11235122412111512-----=D 81150731203271151-------=31390011230023101151-=28428401910023101151-=----=426110135232422115113-=----=D14202132132212151114=-----=D1,3,2,144332211-========∴DD x DD x DD x D D x(2)510006510006510065100065=D 展开按最后一行61000510065100655-'D D D ''-'=65D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',)5100165100065100650000611=D 展开按第一列6510065100650006+'D46+'=D 460319+''''-'''=D 1507=51010651000650000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-=1145108065-=--=51100650000601000051001653=D 展开按第三列51006500061000516500061000510065+6100510656510650061+=703114619=⨯+=51000601000051000651010654=D 展开按第四列61000510065100655000610005100651-- 51065106565--=395-=11000051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D ,齐次线性方程组有非零解,则03=D即0=-μλμ得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解? 解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-= 3)1(2)1(23-+-+-=λλλ齐次线性方程组有非零解,则0=D得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1.已知线性变换:⎪⎩⎪⎨⎧++=++=++=,323,53,22321332123211y y y x y y y x y y y x 求从变量321,,x x x 到变量321,,y y y 的线性变换.解由已知:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x故 ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛----=321423736947y y y ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947xx x y x x x y x x x y2.已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=,54,232,232133212311y y y x y y y x y y x ⎪⎩⎪⎨⎧+-=+=+-=,3,2,3323312211z z y z z y z z y 求从321,,z z z 到321,,x x x 的线性变换.解 由已知⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛-=321310102013514232102z z z ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z 所以有 ⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x3.设⎪⎪⎪⎭⎫ ⎝⎛--=111111111A , ,150421321⎪⎪⎪⎭⎫ ⎝⎛--=B 求.23B A A AB T及-解A AB 23-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛--=1504213211111111113⎪⎪⎪⎭⎫⎝⎛---1111111112 ⎪⎪⎪⎭⎫ ⎝⎛-=0926508503⎪⎪⎪⎭⎫ ⎝⎛---1111111112⎪⎪⎪⎭⎫⎝⎛----=22942017222132 ⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=150421321111111111B A T⎪⎪⎪⎭⎫ ⎝⎛-=0926508504.计算下列乘积:(1)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134; (2)()⎪⎪⎪⎭⎫ ⎝⎛1233,2,1; (3)()2,1312-⎪⎪⎪⎭⎫ ⎝⎛; (4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-20413121013143110412; (5)⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321332313232212131211321),,(x x x a a a a a a a a a x x x;(6)⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121. 解(1)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎪⎭⎫⎝⎛=49635 (2)()⎪⎪⎪⎭⎫ ⎝⎛123321)10()132231(=⨯+⨯+⨯=(3)()21312-⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎪⎭⎫ ⎝⎛---=632142 (4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎪⎭⎫⎝⎛---=6520876 (5)()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321332313232212131211321x x x a a a a a a a a a x x x()333223113323222112313212111x a x a x a x a x a x a x a x a x a ++++++=⎪⎪⎪⎭⎫ ⎝⎛⨯321x x x 322331132112233322222111222x x a x x a x x a x a x a x a +++++= (6)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎪⎪⎭⎫⎝⎛---=90003400421025215.设⎪⎪⎭⎫ ⎝⎛=3121A , ⎪⎪⎭⎫⎝⎛=2101B ,问:(1)BA AB =吗?(2)2222)(B AB A B A ++=+吗?(3)22))((B A B A B A -=-+吗?解(1)⎪⎪⎭⎫ ⎝⎛=3121A , ⎪⎪⎭⎫ ⎝⎛=2101B 则⎪⎪⎭⎫ ⎝⎛=6443AB ⎪⎪⎭⎫⎝⎛=8321BA BA AB ≠∴(2)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎪⎭⎫⎝⎛=2914148但=++222B AB A ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛43011288611483⎪⎪⎭⎫ ⎝⎛=27151610故2222)(B AB A B A ++≠+(3) =-+))((B A B A =⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛10205222⎪⎪⎭⎫⎝⎛9060 而 =-22B A =⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛430111483⎪⎪⎭⎫⎝⎛7182 故22))((B A B A B A -≠-+6.举反列说明下列命题是错误的:(1)若02=A ,则0=A ; (2)若A A =2,则0=A 或E A =;(3)若AY AX =,且0≠A ,则Y X =.解 (1) 取⎪⎪⎭⎫ ⎝⎛=0010A 02=A ,但0≠A(2) 取⎪⎪⎭⎫ ⎝⎛=0011A A A =2,但0≠A 且E A ≠(3) 取⎪⎪⎭⎫ ⎝⎛=0001A ⎪⎪⎭⎫ ⎝⎛-=1111X ⎪⎪⎭⎫⎝⎛=1011YAY AX =且0≠A 但Y X ≠7.设⎪⎪⎭⎫ ⎝⎛=101λA ,求k A A A ,,,32 . 解 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=12011011012λλλA⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==1301101120123λλλA A A 利用数学归纳法证明: ⎪⎪⎭⎫⎝⎛=101λk A k当1=k 时,显然成立,假设k 时成立,则1+k 时⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==1)1(01101101λλλk k A A A kk 由数学归纳法原理知:⎪⎪⎭⎫ ⎝⎛=101λk A k8.