(北京卷)十年真题(2010)高考数学真题分类汇编专题01集合文(含解析)

合集下载

十年高考分类北京高考数学试卷精校版含详解10解析几何部分

十年高考分类北京高考数学试卷精校版含详解10解析几何部分

十年高考分类北京高考数学试卷精校版含详解10解析几何部分一、选择题(共26小题;共130分)1. 圆心为(1,1)且过原点的圆的方程是( )A. (x−1)2+(y−1)2=1B. (x+1)2+(y+1)2=1C. (x+1)2+(y+1)2=2D. (x−1)2+(y−1)2=22. 双曲线x24−y29=1的渐近线方程是( )A. y=±32x B. y=±23x C. y=±94x D. y=±49x3. 若双曲线x2a2−y2b2=1的离心率为√3,则其渐近线方程为( )A. y=±2xB. y=±√2xC. y=±12x D. y=±√22x4. 双曲线x2−y2m=1的离心率大于√2的充分必要条件是( )A. m>12B. m≥1C. m>1D. m>25. 圆(x+1)2+y2=2的圆心到直线y=x+3的距离为( )A. 1B. 2C. √2D. 2√26. 在同一坐标系中,方程a2x2+b2y2=1与ax+by2=0(a>b>0)的曲线大致是( )A. B.C. D.7. 若点P到直线x=−1的距离比它到点(2,0)的距离小1,则点P的轨迹为( )A. 圆B. 椭圆C. 双曲线D. 抛物线8. 设动点P在直线x=1上,O为坐标原点.以OP为直角边、点O为直角顶点作等腰Rt△OPQ,则动点Q的轨迹是( )A. 圆B. 两条平行直线C. 抛物线D. 双曲线9. 双曲线x2b2−y2a2=1的两条渐近线互相垂直,那么该双曲线的离心率是( )A. 2B. 3C. 2D. 310. 椭圆 {x =4+5cosφy =3sinφ(φ 为参数)的焦点坐标为 ( )A. (0,0),(0,−8)B. (0,0),(−8,0)C. (0,0),(0,8)D. (0,0),(8,0)11. " m =12 "是"直线 (m +2)x +3my +1=0 与直线 (m −2)x +(m +2)y −3=0 相互垂直"的( ) A. 充分必要条件 B. 充分而不必要条件 C. 必要而不充分条件D. 既不充分也不必要条件12. 从原点向圆 x 2+y 2−12y +27=0 作两条切线,则该圆夹在两条切线间的劣弧长为 ( )A. πB. 2πC. 4πD. 6π13. 椭圆短轴长是 2,长轴长是短轴的 2 倍,则椭圆中心到其准线距离是 ( )A. 85√5 B. 45√5 C. 83√3 D. 43√314. 已知 F 1 、 F 2 是椭圆x 216+y 29=1 的两焦点,过点 F 2 的直线交椭圆于点 A 、 B ,若 ∣AB ∣=5,则∣AF 1∣+∣BF 1∣= ( ) A. 11B. 10C. 9D. 1615. 如图,直线 l:x −2y +2=0 过椭圆的左焦点 F 1 和一个顶点 B ,该椭圆的离心率为 ( )A. 15B. 25C. √55D.2√5516. 在抛物线 y 2=2px 上,横坐标为 4 的点到焦点的距离为 5,则 p 的值为 ( )A. 12B. 1C. 2D. 417. 椭圆 x 2a 2+y 2b 2=1(a >b >0) 的焦点为 F 1,F 2,两条准线与 x 轴的交点分别为 M ,N ,若 ∣MN∣≤2∣∣F 1F 2∣,则该椭圆离心率的取值范围是 ( )A. (0,12]B. (0,√22] C. [12,1)D. [√22,1) 18. "双曲线的方程为x 29−y 216=1 "是"双曲线的准线方程为 x =±95"的 ( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件19. 直线 l 过抛物线 C:x 2=4y 的焦点且与 y 轴垂直,则 l 与 C 所围成的图形的面积等于 ( )4816√220. 已知点A(0,2),B(2,0).若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为( )A. 4B. 3C. 2D. 121. 已知圆C:(x−3)2+(y−4)2=1和两点A(−m,0),B(m,0)(m>0),若圆C上存在点P,使得∠APB=90∘,则m的最大值为( )A. 7B. 6C. 5D. 422. 某棵果树前n年的总产量S n与n之间的关系如图所示.从目前记录的结果看,前m年的年平均产量最高,m的值为( )A. 5B. 7C. 9D. 1123. 过直线y=x上的一点作圆(x−5)2+(y−1)2=2的两条切线l1,l2,当直线l1,l2关于y=x对称时,它们之间的夹角为( )A. 30∘B. 45∘C. 60∘D. 90∘24. 已知直线ax+by+c=0(abc≠0)与圆x2+y2=1相切,则三条边长分别为∣a∣,∣b∣,∣c∣的三角形( )A. 是锐角三角形B. 是直角三角形C. 是钝角三角形D. 不存在25. 如图,在正方体ABCD−A1B1C1D1中,P是侧面BB1C1C内一动点,若P到直线BC与直线C1D1的距离相等,则动点P的轨迹所在的曲线是( )A. 直线B. 圆C. 双曲线D. 抛物线26. 点P在直线l:y=x−1上,若存在过P的直线交抛物线y=x2于A,B两点,且∣PA∣=∣AB∣,则称点P为" A点",那么下列结论中正确的是( )A. 直线l上的所有点都是" A点"B. 直线l上仅有有限个点是" A点"D. 直线l上有无穷多个点(但不是所有的点)是" A点"二、填空题(共29小题;共145分)27. 若抛物线y2=2px的焦点坐标为(1,0),则p=;准线方程为.28. 直线y=x被圆x2+(y−2)2=4截得的弦长为.29. 若三点A(2,2),B(a,0),C(0,4)共线,则a的值等于.30. 直线x−√3y+a=0(a为实常数)的倾斜角的大小是.31. 已知双曲线x2a2−y2b2=1(a>0,b>0)的一条渐近线为2x+y=0,一个焦点为(√5,0),则a=;b=.32. 双曲线x2a2−y2b2=1(a>0,b>0)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点,若正方形OABC的边长为2,则a=.33. 已知双曲线x2a2−y2b2=1(a>0,b>0)的离心率为2,焦点与椭圆x225+y29=1的焦点相同,那么双曲线的焦点坐标为;渐近线方程为.34. 设双曲线C的两个焦点为(−√2,0),(√2,0),一个顶点是(1,0),则C的方程为.35. 设双曲线C经过点(2,2),且与y24−x2=1具有相同渐近线,则C的方程为;渐近线方程为.36. 在直角坐标系xOy中,直线l过抛物线y2=4x的焦点F,且与该抛物线相交于A,B两点,其中点A在x轴上方.若直线l的倾斜角为60∘,则△OAF的面积为.37. 若点P(m,3)到直线4x−3y+1=0的距离为4,且点P在不等式2x+y<3表示的平面区域内,则m=.38. 已知(2,0)是双曲线x2−y2b2=1(b>0)的一个焦点,则b=.39. 已知双曲线x2a2−y2=1(a>0)的一条渐近线为√3x+y=0,则a=.40. 如图,F1,F2分别为椭圆x2a2+y2b2=1的左、右焦点,点P在椭圆上,△POF2是面积为√3的正三角形,则b2的值是.41. 已知双曲线x2−y2b2=1(b>0)的一条渐近线的方程为y=2x,则b=.42. 圆 x 2+(y +1)2=1 的圆心坐标是 ,如果直线 x +y +a =0 与该圆有公共点,那么实数 a 的取值范围是 . 43. 以双曲线 x 216−y 29=1 右顶点为顶点,左焦点为焦点的抛物线的方程是 .44. 若直线 mx +ny −3=0 与圆 x 2+y 2=3 没有公共点,则 m ,n 满足的关系式为 ;以(m,n ) 为点 P 的坐标,过点 P 的一条直线与椭圆x 27+y 23=1 的公共点有 个.45. 曲线 C :{x =cosθ,y =−1+sinθ(θ 为参数)的普通方程是 ,如果曲线 C 与直线 x +y +a =0有公共点,那么实数 a 的取值范围是 .46. 三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中 A i 的横、纵坐标分别为第i 名工人上午的工作时间和加工的零件数,点 B i 的横、纵坐标分别为第 i 名工人下午的工作时间和加工的零件数,i =1,2,3. (1)记 Q i 为第 i 名工人在这一天中加工的零件总数,则 Q 1,Q 2,Q 3 中最大的是 .(2)记 p i 为第 i 名工人在这一天中平均每小时加工的零件数,则 p 1,p 2,p 3 中最大的是 .47. 若双曲线 x 2−y 2m =1 的离心率为 √3,则实数 m = .48. 已知点 P 在圆 x 2+y 2=1 上,点 A 的坐标为 (−2,0),O 为原点,则 AO ⃗⃗⃗⃗⃗ ⋅AP⃗⃗⃗⃗⃗ 的最大值为 .49. 