高中数学人教版选修导数及其应用知识点总结

合集下载

人教版高中数学选修2-2第一章导数及其应用复习优质

人教版高中数学选修2-2第一章导数及其应用复习优质
1 故函数 f(x)的单调递增区间是 (0, );单调递减 e 1 区间是 ( ,1)和 (1,+∞). e
3.利用导数研究函数的极值和最值
1.应用导数求函数极值的一般步骤: (1)确定函数f(x)的定义域; (2)解方程f′(x)=0的根; (3) 检 验 f′(x) = 0 的 根 的 两 侧 f′(x) 的 符 号. 若左正右负,则f(x)在此根处取得极大值; 若左负右正,则f(x)在此根处取得极小值; 否则,此根不是f(x)的极值点.
(2)法一:设切点为(x0,y0), 则直线 l 的斜率为 f′(x0)=3x2 0+1, ∴直线 l 的方程为 3 y=(3x2 + 1)( x - x ) + x 0 0 0+x0-16, 又∵直线 l 过点(0,0), 3 ∴0=(3x2 + 1)( - x ) + x 0 0 0+x0-16, 3 整理得,x0=-8, ∴x0=-2.
解之得,x0=-2, 3 ∴y0=(-2) +(-2)-16=-26, k=3×(-2)2+1=13. ∴直线 l 的方程为 y=13x, 切点坐标为(-2, -26). x (3)∵切线与直线 y=- +3 垂直, 4 ∴切线的斜率 k=4. 设切点坐标为(x0, y0),则 f′ (x0)= 3x2 0+ 1= 4, ∴ x0= ± 1, x0=1 x0=-1, ∴ 或 y0=- 14 y0=- 18. 即切点为 (1,- 14)或 (- 1,- 18). 切线方程为 y=4(x- 1)-14 或 y= 4(x+ 1)-18. 即 y=4x- 18 或 y=4x- 14.
例 3: 已知函数 f(x)=-x3+ax2+bx, 在区间(-2,1) 2 内,当 x=-1 时取极小值,当 x= 时取极大值. 3 (1)求函数 y=f(x)在 x=-2 时的对应点的切线方程; (2)求函数 y=f(x)在[-2,1]上的最大值与最小值.

高中数学人教版选修22导数及其应用知识点总结.pdf

高中数学人教版选修22导数及其应用知识点总结.pdf

数学选修 2-2 数系的扩充和复数的概念知识点必记
30.复数的概念是什么? 答:形如 a.+.b.i.的数叫做复数,其中 i 叫虚数单位, a 叫实部, b 叫虚部,数集
C = a + bi | a,b R 叫做复数集。
规定:a + bi = c + di a.=.c.且.b.=.d.,强调:两复数不能比较大小,只有相等或不相
和综合法常结合使用,不要将它们:即反证法:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的
否定是错误的,从而肯定原结论是正确的证明方法。
25.反证法的一般步骤是什么?
答:(1)假设命题结论不成立,即假设结论的反面成立;
(2)从假设出发,经过推理论证,得出矛盾;
22.什么是综合法?
答:综合法就是“由因导果”,从已知条件出发,不断用必要条件代替前面的条
件,直至推出要证的结论。
23.什么是分析法?
答:分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者
一定成立的式子,可称为“由果索因”。
要注意叙述的形式:要证 A,只要证 B,B 应是 A 成立的充分条件. 分析法
个是最小值。 注:实际问题的开区间唯一极值点就是所求的最值点;
9.求曲边梯形的思想和步骤是什么?
答:分割 → 近似代替 → 求和 → 取极限 (“以直代曲”的思想)
10.定积分的性质有哪些? 根据定积分的定义,不难得出定积分的如下性质:
性质 1
b
1dx = b − a
a
性质 5
若 f (x) 0,
特别地:
b
kf (x)dx = k
a
b f (x)dx(k为常数)
a

(完整版)导数知识点总结及应用

(完整版)导数知识点总结及应用

《导数及其应用》知识点总结一、导数的概念和几何意义1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为:2121()()f x f x x x --。