设⎪⎪⎪⎭⎫⎝⎛=λλλ001001A ,求k A .解 首先观察⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎪⎭⎫⎝⎛=222002012λλλλλ ⎪⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A由此推测 ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121)2(≥k用数学归纳法证明: 当2=k时,显然成立.假设k 时成立,则1+k 时,⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ由数学归纳法原理知: ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(1219.设B A ,为n 阶矩阵,且A 为对称矩阵,证明AB B T 也是对称矩阵.证明 已知:A A T=则 AB B B A B A B B AB B T T T T TT T T ===)()(从而 AB B T也是对称矩阵.10.设B A ,都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是BA AB =.证明 由已知:A A T = B B T=充分性:BA AB =⇒A B AB TT =⇒)(AB AB T = 即AB 是对称矩阵.必要性:AB AB T =)(⇒AB A B TT =⇒AB BA =.11.求下列矩阵的逆矩阵:(1)⎪⎪⎭⎫ ⎝⎛5221; (2)⎪⎪⎭⎫⎝⎛-θθθθcos sin sin cos ; (3)⎪⎪⎪⎭⎫ ⎝⎛---145243121; (4)⎪⎪⎪⎪⎪⎭⎫⎝⎛4121031200210001; (5)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2500380000120025; (6)⎪⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021)0(21≠a a a n 解(1)⎪⎪⎭⎫⎝⎛=5221A 1=A1),1(2),1(2,522122111=-⨯=-⨯==A A A A⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛=*122522122111A A A A A *-=A A A 11故 ⎪⎪⎭⎫⎝⎛--=-12251A(2)01≠=A 故1-A 存在θθθθcos sin sin cos 22122111=-===A A A A从而 ⎪⎪⎭⎫ ⎝⎛-=-θθθθcos sin sin cos 1A (3) 2=A , 故1-A 存在024312111==-=A A A 而 1613322212-==-=A A A21432332313-==-=A A A故 *-=A A A 11⎪⎪⎪⎭⎫⎝⎛-----=1716213213012(4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4121031200210001A24=A 0434232413121======A A A A A A68122444332211====A A A A12411032001)1(312-=-=A 12421012021)1(413-=-=A3121312021)1(514=-=A 4421012001)1(523-=-=A5121312001)1(624-=-=A 2121021001)1(734-=-=A*-=A AA11故⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=-4112124581031612100212100011A(5)01≠=A 故1-A 存在而002141312111==-==A A A A005242322212===-=A A A A 320043332313-====A A A A 850044342414=-===A A A A从而⎪⎪⎪⎪⎪⎭⎫⎝⎛----=-85003200005200211A(6)⎪⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n a a a A 1001121112.解下列矩阵方程:(1)⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛12643152X ; (2) ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--234311*********X ;(3)⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-101311022141X ; (4)⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解 (1)⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-126431521X ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=12642153⎪⎪⎭⎫⎝⎛-=80232 (2)1111012112234311-⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛-=X ⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122 (3)11110210132141--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=210110131142121⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111(4)11010100001021102341100001010--⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=X ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎪⎭⎫⎝⎛---=20143101213.利用逆矩阵解下列线性方程组:(1) ⎪⎩⎪⎨⎧=++=++=++;353,2522,132321321321x x x x x x x x x (2) ⎪⎩⎪⎨⎧=-+=--=--.0523,132,2321321321x x x x x x x x x解 (1)方程组可表示为 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321153522321321x x x故 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x从而有 ⎪⎩⎪⎨⎧===001321x x x (2) 方程组可表示为 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛-----012523312111321x x x故 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x故有 ⎪⎩⎪⎨⎧===305321x x x 14.设O A k =(k 为正整数),证明121)(--++++=-k A A A E A E .证明 一方面, )()(1A E A E E --=-另一方面,由O A k=有)()()(1122k k k A A A A A A A E E -+--+-+-=-- ))((12A E A A A E k -++++=-故 )()(1A E A E ---))((12A E A A A E k -++++=-两端同时右乘1)(--A E就有121)(--++++=-k A A A E A E15.设方阵A 满足O E A A =--22,证明A 及E A 2+都可逆,并求1-A 及 1)2(-+E A .证明 由O E A A =--22得E A A 22=-两端同时取行列式: 22=-A A即 2=-E A A ,故 0≠A所以A 可逆,而22A E A =+0222≠==+A A E A 故E A 2+也可逆.由O E A A =--22E E A A 2)(=-⇒E A E A A A 112)(--=-⇒)(211E A A -=⇒-又由O E A A =--22E E A A E A 4)2(3)2(-=+-+⇒ E E A E A 4)3)(2(-=-+⇒11)2(4)3)(2()2(--+-=-++∴E A E A E A E A)3(41)2(1A E E A -=+∴-16.设⎪⎪⎪⎭⎫ ⎝⎛-=321011330A ,B A AB 2+=,求B . 