已知 x ≥0,y ≥0,且 x +y =1,则 x 2+y 2 的取值范围是 .50. 椭圆 x 29+y 22=1 的焦点为 F 1,F 2,点 P 在椭圆上,若 ∣PF 1∣=4,则 ∣PF 2∣= ;∠F 1PF 2的大小为 .51. 在极坐标系中,直线 ρcosθ−√3ρsinθ−1=0 与圆 ρ=2cosθ 交于 A ,B 两点,则∣AB∣= .52. 椭圆 x 2+4y 2=4 长轴上一个顶点为 A ,以 A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是 .53. 曲线 C 是平面内与两个定点 F 1(−1,0) 和 F 2(1,0) 的距离的积等于常数 a 2(a >1) 的点的轨迹.给出下列三个结论: ①曲线 C 过坐标原点; ②曲线 C 关于坐标原点对称;③若点 P 在曲线 C 上,则 △F 1PF 2 的面积不大于 12a 2.其中,所有正确结论的序号是.54. 设A(0,0),B(4,0),C(t+4,3),D(t,3)(t∈R).记N(t)为平行四边形ABCD内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则N(0)=;N(t)的所有可能取值为.55. 如图放置的边长为1的正方形PABC沿x轴滚动.设顶点P(x,y)的纵坐标与横坐标的函数关系是y=f(x),则f(x)的最小正周期为;y=f(x)在其两个相邻零点间的图象与x轴所围区域的面积为.说明:“正方形PABC沿x轴滚动”包含沿x轴正方向和沿x轴负方向滚动.沿x轴正方向滚动是指以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续,类似地,正方形PABC可以沿着x轴负方向滚动.三、解答题(共28小题;共364分)56. 已知抛物线C:y2=2px过点P(1,1).过点(0,12)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.57. 如图,抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(x1,y1),B(x2,y2)均在抛物线上.(1)写出该抛物线的方程及其准线方程.(2)当PA与PB的斜率存在且倾斜角互补时,求y1+y2的值及直线AB的斜率.58. 已知椭圆C:x2a2+y2b2=1(a>b>0)的一个顶点为A(2,0),离心率为√22,直线y=k(x−1)与椭圆C交于不同的两点M,N.(1)求椭圆C的方程;(2)当△AMN的面积为√103时,求k的值.59. 已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√32,A(a,0),B(0,b),O(0,0),△OAB的面积为1.(1)求椭圆C的方程;(2)设P是椭圆C上的一点,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:∣AN∣⋅∣BM∣为定值.60. 已知△ABC的顶点A,B在椭圆x2+3y2=4上,C在直线l:y=x+2上,且AB∥l.(1)当AB边通过坐标原点O时,求AB的长及△ABC的面积;(2)当∠ABC=90∘,且斜边AC的长最大时,求AB所在直线的方程.61. 设A(−c,0),B(c,0)(c>0)为两定点,动点P到A点的距离与到B点的距离的比为定值a(a>0),求P点的轨迹.62. 已知椭圆G:x2a2+y2b2=1(a>b>0)的离心率为√63,右焦点为(2√2,0),斜率为1的直线l与椭圆G交于A,B两点,以AB为底边作等腰三角形,顶点为P(−3,2).(1)求椭圆G的方程;(2)求△PAB的面积.63. 已知点A(2,8)、B(x1,y1)、C(x2,y2)均在抛物线y2=2px上,△ABC的重心与此抛物线的焦点F重合.(1)写出该抛物线的方程和焦点F的坐标;(2)求线段BC中点M的坐标;(3)求BC所在直线的方程.64. 已知双曲线C:x2a2−y2b2=1(a>0,b>0)的离心率为√3,右准线方程为x=√33.(1)求双曲线C的方程;(2)已知直线x−y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2+ y2=5上,求m的值.65. 如图,有一块半椭圆形钢板,其长半轴长为2r,短半轴长为r,计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S.(1)求面积S以x为自变量的函数式,并写出其定义域;(2)求面积S的最大值.66. 已知椭圆C:x2+3y2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M.(1)求椭圆C的离心率;(2)若直线AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由.67. 已知椭圆C的两个顶点分别为A(−2,0),B(2,0),焦点在x轴上,离心率为√32.(1)求椭圆C的方程;(2)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4:5.68. 已知椭圆C:x2+2y2=4.(1)求椭圆C的离心率;(2)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.69. 已知椭圆G:x24+y2=1.过点(m,0)作圆x2+y2=1的切线l交椭圆G于A,B两点.(1)求椭圆G的焦点坐标和离心率;(2)将∣AB∣表示为m的函数,并求∣AB∣的最大值.70. 已知曲线C:(5−m)x2+(m−2)y2=8(m∈R).(1)若曲线C是焦点在x轴上的椭圆,求m的取值范围;(2)设m=4,曲线C与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线C交于不同的两点M,N,直线y=1与直线BM交于点G.求证:A,G,N三点共线.71. 如图所示,过抛物线y2=2px(p>0)上一定点P(x0,y0)(y0>0),作两条直线分别交抛物线于A(x1,y1),B(x2,y2).(1)求该抛物线上纵坐标为p2的点到其焦点F的距离;(2)当PA与PB的斜率存在且倾斜角互补时,求y1+y2y0的值,并证明直线AB的斜率是非零常数.72. 已知椭圆:C:x2a2+y2b2=1过点A(2,0),B(0,1)两点.(1)求椭圆C的方程及离心率;(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.73. 已知椭圆G:x24+y2=1,过点(m,0)作圆x2+y2=1的切线l交椭圆G于A,B两点.(1)求椭圆G的焦点坐标和离心率;(2)将∣AB∣表示为m的函数,并求∣AB∣的最大值.74. 已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(1)求椭圆C的方程,并求点M的坐标(用m,n表示).(2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q,使得∠OQM=∠ONQ ?若存在,求点Q的坐标;若不存在,说明理由.75. 已知椭圆C的左、右焦点坐标分别是(−√2,0),(√2,0),离心率是√63,直线y=t与椭圆C交于不同的两点M,N,以线段MN为直径作圆P,圆心为P.(1)求椭圆C的方程;(2)若圆P与x轴相切,求圆心P的坐标;(3)设Q(x,y)是圆P上的动点,当t变化时,求y的最大值.76. 直线y=kx+m(m≠0)与椭圆W:x24+y2=1相交于A,C两点,O是坐标原点.(1)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(2)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.77. 如图,设点A和B为抛物线y2=4px(p>0)上原点以外的两个动点,已知OA⊥OB,OM⊥AB.求点M的轨迹方程,并说明它表示什么曲线.78. 如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x−3y−6=0,点T(−1,1)在AD边所在直线上.(1)求AD边所在直线的方程;(2)求矩形ABCD外接圆的方程;(3)若动圆P过点N(−2,0),且与矩形ABCD的外接圆外切,求动圆P的圆心的轨迹方程.79. 在平面直角坐标系xOy中,点B与点A(−1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于−13.(1)求动点P的轨迹方程;(2)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.80. 已知抛物线y2=2px(p>0).