2. 导数的定义:设函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x ∆无限趋近于0时,比值00()()f x x f x y x x+∆-∆=∆∆无限趋近于一个常数A ,则称函数()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作0()f x '。

函数()f x 在0x x =处的导数的实质是在该点的瞬时变化率。

3. 求函数导数的基本步骤:(1)求函数的增量00()()y f x x f x ∆=+∆-;(2)求平均变化率:00()()f x x f x x +∆-∆;(3)取极限,当x ∆无限趋近与0时,00()()f x x f x x+∆-∆无限趋近与一个常数A ,则0()f x A '=.4. 导数的几何意义:函数()f x 在0x x =处的导数就是曲线()y f x =在点00(,())x f x 处的切线的斜率。

由此,可以利用导数求曲线的切线方程,具体求法分两步:(1)求出()y f x =在x 0处的导数,即为曲线()y f x =在点00(,())x f x 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。

当点00(,)P x y 不在()y f x =上时,求经过点P 的()y f x =的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P 点的坐标代入确定切点。

特别地,如果曲线()y f x =在点00(,())x f x 处的切线平行与y 轴,这时导数不存在,根据切线定义,可得切线方程为0x x =。

5. 导数的物理意义:质点做直线运动的位移S 是时间t 的函数()S t ,则()V S t '=表示瞬时速度,()a v t '=表示瞬时加速度。

_高中数学第一章导数及其应用2

_高中数学第一章导数及其应用2

f(x)=1x
f ′(x)=-x12=-x-2
f(x)= x
f ′(x)=21 x=12x-12
f(x)=x3
f′(x)=3x2
结论:若f(x)=xα(α为有理数),则f′(x)=αxα-1.
1.y=c表示平行于x轴的直线,或与x轴重合的直线, 其斜率为0,故y=c上任一点处的导数值为____0____, 直线y=x的斜率为1,故直线y=x上任一点处的导数值 为___1_____.
[分析] 只需求出K、Q两点的横坐标即可.
[解析]
设P(x0,y0),则kl1=y′|x=x0=2
1 x0
.
∵直线l1与l2垂直,则kl2=-2 x0,
∴直线l2的方程为y-y0=-2 x0(x-x0).
∵点P(x0,y0)在曲线y= x上,∴y0= x0.
在直线l2的方程中令y=0,则- x0=-2 x0(x-x0).
2.当y=c表示路程关于时间的函数时,常数c表明路 程不变化,因此一直处于__静__止____状态,故瞬时速度 为___0_____,因此y′=____0____;
当y=x表示路程关于时间的函数时,路程的改变量等 于时间的改变量,因此物体做匀速直线运动,瞬时速 度为___1_____,故y′=____1____.
当P点不是切点时,设切点为A(x0,y0),由定义可求得切 线的斜率为k=3x20.
∵A在曲线上,∴y0=x30,∴xx300--82=3x20,
∴x30-3x20+4=0,∴(x0+1)(x0-2)2=0, ∴x0=-1或x0=2(舍去),∴y0=-1,k=3, 此时切线方程y+1=3(x+1),即3x-y+2=0. 故经过点P的曲线的切线有两条,方程为12x-y-16=0和 3x-y+2=0. [警示] 求曲线过点P的切线时,应注意检验点P是否在曲 线上,若点P在曲线上,应分P为切点和P不是切点讨论.