解 由B A AB 2+=可得A B E A =-)2(故A E A B 1)2(--=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---=-3210113301210113321⎪⎪⎪⎭⎫⎝⎛-=01132133017.设Λ=-AP P 1,其中⎪⎪⎭⎫ ⎝⎛--=1141P ,⎪⎪⎭⎫ ⎝⎛-=Λ2001,求11A .解 Λ=-AP P 1故1-Λ=P P A 所以11111-Λ=P P A3=P ⎪⎪⎭⎫ ⎝⎛-=*1141P ⎪⎪⎭⎫ ⎝⎛--=-1141311P而 ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=Λ11111120012001故⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎪⎭⎫ ⎝⎛--=6846832732273118.设m 次多项式m m x a x a x a a x f ++++= 2210)(,记m m A a A a A a E a A f ++++= 2210)()(A f 称为方阵A 的m 次多项式.(1)设⎪⎪⎭⎫ ⎝⎛=Λ2100λλ,证明: ⎪⎪⎭⎫ ⎝⎛=Λk k k2100λλ,⎪⎪⎭⎫⎝⎛=Λ)(00)()(21λλf f f ; (2)设1-Λ=P P A ,证明: 1-Λ=P P A k k ,1)()(-Λ=P Pf A f .证明(1) i)利用数学归纳法.当2=k 时⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=Λ212120000λλλλ⎪⎪⎭⎫ ⎝⎛=222100λλ命题成立,假设k 时成立,则1+k 时⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=ΛΛ=Λ+212110000λλλλk k k k ⎪⎪⎭⎫⎝⎛=++121100k k λλ 故命题成立. ii)左边m m a a a E a f Λ++Λ+Λ+=Λ= 2210)(⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛=m m m a a a 21211000001001λλλλ⎪⎪⎭⎫⎝⎛++++++++=m m m m a a a a a a a a 2222210121211000λλλλλλ⎪⎪⎭⎫⎝⎛=)(00)(21λλf f =右边 (2) i) 利用数学归纳法.当2=k 时12112---Λ=ΛΛ=P P P P P P A 成立假设k 时成立,则1+k 时11111-+--+Λ=ΛΛ=⋅=P P P P P P A A A k k k k 成立,故命题成立,即 1-Λ=P P A k kii) 证明 右边1)(-Λ=P Pf12210)(-Λ++Λ+Λ+=P a a a E a P m m11221110----Λ++Λ+Λ+=P P a P P a P P a PEP a m m m m A a A a A a E a ++++= 2210)(A f ==左边19.设n 阶矩阵A 的伴随矩阵为*A ,证明:(1) 若0=A ,则0=*A ;(2) 1-*=n AA .证明(1) 用反证法证明.假设0≠*A 则有E A A =-**1)(由此得O A E A A AA A ===-*-**11)()(O A =∴*这与0≠*A 矛盾,故当0=A 时有0=*A(2) 由于*-=A A A11, 则E A AA =*取行列式得到: nAA A =* 若0≠A 则1-*=n AA若0=A 由(1)知0=*A 此时命题也成立 故有1-*=n AA20.取⎪⎪⎭⎫⎝⎛==-==1001D C B A ,验证DC B ADC B A ≠检验: =D C BA =--10100101101001011010010100200002--410012002==而01111==D C B A故 DC B AD C B A ≠21.设⎪⎪⎪⎪⎭⎫⎝⎛-=22023443O O A ,求8A 及4A解 ⎪⎪⎪⎪⎭⎫⎝⎛-=22023443O O A ,令⎪⎪⎭⎫ ⎝⎛-=34431A ⎪⎪⎭⎫ ⎝⎛=22022A 则⎪⎪⎭⎫ ⎝⎛=21A O O A A故8218⎪⎪⎭⎫ ⎝⎛=A OO A A ⎪⎪⎭⎫⎝⎛=8281A O O A 1682818281810===A A A A A⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=464444241422025005O O A OO A A22.设n 阶矩阵A 及s 阶矩阵B 都可逆,求1-⎪⎪⎭⎫⎝⎛O B A O .解 将1-⎪⎪⎭⎫⎝⎛O B A O 分块为⎪⎪⎭⎫ ⎝⎛4321C C C C其中 1C 为n s ⨯矩阵, 2C 为s s ⨯矩阵3C 为n n ⨯矩阵, 4C 为s n ⨯矩阵则⎪⎪⎭⎫ ⎝⎛⨯⨯O B A O s s n n ⎪⎪⎭⎫ ⎝⎛4321C C C C ==E ⎪⎪⎭⎫⎝⎛s n E O O E 由此得到⎪⎪⎩⎪⎪⎨⎧=⇒==⇒==⇒==⇒=----122111144133)()(B C E BC B O C O BC A O C O AC A C E AC s n 存在存在故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛---O A B O O B A O 111.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1)⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2) ⎪⎪⎪⎭⎫⎝⎛----174034301320; (3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解(1) ⎪⎪⎪⎭⎫ ⎝⎛--3403130212011312)3()2(~r r r r -+-+⎪⎪⎪⎭⎫⎝⎛---02003100121)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--30003100120133~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫⎝⎛-100001001201 3121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----174034301320 1312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---310031001320 21233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3)⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----221002210022*******12423213~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛---0000000000221003211(4)⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132242321232~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110 141312782~r r r r r r --+⎪⎪⎪⎪⎪⎭⎫⎝⎛--4100041000202011111034221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎪⎭⎫⎝⎛----00000410001111020201 32~r r +⎪⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.在秩是r 的矩阵中,有没有等于0的1-r 阶子式?有没有等于0的r 阶子式?解 在秩是r 的矩阵中,可能存在等于0的1-r 阶子式,也可能存在等于0的r 阶子式.例如,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00000000010000100001α 3)(=αR 同时存在等于0的3阶子式和2阶子式.3.从矩阵A 中划去一行得到矩阵B ,问B A ,的秩的关系怎样?解 )(A R ≥)(B R设r B R =)(,且B 的某个r 阶子式0≠D r .矩阵B 是由矩阵A 划去一行得 到的,所以在A 中能找到与D r 相同的r 阶子式D r ,由于0≠=D D r r , 故而)()(B R A R ≥.4.求作一个秩是4的方阵,它的两个行向量是)0,0,1,0,1(,)0,0,0,1,1(- 解 设54321,,,,ααααα为五维向量,且)0,0,1,0,1(1=α,)0,0,0,1,1(2-=α,则所求方阵可为,54321⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=αααααA 秩为4,不妨设⎪⎩⎪⎨⎧===)0,0,0,0,0(),0,0,0,0()0,,0,0,0(55443αααx x 取154==x x故满足条件的一个方阵为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-00000100000100000011001015.