过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A,B.(1)若∣AB∣≤2p,求a的取值范围;(2)若线段AB的垂直平分线交AB于点Q,交x轴于点N,试求Rt△MNQ的面积.81. 如图,A1,A2为椭圆的两个顶点,F1,F2为椭圆的两个焦点.(1)写出椭圆的方程及准线方程;(2)过线段OA2上异于O,A2的任一点K作OA2的垂线,交椭圆于P,P1两点,直线A1P与AP1交于点M.求证:点M在双曲线x225−y29=1上.82. 已知双曲线C:x2a2−y2b2=1(a>0,b>0)的离心率为√3,右准线方程为x=√33.(1)求双曲线C的方程;(2)设直线l是圆O:x2+y2=2上动点P(x0,y0)(x0y0≠0)处的切线,l与双曲线C交于不同的两点A,B,证明∠AOB的大小为定值.83. 已知动圆过定点P(1,0),且与定直线l:x=−1相切,点C在l上.(1)求动圆圆心的轨迹M的方程;(2)设过点P,且斜率为−√3的直线与曲线M相交于A,B两点.(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;(ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围.答案第一部分 1. D2. A3. B【解析】由离心率为 √3,可知 c =√3a ,所以 b =√2a .所以渐近线方程为 y =±ba x =±√2x . 4. C【解析】【解析】 ∵双曲线x^2-\dfrac{y^{2}}{m}=1的离心率e=\sqrt{1+m},又∵e>\sqrt{2},∴\sqrt{1+m}>\sqrt{2},∴m>1. 【答案】 C 5. C【解析】由于圆 (x +1)2+y 2=2 的圆心为 (−1,0),则圆心 (−1,0) 到直线 x −y +3=0 的距离为√2=√2.6. D 【解析】方程 a 2x 2+b 2y 2=1 可化为x 21a 2+y 21b 2=1,因为 a >b >0,所以方程 a 2x 2+b 2y 2=1 表示焦点在 y 轴的椭圆;方程 ax +by 2=0 可化为 y 2=−ab x ,表示焦点在 x 轴负半轴的抛物线. 7. D 【解析】若点 P 到直线 x =−1 的距离比它到点 (2,0) 的距离小 1,则点 P 到直线 x =−2 的距离等于它到点 (2,0) 的距离.8. B【解析】设点 P 、 Q 坐标分别为 P (1,t ),Q (x,y ),由 OP ⊥OQ ,得 x +ty =0. ⋯⋯①由 ∣OP ∣=∣OQ ∣,得 x 2+y 2=t 2+1. ⋯⋯② 由 ①② 消去 t ,得 (x 2+y 2)(1−1y 2)=0.因为 x 2+y 2≠0,所以 1−1y 2=0,即 y =±1.因此,动点 Q 的轨迹方程为 y =±1,它表示两条平行线. 9. C【解析】渐近线方程为 y =±axb ,由题得 −ab ⋅ab =−1,得 a 2=b 2,则 e =√b 2+a 2b 2=√2.10. D【解析】提示:因为椭圆的直角坐标方程为 (x−4)225+y 29=1,相当于椭圆x 225+y 29=1 的焦点 (−4,0) 、(4,0) 向右平移 4 个单位.11. B 12. B 13. D 14. A 【解析】由椭圆定义,可得 ∣AF 1∣+∣AF 2∣+∣BF 1∣+∣BF 2∣=4a ,∴ ∣AF 1∣+∣BF 1∣+∣AB ∣=16,∴ ∣AF 1∣+∣BF 1∣=11. 15. D【解析】提示:显然 c =2,b =1.16. C 17. D 【解析】∵ ∣MN∣≤2∣∣F 1F 2∣,∴ 2a 2c≤4c .18. A 19. C 【解析】由题意可知,l 的方程为 y =1.如图,B 点坐标为 (2,1),所以所求面积S=4−2∫02x 24dx=4−2(x312)∣ 02=83.20. A【解析】根据题意,S△ABC=12×∣AB∣×ℎ=12×2√2×ℎ=2,解得ℎ=√2,即点C到直线AB的距离为√2.问题转化为与直线AB距离为√2的直线与抛物线交点的个数.由两平行线间的距离公式,得与直线AB距离为√2的直线方程为y=−x或y=−x+4,分别将直线与抛物线方程联立,解得这两直线与抛物线分别有2个交点,因此,共有4个不同的C点满足条件.21. B 【解析】如图,当以AB为直径的圆和圆C内切时,m取最大值.22. C 【解析】各点都和原点分别连接,看哪个点连出的斜率最大即可.23. C 24. B 25. D【解析】因为P到直线C1D1的距离就是P到点C1的距离,所以点P到直线BC与到点C1的距离相等,故动点P的轨迹所在的曲线是以C1为焦点、以直线BC为准线的抛物线.26. A 【解析】设P(a,a−1),A(x0,x02),则由∣PA∣=∣AB∣且三点共线可得B点的坐标为(2x0−a,2x02−a+1),由B点在抛物线上知:2x02−a+1=(2x0−a)2=4x02−4ax0+a2,整理得:2x02−4ax0+a2+a−1=0.从而知x0为方程2x2−4ax+a2+a−1=0的解,当此方程有解时,对应的点P(a,a−1)为" A点".而此方程的判别式Δ=16a2−8(a2+a−1)=8(a2−a+1)>0恒成立.所以直线l上的所有点都是" A点".第二部分27. 2,x=−128. 2√229. 430. 30∘31. a=1,b=2【解析】y=±2x,所以ba =21,c2=5,所以a=1;b=2.32. 2【解析】因为两条渐近线是正方形OABC的相邻两边,所以夹角为90∘,可知渐近线的斜率为±1.所以±ba=±1,a=b.因为B为该双曲线的焦点,所以c=2√2,由a2+b2=c2=8,a=b可得a=2.33. (±4,0),y=±√3x34. x2−y2=135. x23−y212=1,y=±2x36. √3【解析】如图,过点A作准线的垂线段AM,设AF=t,则AM=t,FN=12t,因为AM=PN=PF+FN,所以t=2+12t,所以AF=t=4,所以AN=2√3,所以S△OAF=12OF⋅AN=√3.37. −338. √339. √3340. 2√3【解析】提示:正三角形面积为√3,故边长为2,从而c=2,P(1,√3),F1(−2,0).从而2a=∣PF1∣+∣PF2∣=2√3+2,故b2=(√3+1)2−4=2√3.41. 2【解析】由双曲线方程知其渐近线方程为y=±bx,得b=2.42. (0,−1),1−√2≤a≤1+√243. y2=−36(x−4)44. 0<m2+n2<3,2【解析】由直线mx+ny−3=0与圆x2+y2=3没有公共点,得0<m2+n2<3;由0<m2+n2<3,得P点在以原点为圆心、√3为半径的圆面内运动(不含原点和圆周),无论如何运动,它总是在椭圆的内部,因此过点P的直线与椭圆x 27+y23=1一定有两个公共点.45. x2+(y+1)2=1,[1−√2,1+√2]46. Q1,p2【解析】(1)若Q i为第i名工人在这一天中加工的零件总数,Q1=A1的纵坐标+B1的纵坐标;Q2=A2的纵坐标+B2的纵坐标,Q3=A3的纵坐标+B3的纵坐标,由已知中图象可得:Q1,Q2,Q3中最大的是Q1;(2)若p i为第i名工人在这一天中平均每小时加工的零件数,则p i为A i B i中点与原点连线的斜率,故p1,p2,p3中最大的是p2.47. 248. 649. [12,1]50. 2;120∘【解析】因为a=3,b=√2,c=√a2−b2=√7,所以∣PF2∣=2a−∣PF1∣=2,由余弦定理,有cos∠F1PF2=∣PF1∣2+∣∣PF2∣2−∣∣F1F2∣22∣∣PF1∣∣PF2∣=42+22−(2√7)22×4×2=−12,又0∘<∠F1PF2<180∘,因此∠F1PF2=120∘.51. 2【解析】x=ρcosθ,y=ρsinθ,所以ρcosθ−√3ρsinθ−1=0可以变形为x−√3y−1=0,ρ=2cosθ可以变形为(x−1)2+y2=1.因为直线x−√3y−1=0经过(1,0)点,圆(x−1)2+y2=1的圆心也是(1,0),所以交线AB为直径.又因为r=1,2r=2,所以∣AB∣=2.52. 1625【解析】原方程可化为x 24+y2=1,则a2=4,b2=1,从而a=2,b=1,c=√3.设等腰直角三角形另外两个顶点为(x,y)(y>0),(x,−y)(y>0),由等腰三角形性质可得2−x=y,代入椭圆方程解得y=45,因此该三角形的面积是S=1625.53. ②③【解析】对于①,若C过原点,则∣OF1∣∣OF2∣=a2,但a2>1,∣OF1∣∣OF2∣=1,矛盾,故①错误;对于②,对于C上任一点P,其关于原点的对称点设为Q,由于F1和F2也关于原点对称,故∣QF2∣=∣PF1∣,∣QF1∣=∣PF2∣,于是∣QF1∣⋅∣QF2∣=∣PF1∣⋅∣PF2∣=a2,故Q点也在C上,②正确.对于③,直接使用三角形面积公式有:SΔPF1F2=12∣PF1∣⋅∣PF2∣sin∠F1PF2≤a22,③正确.54. 