道路曲线测设常用公式表

合集下载

公路曲线主点测设元素计算公式

公路曲线主点测设元素计算公式

玄弧差计算公式:弧高=半径-√[半径2-(弦长)2]公路曲线主点测设元素计算公式:切线长:T=R*tan a/2曲线长:L=R*a/ρρ=3437.75′外矢距: E=R/(cosR/2)-R=R(sec a/2-1)切曲差:D=2T-L圆曲线主点里程计算:直圆点(ZY)里程=JD里程-T曲中点(QZ)里程=ZY里程+L/2圆直点(YZ)里程=QZ里程+L/2检核公式:YZ里程=JD里程+T-D切线支距法(直角坐标法)求曲线上任意一点坐标。

计算公式:φi=L i/R(180。

/π) L i为曲线起点至任一点的弧长. φi为该弧长所对的圆心角。

x i=Rsinφiy i=R(1-cosφi)可以查曲线测设表,如果已知R, L i偏角法:(曲线首段分弧L1和尾段分弧L2所对应的弦长分别为C1和C2.中间整弧为L0所对应的弦长为C.)首段分弧圆心角:φ1=L1/R(180。

/π)故首段圆周角(即偏角:切线T与弦C1之间的夹角。

)圆周角:Δ1=φ1/2= L1/R(90。

/π)弦长: C1=2RsinΔ1尾段分弧,弧长L2,圆心角φ2,圆周角Δ2,同理可知:圆周角:δ2=φ2/2= L2/R(90。

/π)弦长: C2=2Rsinδ2圆曲线中间整弧部分:圆周角:δ=φ/2= L0/R(90。

/π)弦长: C=2Rsinδ故各个细部点的偏角:P1点:Δ1P2点:Δ2=(φ1+φ)/2=Δ1+δP3点:Δ3=(φ1+2φ)/2=Δ1+2δ...YZ点:ΔYZ=(φ1+nφ+φ2)/2=Δ1+nδ+δ2复曲线半径相同的计算公式:R=D AB/[tan(a1/2)+ tan(a2/2)]第二章:缓和曲线主要点:直缓点(ZH)缓圆点(HY)曲中点(QZ)圆缓点(YH)缓直点(HZ)缓和曲线是回旋曲线的一部分,点到曲线起点的长度L成反比。

即:ρ=c/l c=0.035V3 V为行车速度。

在缓和曲线的终点(即是与圆曲线衔接处)缓和曲线的全长为L h,缓和曲线的半径ρ等于圆曲线的半径R,即ρ=R。

道路曲线高程计算公式

道路曲线高程计算公式

高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道) 一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反xZ,yZ为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反xZ,yZ为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:SZ④变坡点高程:HZ⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:。

公路曲线要素计算公式

公路曲线要素计算公式

公路曲线要素计算公式
公路基本型曲线(回旋缓和曲线)要素及计算公式(FYL)缓和曲线:在直线与圆曲线之间加入一段半径由无穷大逐渐变化到圆曲线半径的曲线,这种曲线称为缓和曲线。

缓和曲线的主要曲线元素有ZH、HY、QZ、YH、HZ 5个主点。

圆曲线内移值P:()m R L P S 242=切线增长值q:)(240223m R L L q S S-=缓和曲线切线长:q P R q T T h++=+=2tan)(α缓和曲线外矢距:R P R E h-+=2sec)(α缓和曲线中曲线总长:s h L R L 2180)2(0+-=πβα缓和曲线中圆曲线长度:180)2(0R L yπβα-=缓和曲线与圆曲线区别:1.因为缓和曲线起始端分别和直线与圆曲线顺滑的相接,因此必须将原来的圆曲线向内移动一段距离才能够接顺,故曲线发生了内移(即设置缓和曲线后有内移值P产生)2.缓和曲线的一部分在直线段,另一部分插入了圆曲线,因此有切线增长值q;3.由于有缓和曲线的存在,因此有缓和曲线角0β:R L S 2/0=β(弧度)=RL Sπ90(度)S L-缓和曲线两端各自的缓和曲线长。

R-缓和曲线中的主圆曲线半径α-偏转角缓和曲线主点桩号:ZH桩号=JD桩号-h THY桩号=ZH桩号+S LQZ桩号=HY 桩号+2yLYH桩号=QZ桩号+2yLHZ桩号=ZH桩号+h L另外、QZ桩号、YH桩号、HZ桩号还可以用以下方式推导:QZ桩号=ZH桩号+2h。