求下列矩阵的秩,并求一个最高阶非零子式:(1)⎪⎪⎪⎭⎫ ⎝⎛---443112112013; (2) ⎪⎪⎪⎭⎫⎝⎛-------815073131213123; (3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013r r 21~↔⎪⎪⎪⎭⎫ ⎝⎛---443120131211 ⎪⎪⎪⎭⎫⎝⎛------564056401211~12133r r r r 2000056401211~23秩为⎪⎪⎪⎭⎫ ⎝⎛----r r 二阶子式41113-=-.(2) ⎪⎪⎪⎭⎫ ⎝⎛-------815073*********⎪⎪⎪⎭⎫⎝⎛---------15273321059117014431~27122113r r r r r r 200000591170144313~23秩为⎪⎪⎪⎭⎫⎝⎛-----r r .二阶子式71223-=-.(3)⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812434241322~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------0230102420536307121131223~r r r r ++⎪⎪⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210344314211614~r r r r r r r r -÷÷↔↔⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000100007121002301秩为3 三阶子式07023855023085570≠=-=-.6.求解下列齐次线性方程组:(1) ⎪⎩⎪⎨⎧=+++=-++=-++;0222,02,02432143214321x x x x x x x x x x x x (2) ⎪⎩⎪⎨⎧=-++=--+=-++;05105,0363,02432143214321x x x x x x x x x x x x(3) ⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (4)⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+.0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x解 (1) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛--212211121211⎪⎪⎪⎪⎭⎫⎝⎛---3410013100101~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==4443424134334x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x(2) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛----5110531631121⎪⎪⎪⎭⎫ ⎝⎛-000001001021~ 即得⎪⎪⎩⎪⎪⎨⎧===+-=4432242102x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10010012214321k k x x x x(3) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132⎪⎪⎪⎪⎪⎭⎫⎝⎛1000010000100001~即得⎪⎪⎩⎪⎪⎨⎧====00004321x x xx故方程组的解为⎪⎪⎩⎪⎪⎨⎧====00004321x x x x(4) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----3127161311423327543⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--0000001720171910171317301~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x x x x 故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛1017201713011719173214321k k x x x x7.求解下列非齐次线性方程组:(1) ⎪⎩⎪⎨⎧=+=+-=-+;8311,10213,22421321321x x x x x x x x (2) ⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++;694,13283,542,432z y x z y x z y x z y x(3) ⎪⎩⎪⎨⎧=--+=+-+=+-+;12,2224,12w z y x w z y x w z y x (4) ⎪⎩⎪⎨⎧-=+-+=-+-=+-+;2534,4323,12w z y x w z y x w z y x解 (1) 对系数的增广矩阵施行行变换,有⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛--60003411100833180311102132124~2)(=A R 而3)(=B R ,故方程组无解.(2) 对系数的增广矩阵施行行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--0000000021101201~即得⎪⎩⎪⎨⎧=+=--=zz z y z x 212亦即⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛021112k z y x(3) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫ ⎝⎛----111122122411112⎪⎪⎪⎭⎫ ⎝⎛-000000100011112~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧===++-=0212121w z z y y z y x 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x(4) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛-----00007579751025341253414312311112~ ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----000007579751076717101~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==--=++=w w z z w z y w z x 757975767171即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛00757610797101757121k k w z y x8.λ取何值时,非齐次线性方程组 ⎪⎩⎪⎨⎧=++=++=++2321321321,,1λλλλλx x x x x x x x x (1)有唯一解;(2)无解;(3)有无穷多个解?解 (1)0111111≠λλλ,即2,1-≠λ时方程组有唯一解.(2))()(B R A R <⎪⎪⎪⎭⎫ ⎝⎛=21111111λλλλλB ⎪⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011~λλλλλλλλλλ由0)1)(1(,0)2)(1(2≠+-=+-λλλλ 得2-=λ时,方程组无解.(3)3)()(<=B R A R ,由0)1)(1()2)(1(2=+-=+-λλλλ,得1=λ时,方程组有无穷多个解.9.非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212,2,22λλx x x x x x x x x 当λ取何值时有解?并求出它的解.解 ⎪⎪⎪⎪⎭⎫ ⎝⎛+-----⎪⎪⎪⎭⎫ ⎝⎛----=)2)(1(000)1(321101212111212112~2λλλλλλB 方程组有解,须0)2)(1(=+-λλ得2,1-==λλ当1=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001111321k x x x当2-=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛022111321k x x x10.设⎪⎩⎪⎨⎧--=-+--=--+=-+-,1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解。