6,6,7,8【解析】当t=0时,作图易知共有6个整点,即N(0)=6;如图分别确定直线AD,BC的方程,然后确定直线y=1,y=2与其交点的坐标依次为E(t3,1),G(t3+4,1),F(2t3,2),H(2t3+4,2),故当 t 3∈Z 时,则 2t3∈Z ,在线段 GE 上且在平行四边形内部的整点共有 3 个,在线段 FH 上且在平行四边形内部的整点共有 3 个,此时整点的个数共有 6 个;当 t3∉Z ,2t3∈Z 时,线段 GE 上满足条件的整点有 4 个,FH 上共有 3 个,故整点总数为 7 个; 当 t3∉Z ,2t3∉Z 时,线段 EG ,FH 上各有 4 个整点在平行四边形内部,故此时整点个数共有 8 个,综上可知 N (t ) 的所有取值为 6,7,8.55. 4,π+1【解析】当 0≤x ≤1 时,(x −1)2+y 2=1;当 1<x ≤3 时,(x −2)2+y 2=2;当 3<x ≤4 时,(x −3)2+y 2=1.故其在一个周期内的函数 y =f (x ) 的图象如图所示,所以 y =f (x ) 在其两个相邻零点间的图象与 x 轴所围区域的面积为S =14×π×1×2+14×π×(√2)2+12×1×1×2=π+1.第三部分56. (1) 因为 y 2=2px 过点 P (1,1), 所以 1=2p , 解得 p =12,所以抛物线方程为 y 2=x ,所以焦点坐标为 (14,0),准线为 x =−14.(2) 设过点 (0,12) 的直线方程为 y =kx +12,M (x 1,y 1),N (x 2,y 2), 所以直线 OP 为 y =x ,直线 ON 为:y =y2x 2x ,由题意知 A (x 1,x 1),B (x 1,x 1y 2x 2),由 {y =kx +12,y 2=x 可得 k 2x 2+(k −1)x +14=0,所以 x 1+x 2=1−k k 2,x 1x 2=14k 2,所以 y 1+x 1y 2x 2=kx 1+12+x 1(kx 2+12)x 2=2kx 1+x 1+x 22x 2=2kx 1+1−k k 22×14k 2x1=2kx 1+(1−k )⋅2x 1=2x 1,所以 A 为线段 BM 的中点.57. (1) 由已知条件,可设抛物线的方程为 y 2=2px . 因为点 P (1,2) 在抛物线上, 所以 22=2p ⋅1,得 p =2.故所求抛物线的方程是 y 2=4x ,准线方程是 x =−1.(2) 设直线 PA 的斜率为 k PA ,直线 PB 的斜率为 k PB ,因为 PA 与 PB 的斜率存在且倾斜角互补,所以k PA =−k PB .由 A (x 1,y 1),B (x 2,y 2) 在抛物线上,得{y 12=4x 1,①y 22=4x 2,②所以y 1−214y 12−1=−y 2−214y 22−1,所以 y 1+2=−(y 2+2),所以 y 1+y 2=−4. 由① − ②得直线 AB 的斜率k AB =y 2−y 1x 2−x 1=4y1+y 2=−44=−1(x 1≠x 2).58. (1) 由题意得{a =2,c a =√22,a 2=b 2+c 2,解得b =√2.所以,椭圆 C 的方程为x 24+y 22=1.(2) 由{y =k (x −1),x 24+y 22=1,得(1+2k 2)x 2−4k 2x +2k 2−4=0.设点 M ,N 的坐标分别为 (x 1,y 1),(x 2,y 2),则y 1=k (x 1−1),y 2=k (x 2−1), x 1+x 2=4k 21+2k 2,x 1x 2=2k 2−41+2k 2.所以∣MN ∣=√(x 2−x 1)2+(y 2−y 1)2=√(1+k 2)[(x 1+x 2)2−4x 1x 2]=2√(1+k 2)(4+6k 2)1+2k 2.又因为点 A (2,0) 到直线 y =k (x −1) 的距离d =√1+k 2,所以 △AMN 的面积为S =12∣MN ∣⋅d =∣k ∣√4+6k 21+2k 2.由 ∣k∣√4+6k 21+2k 2=√103,解得 k =±1.59. (1) 由题意,得 ca =√32,12ab =1.又因为 a 2=b 2+c 2,解得 a =2,b =1,c =√3.故方程为 x 24+y 2=1.(2) 由题意得 P 不在顶点处,设 P (x 0,y 0)(x 0y 0≠0),x 024+y 02=1,即 x 02+4y 02=4.又因为 A (2,0),B (0,1),则直线 PA:y =y 0x0−2(x −2),令 x =0,得 M (0,−2y 0x 0−2).直线 PB:y =y 0−1x 0x +1,令 y =0,得 N (−x 0y 0−1,0).∣AN∣=∣∣∣2+x 0y 0−1∣∣∣=∣∣∣2y 0+x 0−2y 0−1∣∣∣,∣BM∣=∣∣∣1+2y 0x 0−2∣∣∣=∣∣∣2y 0+x 0−2x 0−2∣∣∣, ∣AN∣⋅∣BM∣=∣∣∣∣4y 0+x 02+4+4x 0y 0−4x 0−8y 0x 0y 0−x 0−2y 0+2∣∣∣∣=∣∣∣4+4+4x 0y 0−4x 0−8y 0x 0y 0−x 0−2y 0+2∣∣∣=4.60. (1) 因为 AB ∥l ,且 AB 边通过点 (0,0),所以 AB 所在直线的方程为y =x.设 A ,B 两点坐标分别为 (x 1,y 1),(x 2,y 2).由{x 2+3y 2=4,y =x,得x =±1.所以∣AB∣=√2∣∣x 1−x 2∣=2√2. 又因为 AB 边上的高 ℎ 等于原点到直线 l 的距离. 所以 ℎ=√2,所以S △ABC =12∣AB∣⋅ℎ=2.(2) 设 AB 所在直线的方程为 y =x +m ,由{x 2+3y 2=4,y =x +m,得4x 2+6mx +3m 2−4=0.因为 A ,B 在椭圆上,所以Δ=−12m 2+64>0.设 A ,B 两点坐标分别为 (x 1,y 1),(x 2,y 2),则x 1+x 2=−3m2,x 1x 2=3m 2−44,所以∣AB∣=√2∣∣x 1−x 2∣=√32−6m 22. 又因为 BC 的长等于点 (0,m ) 到直线 l 的距离,即∣BC∣=−m∣√2.所以∣AC∣2=∣AB∣2+∣BC∣2=−m 2−2m +10=−(m +1)2+11.所以当 m =−1 时,AC 边最长(这时 Δ=−12+64>0),此时 AB 所在直线的方程为y =x −1.61. 设动点 P 的坐标为 (x,y ) . 由 ∣PA∣∣PB∣=a (a >0) ,得 √(x+c )2+y 2√(x−c )2+y 2=a .化简得(1−a 2)x 2+2c (1+a 2)x +c 2(1−a 2)+(1−a 2)y 2=0.当 a ≠1 时,得x 2+2c (1+a 2)1−a2x +c 2+y 2=0, 整理得(x −1+a 2a 2−1c)2+y 2=(2ac a 2−1)2.当 a =1 时,化简得 x =0 . 所以当 a ≠1 时, P 点的轨迹是以 (a 2+1a 2−1c,0) 为圆心, ∣∣2ac a 2−1∣∣为半径的圆;当 a =1 时, P 点的轨迹为 y 轴. 62. (1) 由已知得 c =2√2,ca =√63.解得 a =2√3.又 b 2=a 2−c 2=4.所以椭圆 G 的方程为x 212+y 24=1.(2) 设直线 l 的方程为 y =x +m .由{y =x +m,x 212+y 24=1,得4x 2+6mx +3m 2−12=0. ⋯⋯①设 A,B 的坐标分别为 (x 1,y 1),(x 2,y 2)(x 1<x 2),AB 中点为 E (x 0,y 0),则x 0=x 1+x 22=−3m 4,y 0=x 0+m =m4.因为 AB 是等腰 △PAB 的底边,所以 PE ⊥AB . 所以 PE 的斜率k =2−m 4−3+3m 4=−1.解得 m =2.此时方程 ① 为 4x 2+12x =0.解得x 1=−3,x 2=0.所以y 1=−1,y 2=2.所以 ∣AB ∣=3√2.此时,点 P (−3,2) 到直线 AB:x −y +2=0 的距离d =√2=3√22, 所以 △PAB 的面积 S =12∣AB ∣⋅d =92.63. (1) 因为点 A (2,8) 在抛物线 y 2=2px 上,所以82=2p ⋅2,解得p =16.所以抛物线方程为 y 2=32x ,焦点 F 的坐标为 (8,0).(2) 如图,由 F (8,0) 是 △ABC 的重心,M (x 0,y 0) 是 BC 的中点,所以AF⃗⃗⃗⃗⃗ =2FM ⃗⃗⃗⃗⃗⃗ , 即(6,−8)=2(x 0−8,y 0),解得x 0=11,y 0=−4.所以点 M 的坐标为 (11,−4).(3) 由于线段 BC 的中点 M 不在 x 轴上,则 BC 所在的直线不垂直于 x 轴. 