数学选修导数知识点总结

数学选修导数知识点总结

数学选修导数知识点总结导数是微积分的重要概念之一,对于理解和解决数学中的许多问题都起着至关重要的作用。

在这篇文章中,我们将对导数的基本概念、性质和计算方法进行总结,并通过一些例题来加深对导数的理解。

一、导数的基本概念1. 导数的定义导数是函数在某一点处的变化率。

如果函数y=f(x)在x点附近有定义,在这个点的邻域内存在,则称函数在x点处可导。

如果这个极限存在,那么这个极限的值就是函数在x处的导数,通常用f'(x)或者dy/dx来表示。

2. 几何意义导数反映了函数在某一点处的切线斜率。

在直角坐标系中,如果函数在x处可导,则函数在该点的切线斜率即为该点的导数值。

3. 物理意义导数还有着物理意义,例如速度是位移对时间的导数,加速度是速度对时间的导数。

二、导数的性质1. 可导必连续如果函数在某一点可导,则该点也是连续的,反之则不一定成立。

2. 导数的运算法则- 常数的导数为0:(k)'=0- 幂函数的导数:(x^n)'=nx^(n-1)- 一次函数的导数:(kx+b)'=k- 指数函数的导数:(a^x)'=a^x*lna- 对数函数的导数:(loga x)'=1/(xlna)- 三角函数的导数:(sinx)'=cosx,(cosx)'=-sinx,(tanx)'=sec^2x3. 乘法法则如果函数u(x)和v(x)在x点可导,则它们的乘积在该点可导,且有(uv)'=u'v+uv'4. 除法法则如果函数u(x)和v(x)在x点可导,且v(x)≠0,则它们的商在该点可导,且有(u/v)'=(u'v-uv')/(v^2)5. 复合函数的导数如果y=f(u), u=g(x),且f(u)和g(x)在对应的点可导,则复合函数y=f(g(x))在x点可导,且有(y)'=f'(g(x))*g'(x)三、导数的计算方法1. 利用基本导数公式计算利用已知的基本导数公式,根据要求计算函数的导数值。

_高中数学第一章导数及其应用2

_高中数学第一章导数及其应用2

[提示] ΔΔyx=x+Δx2+xΔ+2xΔx-x2+2x
=2x+Δx+xx-+2Δx
∴ lim Δx→0
2x+Δx+xx-+2Δx
=2x-x22.
Байду номын сангаас
[问题3] F(x)的导数与f(x)、g(x)的导数有何关系? [提示] F(x)的导数等于f(x)、g(x)导数和.
[问题 4] 试说明 y=cos3x-π4如何复合的. [提示] 令 u=g(x)=3x-π4,y=f(u)=cos u,
(3)y′=(2x2+3)′·(3x-2)+(2x2+3)·(3x-2)′
=4x·(3x-2)+(2x2+3)·3
=18x2-8x+9.
(4)y′=xl+n x1′-(2x)′
=1xx+x+1- 12ln
x -2xln
2
=1+x1x+-1ln2
x -2xln
2.
二. 复合函数的导数
例题 2 求下列函数的导数:
(1)y=1-12x3;
(2)y=cos x2;
(3)y=sin3x-π4; (4)y=lg(2x2+3x+1).
• [思路点拨] 解答本题可先分析复合函数的复合过 程,然后运用复合函数的求导法则求解.
解析: (1)设 y=u13,u=1-2x, 则 y′x=y′u·u′x =u13′·(1-2x)′ =-3u-4·(-2) =1-62x4. (2)设 y=cos u,u=x2, 则 y′x=y′u·u′x=(cos u)′·(x2)′ =-sin u·2x =-2x·sin x2.
(4)开始学习求复合函数的导数要一步步写清楚,熟 练后中间步骤可省略.
特别提醒:只要求会求形如f(ax+b)的复合函数的导 数.