第四章向量组的线性相关性线性代数含答案.docx

第四章向量组的线性相关性线性代数含答案.docx

第四章向量组的线性相尖性441基础练习1.设有斤维向量组e,,•••、%与几,02,...,仇若存在两组不全为零的数人、入,…,九和k], kzM使(人+灯⑦+—(心+k丿a卄(石一k) 0汁…+(入一n『#m=0则( )(A)(X、,吆…,J和0户卩2,…,“也都线性相矢(B)(ZI,么2,…,么加和0F“2,..., 0加都线性无矢(C)么汁伤,…,时门曲g—fip…,久线性无矢(D)e+伤,…,皤//”,5_卩[,…,线性相尖2.设如如一os与为,卩2,…,久为两个料维向量组,且R@\, a2, -,a s) = /?(/?… /?2,= r,则( )(A)当s = t吋,两向量组等价;(B)两向量组等价;(C)幻…,冬,卩7几)二”(D)当向量组如S被向量组伤,卩2,…,戸,线性表示时,两个向量组等价.3.设/是4阶方阵,且同=0,则/中( )(A)必有一列元素全为零;(B)必有两列元素成比例;(C)必有一列向量是其余列向量的线性组合;(D)任一列向量是其余列向量的线性组合.4.设力是矩阵,〃是矩阵,贝%)(A)当m > n时,必有14B | HO ;(B)当m > n时,必有(C)当HKD时,必有IMIW;(D)当m < n时,必有IMIP5.设向量组勺,血,他线性无尖,向量几可由勺,么2,么3线性表示,而向量02不能由(A) z a2,k/?7+/?2线性无尖;(B)血竝,冬,k/?7+y?2线性相矢;(C) a J9购么3, 0/+k“2线性无尖;(D)么勿,/ 线性相尖.6.设有向量组勺=(1,- 1,2,4), « = 0,3,1,2), «=(3,0,7,14),勺=(1,-2,2,0)与冬=(2丄5,10), 则向量组的极大线性无尖组是( )(A) °人3 ;(B) ar a2,弘;(C) ap a?, a.门(D) z av a4, as.7.设有向量组a=(a,0,c)fa=(b,c,0),a5=(0,a,b)线性无尖,则a,也c必须满足矢系式.& 向量组a=(l,2,3,4), (i2=(2,3,4,5), a3=(3,4,5,6),恥=(4,5,6,7)的秩等于 ___________________ . 9•已知向量组a =(1,2,-1,1),血=(2,0,0),购=(0,-4,5,-2)的秩为2,则.r 1 2 -2-10 •设矩阵/=2 1 2,向量a=(a,l,l),,已知/la与么线性无矢,则心_________________30 411•向量空间r二(x,2x,y)lx,yG R }的维数是______________________________ ,它的基a= _________ ,a2 = __________ .向量么=(3,6,-4)在基勺下的坐标是________________ . 12 ・设有向量组a, =(2,4,7); a2 =(3,2,5);^=(5,6,Q; “ = (1,3,5),当上为何值时,“能由舛42 线性表示?13.设有向量组a, =(2,1,5,3);血=(1,-1,2,1);佝=(0,3,1,1);恥=(1,2,3,2);少=(-1,1,-2,-8)求向量组的秩和它的一个极大线性无尖组•14.设有向量组© =(1,1,1);血=(1,1,-1);试把P表为a, ,a2用3的线性组合.X,-2X2+X3+X4 • X5 二02XI+x 厂Xq-Xd+Xq 二015 •求方程组12 3 4 5的基础解系和通解.X(+7X2 ・ 5%3 ・5x4+5x5 二03x r X2-2X3+X4-X5 二0*X!-2X2+3X3-4X4=4x?-x.+xd =316•求方程组 2 3 4的通解.XI • 3X2-3X4 二1-7X2+3X3+X4 二-34.4.2提高练习1 .已知a, =(1,0,2,5/, a? =(1,1,3,5/, =Q,」a + 2,l)r他二(l,2,4,a+ 8 几0 = (1,10 +3,5)T(1)a,b为何值时,0不能表示为a…a2,a3,a4的线性组合;(2)a, b为何值时,“有⑦皿2,偽皿4的唯一线性表示,并写出该表达式.2.设向量线性相矢,而其屮任何卩1个向量线性无矢,证明存在不全为零的数《,©, • • •& 便滋+••• + ©%=()・3•设ai9a29a3线性无尖,证明 /?( =a)-2a2 +2a3,/?2 二加-a A py = 2a)-a2 +3a3 线性无尖•4.验证向量a. =(l,-l,0)r,a2 =(2丄3/,=(3,1,2/是疋的一个基,并分别将向量件二(5Q7)丁,仏二(一9,一&・13卩用这个基表示.5.已知H的两个基T3<3<5><A:a)=1/<2 二11;B卩严3,02 =-1'03 二4<2<2><2<3,J2求基力到基〃的过渡矩阵C6•设由向量么〕二(0丄2),血二(1,3,5),么3二(2丄0)生成的向量空间为V】,由向量几二(1,2,3),仏二(一1,0,1)生成的向量空间为V2,试证匕二V2・7•设/?”的3个基分别为1)求由基(2)到基(1)的过渡矩阵;2)求向S.a 二e 【+e2"・e3在基(2)下的坐标; 3) 求向量fl = 3ej+ 2es -3A4在基(1)下的坐标;4) 求由基(2)到基(3)的过渡矩阵.8.设加个n 维向量a 〕9ay«”线性无矢,P 为n 阶方阵‘证明:向量组Pa?Pa2, - .Pan1,<o>v9、6具有相同的秩,且“3可由向量组(2)线「7(3): VI(--I疋2 =1 0 <0 • •<i>r-P了-1 1 、6 二 ?.1<o><0,[1 1 ?也二 311d 丿线性无尖的充耍条件是IPL0.na29•已知向量组(1):fi 二T0]],“2= ri 丿< 1、n3向量组(2) : a2,亿>二佝二严)A \/(?)作性表不,求* b 的值.,03=10•已知3阶方阵力与3维向量X,使得向量组X9AX9A2X线性无尖,且满足A3X =3A X-2A2X ;1)记P二(x, Axjxj.求3 阶方阵B使A = PBP-;2)计算行列式・A%! + 兀 2 + 兀 3= 1问2取何值时,(1) o 可由勺,J 么3线性表示,且表达式唯一? (2) "可由勺,《2,冬线性表示,但表达式不唯一? (3) “不能由勺,色线性表示?x ( +X2+&3 =413. k 为何值时,线性方程组w -x, + kx 2 + x 3 = A:2X]_ 勺 + 2 兀 3 =-4有唯一解、无解、有无穷个解?在有解时求出其全部解. 14. 己知二(1,0,2,3),力二(1丄3,5),«3二(1,一 1 卫 + 2,1),如二(124卫 + &),,(1 丄/? +3,5).(1)心b 为何值时,“不能表示为勺,j s 他的线性组合?(2)么/?为何值时,“可表示为么” J 5么4的线性组合?并写出该表示式.11 •讨论并求解方程组<%! + AX2 +X3 = A.12•设有3维列向量a =x]+兀 2+ 7C 3 = Q215. 已知下列线性方程组 兀1+兀〉一2兀4 = 一6(1){4 西-X2 -X3-X4 = 1; 3兀L 兀2_兀3 = 3 ⑴求出方程组⑴的通解;(2)当⑵中的参数明/为何值时‘方程组⑴与(2)同解?X] + inx? -XS -XA --5 72X1 —七一2 兀二—1 121第四章参考解答4.4.1基础练习:1. (D )提示:由题设知,入 5+0) + 希 a+02 + - • • + An J&+Q + kg-卩)+・・・=o又知人,易,…,无,k 、,心…,红不全为零,均+伤,a 2+#2,臥盘,a 厂卩p 卩卫…,亦仇线性相尖.2. (D )提示:设向量组A :弘幻 …,匕:向量组B : P],'T(因向量组/可被向量组B 表示),则用為?仞二/? (C )o L所以%® r 故选(D )3. (C )提示:因仏2,则R (/) v4, /经初等列变换化为阶梯阵〃,〃必有零列,该列就是其余列的线性组合.4. (B )提示:也习 时,R (4) <n<m,又R (4B )vR 么),则«BX m ,为降阶方阵,所以AB=O.«/'a /A =orf4-k(A ir/+A 2 厂2+7丿Ta 、 M =B «3«3g+02_A_又勺,j 冬线性无尖,且肉不能由勺,叫冬线性表示,则R勺,J 他,妙+几线性无尖•这个结论肯定了(A )而排除了(B ),对条件(C ),取R 二0即与5. (A )提示:由可由勺,5幺3线性表示知件二人勺+入么仝+入冬,那么 (4)二R0?>4,即题设矛盾,可排除•对于(D),取21时与(A)中炉1相同,已知(A)正确,从而否定(D)・6.(B)1. abcO ・提示:ar n 冬线性无尖。