设直线 BC 的方程为y +4=k (x −11)(k ≠0),由{y +4=k (x −11),y 2=32x,消去 x 得ky 2−32y −32(11k +4)=0,所以y 1+y 2=32k,由(2)的结论得y 1+y 22=−4, 解得k =−4.因此,BC 的方程为 4x +y −40=0. 64. (1) 由题意得{a 2c =√33,ca=√3. 解得 a =1,c =√3. 所以 b 2=c 2−a 2=2. 所以双曲线 C 的方程为 x 2−y 22=1.(2) 设 A ,B 两点的坐标分别为 (x 1,y 1),(x 2,y 2),线段 AB 的中点为 M (x 0,y 0).由{x −y +m =0x 2−y 22=1得 x 2−2mx −m 2−2=0(判别式 Δ>0),所以x 0=x 1+x 22=m,y 0=x 0+m =2m. 因为点 M (x 0,y 0) 在圆 x 2+y 2=5 上,所以 m 2+(2m )2=5. 故 m =±1.65. (1) 依题意,以 AB 的中点 O 为原点建立直角坐标系 O −xy (如图),则点 C 的横坐标为 x ,点 C 的纵坐标 y 满足方程x 2r 2+y 24r 2=1(y ≥0), 解得y =2√r 2−x 2(0<x <r ),所以S=12(2x +2r )⋅2√r 2−x 2=2(x +r )⋅√r 2−x 2,其定义域为 {x∣ 0<x <r }.(2) 记 f (x )=4(x +r )2(r 2−x 2),0<x <r ,则fʹ(x )=8(x +r )2(r −2x ).令 fʹ(x )=0,得x =12r.因为当 0<x <r 2时,fʹ(x )>0;当 r2<x <r 时,fʹ(x )<0,所以 f (12r) 是 f (x ) 的最大值.因此,当 x =12r 时,S 也取得最大值,最大值为√f (12r)=3√32r 2.即梯形面积 S 的最大值为3√32r 2. 66. (1) 椭圆 C 的标准方程为 x 23+y 2=1, 所以 a =√3,b =1,c =√2. 所以椭圆 C 的离心率 e =c a=√63. (2) 因为直线 AB 过点 D (1,0) 且垂直于 x 轴, 所以可设 A (1,y 1),B (1,−y 1),直线 AE 的方程为 y −1=(1−y 1)(x −2). 令 x =3 得 M (3,2−y 1). 所以直线 BM 的斜率 k BM =2−y 1+y 13−1=1.(3) 直线 BM 与直线 DE 平行.理由如下:当直线 AB 的斜率不存在时,由(2)可知 k BM =1. 又因为直线 DE 的斜率 k DE =1−02−1=1,所以 BM ∥DE . 当直线 AB 的斜率存在时,设其方程为 y =k (x −1)(k ≠1). 设 A (x 1,y 1),B (x 2,y 2),则直线 AE 的方程为 y −1=y 1−1x 1−2(x −2).令 x =3,得点 M (3,y 1+x 1−3x 1−2).直线和椭圆方程联立得{x 23+y 2=1,y =k (x −1),消去 y 得(1+3k 2)x 2−6k 2x +3k 2−3=0,所以x 1+x 2=6k 21+3k 2,x 1x 2=3k 2−31+3k 2.直线 BM 的斜率 k BM =y 1+x 1−3x 1−2−y 23−x 2.因为k BM −1=k (x 1−1)+x 1−3−k (x 2−1)(x 1−2)−(3−x 2)(x 1−2)(3−x 2)(x 1−2)=(k−1)[−x 1x 2+2(x 1+x 2)−3](3−x 2)(x 1−2)=(k−1)(−3k 2+31+3k 2+12k 21+3k 3−3)(3−x 2)(x 1−2)=0.所以 k BM=1=k DE ,所以 BM ∥DE .综上可知,直线 BM 与直线 DE 平行.67. (1) 由椭圆的焦点在 x 轴上,设椭圆方程:x 2a2+y 2b 2=1(a >b >0),则 a =2,e =c a=√32,则 c =√3,b 2=a 2−c 2=1, 所以椭圆 C 的方程x 24+y 2=1;(2) 设 D (x 0,0)(−2<x 0<2),M (x 0,y 0),N (x 0,−y 0),y 0>0,由 M ,N 在椭圆上,则 x 024+y 02=1,则 x 02=4−4y 02,则直线 AM 的斜率 k AM =y 0−0x 0+2=y 0x+2,直线 DE 的斜率 k DE =−x 0+2y 0,直线DE 的方程:y =−x 0+2y 0(x −x 0),直线 BN 的斜率 k BN =−y 0x 0−2,直线 BN 的方程 y =−y 0x 0−2(x −2),{y =−x 0+2y 0(x −x 0),y =−y 0x 0−2(x −2), 解得:{x =4x 0+25,y =−45y 0, 过 E 做 EH ⊥x 轴,△BHE ∽△BDN ,则 ∣EH∣=4y 05,则 ∣EH∣∣ND∣=45,所以 △BDE 与 △BDN 的面积之比为 4:5. 68. (1) 由题意,椭圆 C 的标准方程为x 24+y 22=1, 所以 a 2=4,b 2=2,从而c 2=a 2−b 2=2,因此a =2,c =√2,故椭圆 C 的离心率e =c a =√22.(2) 设点 A ,B 的坐标分别为 (t,2),(x 0,y 0),其中 x 0≠0, 因为 OA ⊥OB ,所以OA⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =0, 即 tx 0+2y 0=0,解得t =−2y 0x 0, 又 x 02+2y 02=4,所以∣AB ∣2=(x 0−t )2+(y 0−2)2=(x 0+2y 0x 0)2+(y 0−2)2=x 02+y 02+4y 02x 02+4=x 02+4−x 022+2(4−x 02)x 02+4=x 022+8x 02+4(0<x 02≤4), 因为x 022+8x 02≥4(0<x 02≤4), 且当 x 02=4 时等号成立,所以 ∣AB ∣2≥8,故线段 AB 长度的最小值为 2√2.69. (1) 由已知得a =2,b =1,所以c =√a 2−b 2=√3.所以椭圆 G 的焦点坐标为(−√3,0),(√3,0),离心率为e =c a =√32.(2) 由题意知,∣m ∣≥1.当 m =1 时,切线 l 的方程为 x =1,点 A,B 的坐标分别为 (1,√32),(1,−√32), 此时 ∣AB ∣=√3;当 m =−1 时,同理可得 ∣AB ∣=√3;当 ∣m ∣>1 时,设切线 l 的方程为 y =k (x −m ). 由{y =k (x −m ),x 24+y 2=1,得(1+4k 2)x 2−8k 2mx +4k 2m 2−4=0.设 A,B 两点的坐标分别为 (x 1,y 1),(x 2,y 2),则x 1+x 2=8k 2m 1+4k 2,x 1x 2=4k 2m 2−41+4k 2.又由 l 与圆 x 2+y 2=1 相切,得√k 2+1=1,即m 2k 2=k 2+1.所以∣AB ∣=√(x 2−x 1)2+(y 2−y 1)2=√(1+k 2)[(x 1+x 2)2−4x 1x 2]=√(1+k 2)[64k 4m 2(1+4k 2)2−4(4k 2m 2−4)1+4k 2]=4√3∣m ∣m 2+3.由于当 m =±1 时,∣AB ∣=√3,所以∣AB ∣=4√3∣m ∣m 2+3,m ∈(−∞,−1]∪[1,+∞).因为∣AB ∣=4√3∣m ∣m 2+3=4√3∣m ∣+3∣m ∣≤2,且当 m =±√3 时,∣AB ∣=2,所以 ∣AB ∣ 的最大值为 2. 70. (1) 原曲线方程可化简得x 285−m +y 28m −2=1. 由题意可得{ 85−m >8m −2,85−m >0,8m −2>0,解得72<m <5,所以 m 的取值范围是 (72,5).(2) 由已知直线方程代入椭圆方程化简得(2k 2+1)x 2+16kx +24=0,结合直线与椭圆交于不同两点知Δ=32(2k 2−3)>0,解得 k 2>32,设 N (x N ,kx N +4),M (x M ,kx M +4),G (x G ,1),由韦达定理得x M +x N=−16k2k 2+1, ⋯⋯①x M x N=242k 2+1, ⋯⋯② 可知 MB 方程为y =kx M +6x Mx −2, 则 G (3x MkxM +6,1),故AG ⃗⃗⃗⃗⃗ =(3x Mx M k +6,−1),AN⃗⃗⃗⃗⃗⃗ =(x N ,x N k +2).欲证 A,G,N 三点共线,只需证 AG⃗⃗⃗⃗⃗ ,AN ⃗⃗⃗⃗⃗⃗ 共线,即 3x Mx M k +6(x N k +2)=−x N ,成立,化简得(3k +k )x M x N =−6(x M +x N ),将 ①② 代入易知等式成立,则 A,G,N 三点共线得证.71. (1) 当 y =p 2 时,x =p 8,又抛物线 y 2=2px (p >0) 的准线方程为 x =−p2.由抛物线定义得,所求距离为 p 8−(−p 2)=5p 8.