道路工程测量中平曲线要素相关公式计算

道路工程测量中平曲线要素相关公式计算

道路工程测量中平曲线要素计算一、路线转角、交点间距的计算(一)在地形图上量出路线起终点及各路线交点的坐标:()()()21Q 23810,27180JD 2399626977JD 2468426591D 、,、,、()3JD 24848025885,、()4JD 2535025204,、()ZD 2606225783,(二)计算公式及方法设起点坐标为()00,QD X Y ,第i 个交点坐标为(),,1,2,3,4,i i i JD X Y i =则坐标增量11,i i i i DX X X DY Y Y --=-=-交点间距D =象限角 arctanDYDXθ= 方位角A 是由象限角推算的:转角1i i i A A α-=- 1.1JD QD 与之间:坐标增量10=2396623810=1860DX X X =-->1026977271802030DY Y Y =-=-=-<交点间距275.33D m === 象限角 203arctanarctan 47.502186DY DX θ-=== 方位角036036047.502312.498A θ=-=-= 2.12JD JD 与之间:坐标增量21X =2468423966=6880DX X =-->21Y 26591269773860DY Y =-=-=-<交点间距788.89D m === 象限角 386arctanarctan 29.294688DY DX θ-=== 方位角136036029.294330.706A θ=-=-= 转角110=330.706312.49818.208A A α-=-= 3. 23JD JD 与之间:坐标增量32X =2484024684=1560DX X =-->32Y 25885265917060DY Y =-=-=-<交点间距723.03D m === 象限角 706arctanarctan 77.54156DY DX θ-=== 方位角236036077.54282.46A θ=-=-= 转角221=282.46330.70648.246A A α-=-=- 4. 34JD JD 与之间:坐标增量43X =2535024840=5100DX X =-->43Y 25204258856810DY Y =-=-=-<交点间距850.8D m === 象限角 510arctanarctan 53.171681DY DX θ===- 方位角336036053.171306.829A θ=-=-= 转角332=306.829282.4624.369A A α-=-= 5. 4ZD JD 与之间:坐标增量4X =2606225350=7120DX X =-->4Y 25783252045790DY Y =-=-=>交点间距917.706D m === 象限角 579arctanarctan 39.118712DY DX θ=== 方位角039.118A θ==转角443=39.118312.49892.289A A α-=-= 二、各平曲线要素的计算 (一)JD 1曲线要素计算取800m R =,设计速度为h km /60,JD 1桩号为K 0+275.33,转角18.208α= 1.缓和曲线长度S L ,则:33600.0360.0369.72(m)800S V L R ==⨯=)m (5036.36036.3=⨯=⨯≥V L S 800~~80088.89~800(m)99S R L R ===取整数,采用缓和曲线长120m (《公路工程技术标准》规定:=V h km 60时,最小缓和曲线长度为m 50).2.圆曲线内移值R ∆2424331201200.75(m)242688()248002688(800)S SL L R R R ∆=-=-=⨯⨯⨯3.总切线长h T先求332212012059.989(m)22402240800S S L L q R =-=-=⨯ 所以18.208()tan (8000.75)tan59.989188.31(m)22h T R R q α=+∆+=++= 4.曲线总长度h L=0.0752SL Rβ=(2)2+374.22(m)180180h S S L R L R L ππαβα=-+=∙=5.五个基本桩号1JD K 0+274.33 )- h T 188.311ZH K 0+087.02 )+ S L 120.00 1HY K 0+207.02 )+ )2(S h L L - 134.22 1YH K 0+341.24 )+ S L 120.001HZ K 0+461.24)- h 21L187.111QZ K 0+274.1318.208()sec(8000.75sec80010.97(m)22h E R R R α=+∆-=+-= 超距h 22188.31374.22 2.4(m)D T L =-=⨯-=。

铁路、公路线路测量公式

铁路、公路线路测量公式
如果没有缓和曲线,只有直圆曲线,那么αi=α- l/2R,其他参数不变;
4)、圆曲线上任意点法线方向上任意点的大地坐标(X法,Y法),法线方位角α法,
如果转向角左偏取α法=α-3*β-3.1415/2,若α法<0,则计算结ห้องสมุดไป่ตู้加上2倍的圆周率即α法=α-3*β-l/R-3.1415/2+2*3.1415;
即α法=α-3(20Rls/(40R^2-ls^2)) -l/R-3.1415/2+2*3.1415
如果转向角右偏取
α法=α+3(20Rls/(40R^2-ls^2)) +l/R +3.1415/2;
若α法>360,
则α法=α+3(20Rls/(40R^2-ls^2)) +l/R +3.1415/2-2*3.1415;
如果转向角左偏取α法=α-3*β-3.1415/2,若α法<0,则计算结果加上2倍的圆周率即α法=α-3*β-3.1415/2+2*3.1415;
如果转向角右偏取α法=α+3*β+3.1415/2;若α法>360,则计算结果加上2倍的圆周率即α法=α+3*β+3.1415/2-2*3.1415;
法线上任意一点到切点的距离为D法,
X=l-l5/(40*R2*ls2)
Y= l3/(6*R*ls)
αi为直缓点到待求点直线的方位角(弧度);
如果转向角左偏取αi=(α-β)=(α-20R lsl2/3(40R2ls2- l4))
若(α-β)<0,则αi=(α-β)+2*3.1415,但在计算坐标中可不考虑;
如果转向角右偏取αi=(α+β)=(α+20R lsl2/3(40R2ls2- l4))