西北工业大学《线性代数》课件-第四章 向量组的线性相关性

西北工业大学《线性代数》课件-第四章 向量组的线性相关性

b
b2
bm
三、两向量相等
设向量
α (a1, a2 ,, ak )
β (b1, b2 ,, bl )

α β k l 且 ai bi
(i 1,2,, k)
四、零向量
分量都是0的向量称为零向量,记做 0,即
0 (0,0,,0).
五、向量的线性运算
⒈ 加法 设
α (a1, a2 ,, an )
2 2 2 ( )2
几何解释:三角形两边 之和大于第三边
α
β
α β
⒊ 夹角 设 与 是n维非零向量,则其夹角定义为
arccos [ , ]
arccos
a1b1 a2b2 anbn
a12 a22 an2 b12 b22 bn2
(0 )
定义的合理性:由不等式 (5) α, β α β
2
➢ 非零向量单位化
设 0 ,单位化向量
0
则有 0 1且 0与 同向.
九、小结
1. n维向量的定义; 2. n维向量的运算规律;
§4.2 向量组的线性相关性
一、线性相关与线性无关
1. 线性组合 定义4.6 设 ,1,2,,m均为n维向量,若有一组 数 k1, k2 ,, km ,使得
⑶ 数量积:a b a b cos
bx
(a
x
,
a
y
,
az
)
by bz
axbx a yby azbz
向量内积及 与模,夹角关系
矩阵乘积表示
可用作内积定义
⑷ 模: a aa
模的定义
三维向量全体构成的集合,称为三维向量空间.记做 R3
解析几何
向量