(2) 设直线 PA 的斜率为 k PA ,由 y 12=2px 1,y 02=2px 0,两式相减得 (y 1−y 0)(y 1+y 0)=2p (x 1−x 0). 故 k PA =y 1−y 0x 1−x 0=2p y 1+y 0(x 1≠x 0).同理可得 k PB =2p y 2+y 0(x 2≠x 0).由 PA ,PB 倾斜角互补知 k PA =−k PB ,即2py 1+y 0=−2py2+y 0,所以 y 1+y 2=−2y 0,故y 1+y 2y 0=−2.设直线 AB 的斜率为 k AB ,由 y 22=2px 2,y 12=2px 1 相减得 (y 2−y 1)(y 2+y 1)=2p (x 2−x 1),所以 k AB =y 2−y1x 2−x 1=2py1+y 2(x 1≠x 2).将 y 1+y 2=−2y 0(y 0>0) 代入得 k AB =2p y 1+y 2=−py 0,所以 k AB 是非零常数.72. (1) 由题知 a =2,b =1,c =√3, 所以椭圆方程为 x 24+y 2=1,离心率 e =√32.(2) 设 P (x 0,y 0) 则 k PA =y 0x 0−2,l PA :y =y 0x0−2(x −2),令 x =0 得 y =−2y 0x 0−2,所以 M (0,−2y 0x 0−2),k PB =y 0−1x 0, l PB :y =y 0−1x 0x +1,令 y =0 得 x =−x 0y 0−1,所以 N (−x 0y 0−1,0),所以四边形 ABNM 的面积 S =12∣BM∣⋅∣AN∣,∣AN∣=∣∣∣2+x 0y 0−1∣∣∣=∣∣∣x 0+2y 0−2y 0−1∣∣∣, ∣BM∣=∣∣∣2y 0x 0−2+1∣∣∣=∣∣∣x 0+2y 0−2x 0−2∣∣∣,所以S =12∣BM∣⋅∣AN∣=12⋅∣∣∣x 0+2y 0−2x 0−2∣∣∣⋅∣∣∣x 0+2y 0−2y 0−1∣∣∣=∣∣∣(x 02+4y 02)+4x 0y 0−4x 0−8y 0+4x 0y 0−x 0−2y 0+2∣∣∣, 因为点 P 在椭圆上,所以x 024+y 02=1⇒x 02+4y 02=4,S =12⋅∣∣∣4x 0y 0−4x 0−8y 0+8x 0y 0−x 0−2y 0+2∣∣∣=2, 故四边形 ABNM 的面积为定值 2.73. (1) 由已知,得 a =2,b =1,则 c =√a 2−b 2=√3. 所以椭圆 G 的焦点坐标为 (−√3,0),(√3,0),离心率为 √32. (2) 由题意,得 ∣m ∣≥1.① 当 m =1 时,切线 l 的方程为 x =1,则 A (1,√32),B (1,−√32),此时 ∣AB ∣=√3.② 当 m =−1 时,同理可得 ∣AB ∣=√3.③ 当 ∣m ∣>1 时,设切线 l 的方程为 y =k (x −m ),代入 x 2+4y 2=4,得(1+4k 2)x 2−8k 2mx +4k 2m 2−4=0.设 A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8k 2m1+4k 2,x 1x 2=4k 2m 2−41+4k 2.又由 l 与圆 x 2+y 2=1 相切,得∣km ∣√k 2+1=1,化简,得m 2k 2=k 2+1.由两点间的距离公式,得∣AB ∣=√(x 2−x 1)2+(y 2−y 1)2=√(1+k 2)[(x 1+x 2)2−4x 1x 2]=√(1+k 2)[64k 4m 2(1+4k 2)2−4(4k 2m 2−4)1+4k 2]=4√3∣m ∣m 2+3.由于当 m =±1 时,∣AB ∣=√3 代入上式成立,所以∣AB ∣=4√3∣m ∣m 2+3,m ∈(−∞,−1]∪[1,+∞).因为∣AB ∣=4√3∣m ∣m 2+3=4√3∣m ∣+3∣m ∣≤2,所以 m =±√3 时,∣AB ∣ 的最大值为 2. 74. (1) 由题意得{b =1,c a=√22,a 2=b 2+c 2,解得a 2=2.故椭圆 C 的方程为x 22+y 2=1.设 M (x M ,0),因为 m ≠0,所以 −1<n <1. 直线 PA 的方程为 y −1=n−1mx ,所以 x M =m 1−n,即 M (m1−n,0).(2) 因为点 B 与点 A 关于 x 轴对称,所以 B (m,−n ), 设 N (x N ,0),则 x N =m1+n .“存在点 Q(0,y Q ) 使得 ∠OQM =∠ONQ ”,等价于“存在点 Q(0,y Q ) 使得 ∣OM∣∣OQ∣=∣OQ∣∣ON∣”,即 y Q 满足 y Q 2=∣x M ∣∣x N ∣. 因为 x M =m 1−n,x N =m 1+n,m 22+n 2=1,所以 y Q 2=∣x M ∣∣x N ∣=m 21−n 2=2,所以y Q =√2 或 y Q =−√2.故在 y 轴上存在点 Q ,使得 ∠OQM =∠ONQ ,且点 Q 的坐标为 (0,√2) 或 (0,−√2). 75. (1) 因为 ca =√63,且 c =√2,所以 a =√3,b =√a 2−c 2=1, 所以椭圆 C 的方程为 x 23+y 2=1.(2) 由题意知 P (0,t )(−1<t <1),由 {y =t,x 23+y 2=1,得 x =±√3(1−t 2).所以圆 P 的半径为 √3(1−t 2).当圆 P 与 x 轴相切时,∣t ∣=√3(1−t 2),解得 t =±√32. 所以点 P 的坐标是 (0,±√32). (3) 由(2)知,圆 P 的方程为x 2+(y −t )2=3(1−t 2).因为点 Q (x,y ) 在圆 P 上,所以y =t ±√3(1−t 2)−x 2≤t +√3(1−t 2).设 t =cosθ,θ∈(0,π),则t +√3(1−t 2)=cosθ+√3sinθ=2sin (θ+π6).当 θ=π3,即 t =12,且 x =0 时,y 取最大值 2.76. (1) 因为四边形 OABC 为菱形,所以 AC 与 OB 互相垂直平分. 所以可设 A (t,12),代入椭圆方程得t 24+14=1, 即t =±√3,所以∣AC ∣=2√3.(2) 假设四边形 OABC 为菱形.因为点 B 不是 W 的顶点,且 AC ⊥OB ,所以 k ≠0. 由{x 2+4y 2=4,y =kx +m,消去 y 并整理得(1+4k 2)x 2+8kmx +4m 2−4=0.设 A (x 1,y 1),C (x 2,y 2),则Δ=(8km )2−4(1+4k 2)(4m 2−4)=64k 2−16m 2+16>0,x 1+x 22=−4km1+4k 2, y 1+y 22=k ⋅x 1+x 22+m =m1+4k 2, 所以 AC 的中点为 M (−4km 1+4k2,m 1+4k 2).因为 M 为 AC 和 OB 的交点,且 m ≠0,k ≠0, 所以直线 OB 的斜率为 −14k.因为k ⋅(−14k)≠−1, 所以 AC 与 OB 不垂直,所以四边形 OABC 不是菱形,与假设矛盾, 所以当点 B 在 W 上且不是 W 的顶点时,四边形 OABC 不可能是菱形.77. 如图,点 A,B 在抛物线 y 2=4px 上,设 A (y A24p ,y A ),B (y B 24p ,y B ),OA,OB 的斜率分别为 k OA ,k OB .所以k OA =y A y A 24p=4p y A , k OB =4p y B . 由 OA ⊥OB ,得k OA ⋅k OB=16p 2y A y B=−1 ⋯⋯① 依点 A 在 AB 上,得直线 AB 方程(y A +y B )(y −y A )=4p (x −y A24p) ⋯⋯②由 OM ⊥AB ,得直线 OM 方程y =y A +y B−4px ⋯⋯③ 设点 M (x,y ),则 x,y 满足②、③两式,将②式两边同时乘 −x4p ,并利用③式整理得x 4py A 2+yy A −(x 2+y 2)=0 ⋯⋯④ 由③、④两式得−x4py A y B −(x 2+y 2)=0. 由①式知,y A y B =−16p 2, ∴ x 2+y 2−4px =0. 因为 A,B 是原点以外的两点,所以 x ≠0.所以 M 的轨迹是以 (2p,0) 为圆心,以 2p 为半径的圆,去掉坐标原点. 78. (1) 因为 AB 边所在直线的方程为 x −3y −6=0,且 AD 与 AB 垂直, 所以直线 AD 的斜率为 −3.又因为点 T (−1,1) 在直线 AD 上,所以 AD 边所在直线的方程为y −1=−3(x +1),即3x +y +2=0.(2) 由{x −3y −6=0,3x +y +2=0,解得点 A 的坐标为 (0,−2).因为矩形 ABCD 两条对角线的交点为 M (2,0). 所以 M 为矩形 ABCD 外接圆的圆心.又 ∣AM∣=2√2,从而矩形 ABCD 外接圆的方程为(x −2)2+y 2=8.(3) 因为动圆 P 过点 N ,所以 ∣PN∣ 是该圆的半径.。