各种曲线计算公式

各种曲线计算公式

一、公路平曲线坐标计算公式1、缓和曲线:Lb1 0{K,D}①T=A2/R ②L=J(K-O)+T ③B=T2 /2/A2 *180/π④M=(L-T)-(L5-T5)/40/A4+(L9-T9)/3456/A8-(L13-T13)/599040/A12+(L17-T17)/17542600/A165.N=(L3-T3)/6/A2-(L7-T7)/336/A6+(L11-T11)/42240/A10-(L15-T15) /9676800/A14+(L19-T19)/3530097000/A18⑥I=(L2-T2)*180/2/A2/π⑦X=C+Mcos(Q-ZB)-ZNsin(Q-ZB)+Dcon(Q+ZI+S)◢⑧Y=F+Msin(Q-ZB)+ZNcos(Q-ZB)+Dsin(Q+ZI+S)◢Goto 0注:A:缘和曲线参数 R:起点半径 J:曲率半径判定值(当曲率半径由小到大取1,否则取-1)(当起点半径到终点半径是由大或无穷大到小取+1,反之则取-1) K:欲求点里程 O:缘和曲线起点里程 C:缘和曲线起点X坐标Q:起始方位角(当J=-1时,方位角应+180。

) Z:偏角判定值(当J=1时,左偏为-1,右偏为1;当J=-1时,左偏为1,右偏为-1) D:距中桩的距离 S:斜交角度 F:缘和曲线起点Y坐标2、圆曲线Lb1 0{K,D}①L=K-0②X=C+R[sin(Q+L/R*180/π)-sinQ]+Dcos(Q+L/R*180/π+S)◢③Y=F-R[cos(Q+L/R*180/π)-cosQ]+Dsin(Q+L/R*180/π+S)◢ Goto 0注:K:欲求点里程 O:圆曲线起点里程 C:圆曲线起点X坐标 R:圆曲线半径 (左偏为负) Q:起始方位角 D:距中桩的距离 S:斜交角度 F:圆曲线起点Y坐标3、直线Lb1 0{K,D}①L=K-0②X=C+LcosQ+Dcos(Q+S)◢③Y=F+LsinQ+Dsin(Q+S)◢Goto 0注:K:欲求点里程 O:直线起点里程 C:直线起点X坐标 Q:起始方位角 D:距中桩的距离 S:斜交角度 F:直线起点Y坐标二、竖曲线计算公式Lb1 0①{K} ②L=K-(0-T)③H=M-IT+LI-ZL2 /2/R◢ Goto 0 注:K:欲求点里程;O:顶点里程;T:切线长;M:顶点高程;I:坡度;Z:竖曲线判定值三、预拱度计算公式Lb1 0①{K} ②H=D-(4D÷B2)×(B/2-(K-O)) 2◢ Goto 0注:D:跨中最大设计预拱度 H:要计算的预拱度 K:欲求点里程桩号(距支座的距离) O:起点桩号 B:本跨净长。

道路曲线计算公式

道路曲线计算公式

高速公路线路(缓和曲线、竖曲线、圆曲线、匝道)坐标计算公式时间:2009-12-27 21:40:34 来源:本站作者:未知我要投稿我要收藏投稿指南高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道)一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反x Z,y Z为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反x Z,y Z为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:S Z④变坡点高程:H Z⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x<0时sgn(x)=-1,当x>0时sgn(x)=1,当x=0时sgn(x)=0。