高中数学选修1-1(人教A版)第三章导数及其应用3.3知识点总结含同步练习及答案

描述:例题:高中数学选修1-1(人教A版)知识点总结含同步练习题及答案第三章 导数及其应用 3.3 导数在研究函数中的应用一、学习任务1. 了解函数的单调性与导数的关系;能利用导数研究函数的单调性;会求不超过三次的多项式函数的单调区间.2. 了解函数的极大(小)值、最大(小)与导数的关系;会求函数的极大(小)值,以及在指定区间上函数的最大(小)值.二、知识清单导数与函数的图象 利用导数研究函数的单调性 利用导数求函数的极值利用导数求函数的最值三、知识讲解1.导数与函数的图象(1)导数 表示函数 在点 处的切线斜率.当切线斜率为正值时,切线的倾斜角小于 ,函数曲线呈上升状态;当切线的斜率为负值时,切线的倾斜角大于 且小于 ,函数曲线呈下降状态.(2)如果在区间 内恒有 ,那么函数 在区间 内是常函数.()f ′x 0y =f (x )(,f ()x 0x 090∘90∘180∘(a ,b )(x )=0f′y =f (x )(a ,b ) 是函数 的导函数, 的图象如图所示,则 的图象最有可能是下列选项中的( )解:C导函数的图象在 轴的上方,表示导函数大于零,原函数的图象呈上升趋势;导函数的图象在 轴的下方,表示导函数小于零,原函数的图象呈下降趋势.由 时导函数图象在 轴的上方,表示在此区间上,原函数图象呈上升趋势,可排除 B、D 选项;由 时导函数图象在 轴的下方,表示在此区间上,原函数的图象呈下降趋势,可排除 A 选项.(x )f ′f (x )y =(x )f ′f (x )x x x ∈(−∞,0)x x ∈(0,1)xy=f(x)已知函数 的图象如图所示,则导函数f(x)(a,b)则函数 在开区间答案:解析:3. 已知函数 , 的导函数的图象如下图,那么 , 的图象可能是.A.B .C .D .D 和 都是单调递增的,但 增长的越来越慢, 增长的越来越快,并且在 处, 的切线的斜率应该相等.y =f (x )y =g (x )y =f (x )y =g (x )()f (x )g (x )f (x )g (x )x 0f (x ),g (x)高考不提分,赔付1万元,关注快乐学了解详情。

(完整版)高中数学导数知识点归纳总结

§14. 导 数 知识要点1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值xx f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限x x f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim 0000. 注:①x ∆是增量,我们也称为“改变量”,因为x ∆可正,可负,但不为零.②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ⊇. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ∆+=0,则0x x →相当于0→∆x .于是)]()()([lim )(lim )(lim 000000x f x f x x f x x f x f x x x x +-+=∆+=→∆→∆→).()(0)()(lim lim )()(lim )]()()([lim 000'0000000000x f x f x f x f xx f x x f x f x x x f x x f x x x x =+⋅=+⋅∆-∆+=+∆⋅∆-∆+=→∆→∆→∆→∆⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为xx x y ∆∆=∆∆||,当x ∆>0时,1=∆∆x y ;当x ∆<0时,1-=∆∆xy ,故x yx ∆∆→∆0lim不存在. 注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.3. 导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-4. 求导数的四则运算法则:''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=⇒+++=⇒''''''')()(cv cv v c cv u v vu uv =+=⇒+=(c 为常数))0(2'''≠-=⎪⎭⎫⎝⎛v v u v vu v u 注:①v u ,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.例如:设x x x f 2sin 2)(+=,xx x g 2cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x fx x cos sin +在0=x 处均可导.5. 复合函数的求导法则:)()())(('''x u f x f x ϕϕ=或x u x u y y '''⋅= 复合函数的求导法则可推广到多个中间变量的情形.6. 函数单调性:⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法;如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数.注:①0)(φx f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)(φx f ,有一个点例外即x =0时f (x ) = 0,同样0)(πx f 是f (x )递减的充分非必要条件.②一般地,如果f (x )在某区间内有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的. 7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理)当函数)(x f 在点0x 处连续时,①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义. 9. 几种常见的函数导数:I.0'=C (C 为常数) x x cos )(sin '= 2'11)(arcsin xx -=1')(-=n n nx x (R n ∈) x x sin )(cos '-= 2'11)(arccos xx --=II. x x 1)(ln '=e x x a a log 1)(log '= 11)(arctan 2'+=x x x x e e =')( a a a x x ln )('= 11)cot (2'+-=x x arcIII. 求导的常见方法: ①常用结论:xx 1|)|(ln '=. ②形如))...()((21n a x a x a x y ---=或))...()(())...()((2121n n b x b x b x a x a x a x y ------=两边同取自然对数,可转化求代数和形式.③无理函数或形如x x y =这类函数,如x x y =取自然对数之后可变形为x x y ln ln =,对两边求导可得x x x x x y y x y y xx x y y +=⇒+=⇒⋅+=ln ln 1ln '''.导数知识点总结复习经典例题剖析 考点一:求导公式。