十年真题(2010_2019)高考数学真题分类汇编专题01集合文(含解析)

十年真题(2010_2019)高考数学真题分类汇编专题01集合文(含解析)

专题01集合历年考题细目表历年高考真题汇编1.【2019年新课标1文科02】已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=()A.{1,6} B.{1,7} C.{6,7} D.{1,6,7}【解答】解:∵U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},∴∁U A={1,6,7},则B∩∁U A={6,7}故选:C.2.【2018年新课标1文科01】已知集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B=()A.{0,2} B.{1,2}C.{0} D.{﹣2,﹣1,0,1,2}【解答】解:集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B={0,2}.故选:A.3.【2017年新课标1文科01】已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x} B.A∩B=∅C.A∪B={x|x} D.A∪B=R【解答】解:∵集合A={x|x<2},B={x|3﹣2x>0}={x|x},∴A∩B={x|x},故A正确,B错误;A∪B={x||x<2},故C,D错误;故选:A.4.【2016年新课标1文科01】设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3} B.{3,5} C.{5,7} D.{1,7}【解答】解:集合A={1,3,5,7},B={x|2≤x≤5},则A∩B={3,5}.故选:B.5.【2015年新课标1文科01】已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4 C.3 D.2【解答】解:A={x|x=3n+2,n∈N}={2,5,8,11,14,17,…},则A∩B={8,14},故集合A∩B中元素的个数为2个,故选:D.6.【2014年新课标1文科01】已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)【解答】解:M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N={x|﹣1<x<1},故选:B.7.【2013年新课标1文科01】已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4} B.{2,3} C.{9,16} D.{1,2}【解答】解:根据题意得:x=1,4,9,16,即B={1,4,9,16},∵A={1,2,3,4},∴A∩B={1,4}.故选:A.8.【2012年新课标1文科01】已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅【解答】解:由题意可得,A={x|﹣1<x<2},∵B={x|﹣1<x<1},在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x∴B⊊A.故选:B.9.【2011年新课标1文科01】已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个【解答】解:∵M={0,1,2,3,4},N={1,3,5},∴P=M∩N={1,3}∴P的子集共有22=4故选:B.10.【2010年新课标1文科01】已知集合A={x||x|≤2,x∈R},B={x|4,x∈Z},则A∩B=()A.(0,2)B.[0,2] C.{0,2} D.{0,1,2}【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}B={x|4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则A∩B={0,1,2}故选:D.考题分析与复习建议本专题考查的知识点为:集合关系及其运算,历年考题主要以选择填空题型出现,重点考查的知识点为:交并补运算,预测明年本考点题目会比较稳定,备考方向以知识点交并补运算为重点较佳.最新高考模拟试题 1.若集合,,则AB =( )A .B .C .D .【答案】A 【解析】 解:,则,故选:A . 2.已知集合,,则AB =( )A .[2,3]B .(1,5)C .{}2,3D .{2,3,4}【答案】C 【解析】,,又,所以,故本题选C.3.已知集合,,则A B =( )A .B .{}1,0,1,2,3-C .{}3,2--D .【答案】B 【解析】因为,∴.4.已知全集U =R ,集合,则()U A B =ð( )A .(1,2)B .(]1,2 C .(1,3) D .(,2]-∞【答案】B 【解析】由24x >可得2x >,可得13x <<,所以集合,(,2]U A =-∞ð,所以()U A B =ð(]1,2,故选B.5.已知集合,集合,则集合A B ⋂的子集个数为( ) A .1 B .2C .3D .4【答案】D 【解析】由题意得,直线1y x =+与抛物线2y x =有2个交点,故A B ⋂的子集有4个. 6.已知集合,,则()R M N ⋂ð=( )A .{-1,0,1,2,3}B .{-1,0,1,2}C .{-1,0,1}D .{-1,3}【答案】D 【解析】 由题意,集合,则或3}x ≥又由,所以,故选D.7.已知集合,,则()R A B I ð=( )A .{}1,0-B .{}1,0,1-C .{}1,2,3D .{}2,3【答案】B 【解析】 因为,所以,又,所以.8.已知R 是实数集,集合,,则()AB =Rð( )A .{}1,0-B .{}1C .1,12⎡⎤⎢⎥⎣⎦D .1,2⎛⎫-∞ ⎪⎝⎭【答案】A 【解析】即故选A 。