道路定线圆曲线计算公式

道路定线圆曲线计算公式

道路定线圆曲线计算公式
道路定线圆曲线是道路工程中常见的设计要素,它用于在道路
设计中确定道路的水平和垂直曲线。

在道路定线圆曲线设计中,我
们通常会用到以下几个公式:
1. 圆曲线半径(R)的计算公式:
R = (V^2) / (1279 f)。

其中,V为设计车速(单位,km/h),f为超高(单位,m)。

2. 圆曲线长度(L)的计算公式:
L = (R θ)。

其中,R为圆曲线半径(单位,m),θ为圆曲线的圆心角(单位,弧度)。

3. 圆曲线的过渡曲线长度(Ls)的计算公式:
Ls = (V^2) / (254 e)。

其中,V为设计车速(单位,km/h),e为过渡曲线的超高差(单位,m)。

这些公式是在道路设计中常用的计算公式,它们可以帮助工程师确定道路定线圆曲线的设计参数,确保道路的安全性和舒适性。

在实际应用中,还需要考虑到道路的地形、交通量、设计标准等因素,综合运用这些公式进行道路设计。

希望这些信息能够对你有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LF
L F = 24 R F P f
(当 P f 已定时)
LF =
R1 L2 2 − R 2 L2 1 S S R1 − R 2
(其中: PF = P2 − P1 )
卵形复曲线和曲线段各 点对应于圆曲线点的偏 距
d
L d = 4 PF P L F

3
缓和曲线上任一点的切 线斜支距
∆q
(3L P + L q ) 6C 9.55L q ∆q = (3 L P + L q ) C
(度)
∆q =
Lq
卵形复曲线中小半径圆 曲线的相对内移值
PF
PF =
LF =
L2 1 1 1 F ( = − ) 24 RF PF R2 R1
C (当曲率参数已定时) RF
卵形复曲线中间缓和圆 曲线段的长度
α
R = R tan(α / 2)
E = R sec(α / 2) − R
L = (απR ) / 180
ZY 桩号=JD 桩号—T QZ 桩号=JD 桩号—L/2 YZ 桩号=ZY 桩号+L 附注
C
C = LS ⋅ R
Th = ( R + P ) tan
HY (YH) 点的缓和曲线 角
β0
β
β0 =
LS 2R
LS (°) R
β 0 = 28.6479
β=
L2 P 2C
任一点的缓和曲线角
β = β0
缓和曲线切线增长值
LP LS

2
q P
q=
LS L3 S − 2 240 R 2
L2 S 24 R
圆曲线内移值
P=
Td = x 0 − y 0 ⋅ cot β 0
Th Lh Eh Jh
α
2
+q
T = R ⋅ tan
α
2
+ P ⋅ tan
α
2
+ q = R ⋅ tan
α
2
+t
基本型单曲线的曲线长
Lh = (α − 2 β 0 )
π
180
⋅ R + 2 LS
L′为不设缓和曲线时的圆曲线长
或 L = L ′ + LS 基本型单曲线的外失距
E h = ( R + P ) sec

∆ Z = 2∆ P
缓和曲线上任一点后视 ZH(HZ)的偏角
∆Z
或 ∆Z =
2 LP β0 3 LS

2
∆n =
缓和曲线上任一点后视 另一点的偏角
Ln (3L P − Ln ) 6C
∆n
∆n =
9.55 Ln (3 L P − L n ) C
(度)
缓和曲线上任一点前视 另一点的偏角
Jh=2Th—Lh
α
2
−R
J 曾称超距
基本型单曲线的校正数
x = LP −
缓和曲线上任一点的横 坐标
L5 P 40C 2
5
Lh L 为 ZH(HZ)至任一点的曲线长(下同)
x
L x = LP − m P L S
m=
L3 S = LS − x 0 40 R 2
y=
缓和曲线上任一点的纵 坐标
缓和曲线起点切线
Td
3 或 Td = 2 L S + 11L S 3 1260 R 2
T y = y 0 csc β 0
缓和曲线终点切线
Ty
Ty =
LS L3 S + 3 126 R 2
∆P =
ZH(HZ)前视缓和曲线上 任一点的偏角
L2 P 6C
∆P
或∆P =
β
3
2
或∆P =
1 LP β0 3 LS
fH
fH =
L3 P 6C

L7 P 908C 3
主曲线上任一点的切线 斜支距
fZ
fZ = fZ
L2 L4 M − M3 + p 2 R 72 R = f+p
主曲线上任一点的切线 支距
xz yz
xz = xy + q yz = y y + p
道路曲线测设常用公式表 表 3-64 要素名称 交点 路线转角 曲线半径 简单型单曲线切线长 简单型单曲线外距 简单型单曲线曲线长 圆曲线起点(桩号) 圆曲线中点(桩号) 圆曲线终点(桩号) 要素名称 缓和曲线参数 基本型单曲线的切线长 符号 JD 说明或计算公式 选线时实地选定,测角组标定 测角组测定 据地形条件结合技术标准选定
L3 L7 P P − 6C 336C 3
3
y
R 较大,Lp 较小时,或 Lp 比 Ls 较小时,第二 项可略去,即得第二式
L y ≈ y0 P L S
x0 = LS −
HY(YH)的横坐标
x0 y0
L3 S 40R 2
HY(YH)的纵坐标
y0 =
L2 L4 S S − 6 R 336 R 3
相关文档
最新文档