最新人教版高中数学选修导数及其应用复习小结ppt课件


函数的单调性与导数
(1) f ( x) 0 f ( x)为单调递增函数 f ( x)为单调递增函数 f ( x) 0
(2) f ( x) 0 f ( x)为单调递减函数 f ( x)为单调递减函数 f ( x) 0
(3) x0为极值点 f ( x0 ) 0 (前提导数存在)
+ n = n(n + 1) 2
+ n2 = n(n + 1)(2n + 1) 6
+ n3 = 轾 犏 犏 臌n(n2+ 1) 2
定积分的概念
如果当n∞时,S 的无限接近某个常数,
这个常数为函数f(x)在区间[a, b]上的定积分,记作
b f (x)dx,即 b
a
a
n
f (x)dx lim 0 i 1
注意:导数等于零的点不一定是极值点.
极值的判断
(1) f (由x)正变负,那么 是极大x值0点;
(2) f (由x)负变正,那么 是极小x值0点; (3) f (不x)变号,那么 不是极x0值点。
y
y




o
x0
x
左正右负极大
o
x0
x
左负右正极小
y


o
x0
x
左右同号无极值
导数求极值的步骤
x x0
x0
x
我们称它为函数y=f(x)在x=x0处的导数,记作
f’(xo)或y’|x=x0,即
f
'( x0
)

lim
x0
y x
lim x0
f (x0
x) x
f (x0 )

2023年高中数学人教版选修导数及其应用知识点总结

数学选修2-2导数及其应用知识点必记1. 函数旳平均变化率是什么?答: 平均变化率为注1:其中是自变量旳变化量, 可正, 可负, 可零。

注2: 函数旳平均变化率可以看作是物体运动旳平均速度。

2.导函数旳概念是什么?答:函数在处旳瞬时变化率是, 则称函数在点处可导, 并把这个极限叫做在处旳导数, 记作或, 即= .3.平均变化率和导数旳几何意义是什么?答: 函数旳平均变化率旳几何意义是割线旳斜率;函数旳导数旳几何意义是切线旳斜率。

4导数旳背景是什么?答: (1)切线旳斜率;(2)瞬时速度;(3)边际成本。

6.用导数求函数单调区间旳环节是什么?答: ①求函数f(x)旳导数②令>0,解不等式, 得x旳范围就是递增区间.③令<0,解不等式, 得x旳范围, 就是递减区间;注: 求单调区间之前一定要先看原函数旳定义域。

7.求可导函数f(x)旳极值旳环节是什么? 答: (1)确定函数旳定义域。

(2) 求函数f(x)旳导数 (3)求方程'()f x =0旳根(4) 用函数旳导数为0旳点, 顺次将函数旳定义区间提成若干小开区间, 并列成表格, 检查 在方程根左右旳值旳符号, 假如左正右负, 那么f(x)在这个根处获得极大值;假如左负右正, 那么f(x)在这个根处获得极小值;假如左右不变化符号, 那么f(x)在这个根处无极值8.运用导数求函数旳最值旳环节是什么? 答: 求 在 上旳最大值与最小值旳环节如下: ⑴求)(x f 在[]b a ,上旳极值;⑵将 旳各极值与 比较, 其中最大旳一种是最大值, 最小旳一种是最小值。