第四章 向量组的线性相关性总结

第四章 向量组的线性相关性总结

第四章 向量组的线性相关性§1 n 维向量概念一、向量的概念定义1 n 个有次序的数12,,,n a a a 所组成的数组称为n 维向量,这n 个数称为该向量的n 个分量,第i 个数i a 称为第i 个分量.注1分量全为实数的向量称为实向量.分量不全为实数的向量称为复向量. 注2 n 维向量可以写成一行的形式()12,,,n a a a a =,出可以写成一列的形式12n a a a a ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭,前者称为行向量,而后者称为列向量.行向量可看作是一个1n ⨯矩阵,故又称行矩阵;而列向量可看作一个1n ⨯矩阵,故又称作列矩阵.因此它们之间的运算就是矩阵之间的运算,从而符合矩阵运算的一切性质.向量之间的运算只涉及到线性运算和转置运算.为叙述方便,特别约定:在不特别声明时说到的向量均为列向量,行向量视为列向量的转置.注3 用小写黑体字母,,,a b αβ 等表示列向量,用,,,T T T T a b αβ表示行向量. 例1 设123(1,1,0),(0,1,1),(3,4,0)T T T v v v ===,求12v v -及12332v v v +-.解 12v v -(1,1,0)(0,1,1)T T =-(10,11,01)T =---(1,0,1)T =-12332v v v +-3(1,1,0)2(0,1,1)(3,4,0)T T T =+-(31203,31214,30210)T =⨯+⨯-⨯+⨯-⨯+⨯-(0,1,2)T =定义 设v 为n 维向量的集合,如果集合v 非空,且集合v 对于加法与数乘两种运算封闭(即若α∈v,β∈v ,有α+β∈v ;若α∈v, k ∈R ,有k α∈v ),称v 为向量空间。

§2 向量组的线性相关性一、向量组的线性组合 定义3 给定向量组A :12,,,m a a a ,对于任何一组实数12,,,m k k k ,称向量1122m m a a a k k k +++ 为向量组A 的一个线性组合,12,,,m k k k 称为这个线性组合的系数.定义4 给定向量组A :12,,,m a a a 和向量b ,若存在一组实数12,,,m λλλ,使得1122m m a a a b λλλ=+++则称向量b 是向量组A 的一个线性组合,或称向量b 可由向量组A 线性表示.注1任一个n 维向量12n a a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭都可由n 维单位向量组12,,,n e e e 线性表示:1122n n a a a a e e e =+++ .注2向量b 可由向量组A :12,,,n a a a 线性表示(充要条件)⇔方程组1122n n a a a x x x b +++=有解m n A x b ⨯⇔=有解()(,)R A R A b ⇔=注3 由于线性方程组的解分为:无解,有唯一解,有无穷多解三种情况,所以向量β由向量12,,,n a a a 线性表示的情形也分为三种:不能线性表示,唯一线性表示,无穷多种线性表示,且线性表示式中的系数就是对应线性方程组的解。

线性代数-向量组的线性相关性

线性代数-向量组的线性相关性
证明 (略)
下面举例说明定理的应用.
例1 n 维向量组
e1 = (1,0,,0)T ,e2 = (0,1,,0)T ,,en = (0,0,,1)T
称为n维单位坐标向量组 ,讨论其线性相关性 .
解 n维单位坐标向量组构成 的矩阵 E = (e1, e2 ,, en )
是n阶单位矩阵. 由 E = 1 ≠ 0,知R(E) = n. 即R(E)等于向量组中向量个数 ,故由定理2知此 向量组是线性无关的 .
亦即( x1 + x3 )α1 + ( x1 + x2 )α 2 + ( x2 + x3 )α 3 = 0,
因α1,α 2,α 3线性无关,故有
x1 + x3 = 0, x1 + x2 = 0,
x2 + x3 = 0.
由于此方程组的系数行 列式 1 01 1 1 0 =2≠0 011
故方程组只有零解 x1 = x2 = x3 = 0,所以向量组 b1 ,b2 ,b3线性无关.
A线性表示 , 且表示式是唯一的 .
(1) 若向量组 A:α1,α2 ,,αm 线性相关,则 向量组 B :α1,,α m ,α m+1 也线性相关.反言之,若向
量组B 线性无关,则向量组A也线性无关 .
证明 (1)记A = (a1,, am ), B = (a1,, am , am+1 ),有 R(B) ≤ R( A) + 1.若向量组A线性相关,则根据定理 2,有R( A) < m,从而R(B) ≤ R( A) + 1 < m + 1,因此, 根据定理 2知向量组 B线性相关 .
说明 结论(2)是对增加一个分量( 即维数增加1 维)而言的,若增加多 个分量,结论也成立.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

an
an )T 称为列向量。
(a1,a2, ,an ) 称为行向量。
3
例. 3 维向量的全体所组成的集合 R3 { ( x, y, z)T | x, y, z R }
通常称为 3 维Euclid几何空间。 集合
{ ( x, y, z)T | ax by cz d }
称为 R3 中的一个平面。
则称向量组 A线性相关. 否则称向量组A线性无关.
19
定理4: n 维向量组 1 , 2 ,, m 线性相关
Ax
0
有非零解,其中A
R( A) m
1
,
2
,,
m
推论: n 维向量组 1 , 2 ,, m 线性无关
Ax
0
只有零解,
其中
A
1
,2
,
R( A) m
,m
20
例2: 已知 :1 (1, 1, 1) , 2 (0, 2, 5) , 3 (2,4,7) 试讨论向量组 1 , 2 , 3 及向量组 1 , 2 的 线性相关性.
21
解:设 x11 x22 x33 0
1 0 2 0

x1
1 1
x2
2 5
x3
4 7
0 0
102
系数行列式 1 2 4 0
157
齐次线性方程组有非零解,所以向量 1,2 ,3 线性相关 向量 1,2 对应分量不成比例,所以线性无关。
22
例3: n维向量
e1 1,0,,0 ,e2 0,1,,0 ,,en 0,0,,1
4
例. n 维向量的全体所组成的集合
Rn { ( x1, x2 ,, xn )T | x1, x2 ,, xn R }
称为 n 维Euclid空间。 集合
{ ( x1, x2 ,, xn )T | a1x1 a2 x2 an xn b }
称为 n 维Euclid空间 Rn 中的 n-1维超平面。
T m
7
§2 向量组的线性相关性
定义1:设向量组 A :1,2 , ,m , 及一组实数
k1, k2 , , km , 表达式
k11 k22 kmm
称为向量组 A的一个线性组合, k1, k2 , , km 称为线性组合的系数。
8
定义2:设向量组 A :1,2 , ,m , 和向量 b 若存在一组实数 1,2 , m , 使得 b 11 22 mm
x2 x2
x3 x3
0 3
x1 x2 2 x3 3
10

x1 1 1
x2 x3
c
1 1
2 0
所以,b a1 2a2
11
a11 x1 a12 x 2 a1n xn b1
a
21
x1
a22 x2
a2n xn
b2
am1 x1 am2 x2 amn xn bm
15
A :1,2 , ,m B : 1, 2 , , l B 能由 A 线性表示 j k1 j1 k2 j2 kl jl j 1, 2, , l
(1, , l ) (k111 km1m , , k1l1 kmlm )
(1 , , m
)
k11
k1l
km1 kml
其中 A (1,2 , ,m ), B (1, 2, , l )
证:根据定理 2 有 R(A) = R(A, B) 而 R(B) ≤ R(A, B),因此 R(B) ≤ R(A)。
18
定义4:设向量组 A :1 ,2 , ,m , 若存在不全为零实数 1 , 2 , , m , 使得 11 22 mm 0
Ax b 有解,其中 A (1,2, ,m ) R( A) R( A,b)
14
定义3: 设向量组 A :1,2 , ,m 及 B : 1, 2 , , l
若 B 组中的每一个向量都能由向量组 A 线性表示, 则称向量组 B 能由向量组 A 线性表示。
若向量组 A 与向量组 B 能相互线性表示, 则称向量组 A 与向量组 B 等价。
第四章 向量组的线性相关性
1
§1 向量组及其线性组合
定义1:n 个数 a1 , a2 , , an 所组成的有序数组
称为一个 n 维向量,这 n 个数称为该向量 的 n 个分量,第 i 个数 ai 称为第 i 个分量。
这里定义的 n 维向量就是指行(或列)矩阵。
2
a1
a2
(a1 ,
a2
讨论它们的线性相关性.
解: E e1,e2, ,en
结论: 线性无关
问题: n=3时, e1 , e2 , e3 分别是什么?
上述向量组又称基本向量组或单位坐标向量组.
23
一些结论:
(1) 一个零向量线性相关, 一个非零向量线性无关;
(2) 两个向量线性相关当且仅当 它们的对应分量成比例;
(3) 一个向量组线性无关,则增加其中每个向 量的分量所得新向量组仍线性无关。
a11

A
a21
a12
a22
a1n a2n
am1 am2 amn
x1
x
x2
xn
b1
b
b2
bm
12
若 A 1,2,
a1 j
,n
,
其中
j
a2 j
amj
则方程组的向量表示为
x11 x22 xnn b
13
定理1: 向量 b可由向量组 1,2, ,m 线性表示
则称向量 b 是向量组 A的一个线性组合, 或称向量 b 能由向量组 A 线性表示。
9
例如: 2
1
1 0
a1
1 1
,
a2
2 1
,
a3
1 2
,
b
3 3
则 b 能由 a1 , a2 , a3 线性表示.
解方程组 x1a1 x2a2 x3a3 b
既解方程组
2 x1 x1 2
16
定理2: 向量组 B : 1, 2 , , l 能由 A :1,2 , ,m
线性表示
AX B 有解,其中 A (1,2, ,m )
R( A) R( A, B)
B (1,2, ,l )
17
定ห้องสมุดไป่ตู้3: 向量组 B : 1, 2 , , l 能由 A :1,2 , ,m
线性表示,则 R(B) ≤ R(A) 。
5
例. 非齐次线性方程组 Ax b 的解集合 S {x | Ax b}
齐次线性方程组 Ax 0 的解集合
S {x | Ax 0}
6
同一维数的列向量 (或行向量) 所组成的集合 称为向量组。
m×n 阵 A 的 列向量组:
行向量组:
A (a1, a2 ,, an )
T 1
A
T 2
相关文档
最新文档