注: 实际问题旳开区间唯一极值点就是所求旳最值点; 9. 求曲边梯形旳思想和环节是什么?答: 分割 近似替代 求和 取极限 (“以直代曲”旳思想) 10.定积分旳性质有哪些?根据定积分旳定义, 不难得出定积分旳如下性质: 性质1a b dx ba-=⎰1性质5 若 , 则 ①推广:②推广:121()()()()kbc c baac c f x dx f x dx f x dx f x dx =+++⎰⎰⎰⎰11定积分旳取值状况有哪几种?答: 定积分旳值也许取正值, 也也许取负值, 还也许是0. ( l )当对应旳曲边梯形位于 x 轴上方时, 定积分旳值取正值, 且等于x 轴上方旳图形面积;(2)当对应旳曲边梯形位于 x 轴下方时, 定积分旳值取负值, 且等于x 轴上方图形面积旳相反数;(3)当位于x 轴上方旳曲边梯形面积等于位于x 轴下方旳曲边梯形面积时, 定积分旳值为0, 且等于x轴上方图形旳面积减去下方旳图形旳面积.12. 物理中常用旳微积分知识有哪些?答:(1)位移旳导数为速度, 速度旳导数为加速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学选修2-2导数及其应用知识点必记1.函数的平均变化率是什么? 答:平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 注1:其中x ∆是自变量的改变量,可正,可负,可零。

注2:函数的平均变化率可以看作是物体运动的平均速度。

2、导函数的概念是什么?答:函数)(x f y =在0x x =处的瞬时变化率是xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000. 3.平均变化率和导数的几何意义是什么?答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。

4导数的背景是什么?答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。

5、常见的函数导数和积分公式有哪些?6、常见的导数和定积分运算公式有哪些? 答:若()f x ,()g x 均可导(可积),则有:6.用导数求函数单调区间的步骤是什么? 答:①求函数f (x )的导数'()f x②令'()f x >0,解不等式,得x 的范围就是递增区间. ③令'()f x <0,解不等式,得x 的范围,就是递减区间; 注:求单调区间之前一定要先看原函数的定义域。

7.求可导函数f (x )的极值的步骤是什么?答:(1)确定函数的定义域。

(2) 求函数f (x )的导数'()f x(3)求方程'()f x =0的根(4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查/()f x 在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值 8.利用导数求函数的最值的步骤是什么?答:求)(x f 在[]b a ,上的最大值与最小值的步骤如下: ⑴求)(x f 在[]b a ,上的极值;⑵将)(x f 的各极值与(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值。

注:实际问题的开区间唯一极值点就是所求的最值点; 9.求曲边梯形的思想和步骤是什么?(“以直代曲”的思想) 10.定积分的性质有哪些?根据定积分的定义,不难得出定积分的如下性质: 性质1a b dx ba-=⎰1性质5 若[]b a x x f ,,0)(∈≥,则0)(≥⎰b adx x f①推广:1212[()()()]()()()b b b bm m aaaaf x f x f x dx f x dx f x dx f x ±±±=±±±⎰⎰⎰⎰L L②推广:121()()()()kbc c baac c f x dx f x dx f x dx f x dx =+++⎰⎰⎰⎰L11定积分的取值情况有哪几种?答:定积分的值可能取正值,也可能取负值,还可能是0.( l )当对应的曲边梯形位于 x 轴上方时,定积分的值取正值,且等于x 轴上方的图形面积;(2)当对应的曲边梯形位于 x 轴下方时,定积分的值取负值,且等于x 轴上方图形面积的相反数;(3)当位于 x 轴上方的曲边梯形面积等于位于 x 轴下方的曲边梯形面积时,定积分的值为0,且等于x 轴上方图形的面积减去下方的图形的面积.12.物理中常用的微积分知识有哪些?答:(1)位移的导数为速度,速度的导数为加速度。

(2)力的积分为功。

数学选修2-2推理与证明知识点必记13.归纳推理的定义是什么?答:从个别事实....中推演出一般性...的结论,像这样的推理通常称为归纳推理。

归纳推理是由部分到整体..,由个别到一般..的推理。

14.归纳推理的思维过程是什么? 答:大致如图:15.归纳推理的特点有哪些?答: ①归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象。

②由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实验检验,因此,它不能作为数学证明的工具。

③归纳推理是一种具有创造性的推理,通过归纳推理的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题。

16.类比推理的定义是什么?答:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理。

类比推理是由特殊..到特殊..的推理。

17.类比推理的思维过程是什么? 答:18.演绎推理的定义是什么?答:演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。

演绎推理是由一般..到特殊..的推理。

19.演绎推理的主要形式是什么?答:三段论 20.“三段论”可以表示为什么?答: ①大前题:M 是P ②小前提:S 是M ③结论:S 是P 。

其中①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般性原理,对特殊情况做出的判断。

21.什么是直接证明?它包括哪几种证明方法?答:直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。

直接证明包括综合法和分析法。

22.什么是综合法?答:综合法就是“由因导果”,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。

23.什么是分析法?答:分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者一定成立的式子,可称为“由果索因”。

要注意叙述的形式:要证A,只要证B,B应是A成立的充分条件. 分析法和综合法常结合使用,不要将它们割裂开。

24什么是间接证明?答:即反证法:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。

25.反证法的一般步骤是什么?答:(1)假设命题结论不成立,即假设结论的反面成立;(2)从假设出发,经过推理论证,得出矛盾;(3)从矛盾判定假设不正确,即所求证命题正确。

...26常见的“结论词”与“反义词”有哪些?27.反证法的思维方法是什么?答:正难则反.... 28.如何归缪矛盾?答:(1)与已知条件....矛盾;(2)与已有公理、定理、定义..........矛盾; (3)自相..矛盾.29.数学归纳法(只能证明与正整数...有关的数学命题)的步骤是什么? 答:(1)证明:当n 取第一个值....()00n n N *∈时命题成立; (2)假设当n=k (k ∈N *,且k ≥n 0)时命题成立,证明当n=k+1.....时命题也成立. 由(1),(2)可知,命题对于从n 0开始的所有正整数n 都正确注:常用于证明不完全归纳法推测所得命题的正确性的证明。

数学选修2-2数系的扩充和复数的概念知识点必记30.复数的概念是什么?答:形如a+bi ....的数叫做复数,其中i 叫虚数单位,a 叫实部, b 叫虚部,数集{}|,C a bi a b R =+∈叫做复数集。

规定:a bi c di +=+⇔a=c ...且.b=d ...,强调:两复数不能比较大小,只有相等或不相等。

31.数集的关系有哪些?答:0000b Z a b a =⎧⎪≠⎧⎨⎪≠⎨⎪=⎪⎩⎩实数 ()复数一般虚数()虚数 ()纯虚数()32.复数的几何意义是什么?答:复数与平面内的点或有序实数对一一对应。

33.什么是复平面?答:根据复数相等的定义,任何一个复数bi a z +=,都可以由一个有序实数对),(b a 唯一确定。

由于有序实数对),(b a 与平面直角坐标系中的点一一对应,因此复数集与平面直角坐标系中的点集之间可以建立一一对应。

这个建立了直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴。

实轴上的点都表示实数,除了原点外,虚轴上的点都表示纯虚数。

34.如何求复数的模(绝对值)?答:与复数z 对应的向量OZ 的模r 叫做复数bi a z +=的模(也叫绝对值)记作bi a z +或。

由模的定义可知:22b a bi a z +=+=35.复数的加、减法运算及几何意义是什么?答:①复数的加、减法法则:12z a bi c di =+=+与z ,则12()z z a c b d i ±=±+±。

注:复数的加、减法运算也可以按向量..的加、减法来进行。

②复数的乘法法则:()()()()a bi c di ac bd ad bc i ++=-++。

③复数的除法法则:2222()()()()a bi a bi c di ac bd bc adi c di c di c di c d c d ++-+-==+++-++ 其中c di -叫做实数化因子 36.什么是共轭复数?答:两复数a bi a bi +-与互为共轭复数,当0b ≠时,它们叫做共轭虚数。

常见的运算规律(1);(2)2,2;z z z z a z z bi =+=-=2222(3);(4);(5)z z z z a b z z z z z R ⋅===+==⇔∈41424344(6),1,,1;n n n n i i i i i i ++++==-=-=()2211(7)1;(8),,11i i i i i i i i i +-±=±==-=±-+ )9(设231i +-=ω是1的立方虚根,则012=++ωω,1,,332313===+++n n n ωωωωω。

相关文档
最新文档