十年高考真题分类汇编(2010-2019) 数学 专题01 集合 解析版

十年高考真题分类汇编(2010-2019)  数学 专题01 集合  解析版

十年高考真题分类汇编(2010—2019)数学专题01 集合1.(2019•全国1•理T1)已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N=( )A.{x|-4<x<3}B.{x|-4<x<-2}C.{x|-2<x<2}D.{x|2<x<3}【答案】C【解析】由题意得N={x|-2<x<3},则M∩N={x|-2<x<2},故选C.2.(2019•全国1•文T2)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=( )A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}【答案】C【解析】由已知得∁U A={1,6,7},∴B∩∁U A={6,7}.故选C.3.(2019•全国2•理T1)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=( )A.(-∞,1)B.(-2,1)C.(-3,-1)D.(3,+∞)【答案】A【解析】由题意,得A={x|x<2,或x>3},B={x|x<1},所以A∩B={x|x<1},故选A.4.(2019•全国2•文T1)已知集合A={x|x>-1},B={x|x<2},则A∩B=( )A.(-1,+∞)B.(-∞,2)C.(-1,2)D.⌀【答案】C【解析】由题意,得A∩B=(-1,2),故选C.5.(2019•全国3•T1)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=( )A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}【答案】A【解析】A={-1,0,1,2},B={x|-1≤x≤1},则A∩B={-1,0,1}.故选A.6.(2019•北京•文T1)已知集合A={x|-1<x<2},B={x|x>1},则A∪B=( )A.(-1,1)B.(1,2)C.(-1,+∞)D.(1,+∞)【答案】C【解析】∵A={x|-1<x<2},B={x|x>1},∴A∪B=(-1,+∞),故选C.7.(2019•天津•T1)设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=( )A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4}【答案】D【解析】A∩C={1,2},(A∩C)∪B={1,2,3,4},故选D.8.(2019•浙江•T1)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁U A)∩B=( )A.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}【答案】A【解析】∁U A={-1,3},则(∁U A)∩B={-1}.9.(2018•全国1•理T2)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}【答案】B【解析】A={x|x<-1或x>2},所以∁R A={x|-1≤x≤2}.10.(2018•全国1•文T1)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=( )A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}【答案】A【解析】由交集定义知A∩B={0,2}.11.(2018•全国2•文T2,)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( )A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}【答案】C【解析】集合A、B的公共元素为3,5,故A∩B={3,5}.12.(2018•全国3•T1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}【答案】C【解析】由题意得A={x|x≥1},B={0,1,2},∴A∩B={1,2}.13.(2018•北京•T1)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=( )A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}【答案】A【解析】∵A={x|-2<x<2},B={-2,0,1,2},∴A∩B={0,1}.14.(2018•天津•理T1)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=( )A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}【答案】B【解析】∁R B={x|x<1},A∩(∁R B)={x|0<x<1}.故选B.15.(2018•天津•文T1)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( )A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}【答案】C【解析】A∪B={-1,0,1,2,3,4}.又C={x∈R|-1≤x<2},∴(A∪B)∩C={-1,0,1}.16.(2018•浙江•T1)已知全集U={1,2,3,4,5},A={1,3},则∁U A=( )A.⌀B.{1,3}C.{2,4,5}D.{1,2,3,4,5}【答案】C【解析】∵A={1,3},U={1,2,3,4,5},∴∁U A={2,4,5},故选C.17.(2018•全国2•理T2,)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9B.8C.5D.4【答案】A【解析】满足条件的元素有(-1,-1),(-1,0),(-1,1),(0,1),(0,0),(0,-1),(1,-1),(1,0),(1,1),共9个。

十年真题(2010-近年)高考数学真题分类汇编专题01集合理(含解析)(最新整理)

十年真题(2010-近年)高考数学真题分类汇编专题01集合理(含解析)(最新整理)

专题01集合1.【2019年新课标1理科01】已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N =()A.{x|﹣4<x<3} B.{x|﹣4<x<﹣2} C.{x|﹣2<x<2}D.{x|2<x<3}【解答】解:∵M={x|﹣4<x<2},N={x|x2﹣x﹣6<0}={x|﹣2<x<3},∴M∩N={x|﹣2<x<2}.故选:C.2.【2018年新课标1理科02】已知集合A={x|x2﹣x﹣2>0},则∁R A=() A.{x|﹣1<x<2} B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}【解答】解:集合A={x|x2﹣x﹣2>0},可得A={x|x<﹣1或x>2},则:∁R A={x|﹣1≤x≤2}.故选:B.3.【2017年新课标1理科01】已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1} D.A∩B=∅【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.4.【2016年新课标1理科01】设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B =()A.(﹣3,)B.(﹣3,)C.(1,)D.(,3)【解答】解:∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D.5.【2014年新课标1理科01】已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A ∩B=()A.[1,2)B.[﹣1,1] C.[﹣1,2) D.[﹣2,﹣1]【解答】解:由A中不等式变形得:(x﹣3)(x+1)≥0,解得:x≥3或x≤﹣1,即A=(﹣∞,﹣1]∪[3,+∞),∵B=[﹣2,2),∴A∩B=[﹣2,﹣1].故选:D.6.【2013年新课标1理科01】已知集合A={x|x2﹣2x>0},B={x|x},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x或x<0},A∪B=R,7.【2012年新课标1理科01】已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()A.3 B.6 C.8 D.10【解答】解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,x=2时,y=1综上知,B中的元素个数为10个故选:D.8.【2010年新课标1理科01】已知集合A={x∈R||x|≤2}},,则A ∩B=()A.(0,2) B.[0,2] C.{0,2} D.{0,1,2}【解答】解:A={x∈R||x|≤2,}={x∈R|﹣2≤x≤2},故A∩B={0,1,2}.应选D.本专题考查的知识点为:集合关系及其运算,历年考题主要以选择填空题型出现,重点考查的知识点为:交并补运算,预测明年本考点题目会比较稳定,备考方向以知识点交并补运算为重点较佳.1.若集合{}5|2A x x =-<<,{}|||3B x x =<,则A B =( ) A .{}|32x x -<< B .{}|52x x -<< C .{}|33x x -<< D .{}|53x x -<<【答案】A 【解析】解:{}{}333||B x x x x =<=-<<, 则{}|32A B x x ⋂=-<<, 故选:A .2.已知集合2{|560}A x x x =-+≤,{|15}B x Z x =∈<<,则A B =( ) A .[2,3] B .(1,5)C .{}2,3D .{2,3,4}【答案】C 【解析】2560(2)(3)023x x x x x -+≤⇒--≤⇒≤≤,{}23A x x ∴=≤≤,又{}{|15}2,3,4B x Z x =∈<<=,所以{}2,3A B ⋂=,故本题选C.3.已知集合{3,2,1,0,1,2,3}A =---,{}2|450B x x x =∈--≤R ,则A B =( )A .{3,2,1,0}---B .{}1,0,1,2,3-C .{}3,2--D .{}3,2,1,0,1,2,3---【答案】B【解析】因为{}2|450B x x x =∈--≤R {|15}x x =-≤≤,{3,2,1,0,1,2,3}A =---∴{}1,0,1,2,3A B ⋂=-. 故选B . 4.已知全集U =R,集合{}|24,{|(1)(3)0}xA xB x x x =>=--<,则()U A B =( )A .(1,2)B .(]1,2C .(1,3)D .(,2]-∞【答案】B 【解析】由24x >可得2x >, (1)(3)0x x --<可得13x <<,所以集合(2,),(1,3)A B =+∞=,(,2]U A =-∞,所以()U A B =(]1,2,故选B 。

2010年北京高考文科数学试题及答案

2010年北京高考文科数学试题及答案

2010年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷分第Ⅰ卷和第Ⅱ卷两部分。

第Ⅰ卷1至2页、第Ⅱ卷3至5页,共150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效,考试结束后,将本试卷和答题卡。

第Ⅰ卷(选择题 共140分)一、 本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

⑴ 集合2{03},{9}P x Z x M x Z x =∈≤<=∈≤,则P M I =(A) {1,2} (B) {0,1,2} (C){1,2,3} (D){0,1,2,3}⑵在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是(A )4+8i (B)8+2i (C )2+4i (D)4+i⑶从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b>a 的概率是(A )45 (B)35 (C )25 (D)15⑷若a,b 是非零向量,且a b ⊥,a b ≠,则函数()()()f x xa b xb a =+⋅-是(A )一次函数且是奇函数 (B )一次函数但不是奇函数(C )二次函数且是偶函数 (D )二次函数但不是偶函数(5)一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如右图所示,则该集合体的俯视图为:(6)给定函数①12y x =,②12log (1)y x =+,③|1|y x =-,④12x y +=,期中在区间(0,1)上单调递减的函数序号是(A )①② (B )②③ (C )③④ (D )①④(7)某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为(A )2sin 2cos 2αα-+; (B )sin 3αα+(C )3sin 1αα+ (D )2sin cos 1αα-+(8)如图,正方体1111ABCD-A B C D 的棱长为2,动点E 、F 在棱11A B 上。

2010年全国各地高考文科数学试题汇编汇总北京

2010年全国各地高考文科数学试题汇编汇总北京

绝密 使用完毕前2010年全国各地高考数学试题之数学(文)(北京卷)本试卷分第Ⅰ卷和第Ⅱ卷两部分。

第Ⅰ卷1至2页、第Ⅱ卷3至5页,共150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效,考试结束后,将本试卷和答题卡。

第Ⅰ卷(选择题 共140分)一、 本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

⑴ 集合2{03},{9}P x Z x M x Z x =∈≤<=∈≤,则P M I =(A) {1,2} (B) {0,1,2} (C){1,2,3} (D){0,1,2,3} ⑵在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是(A)4+8i (B)8+2i (C)2+4i (D)4+i⑶从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a 的概率是 (A)45 (B)35 (C)25 (D)15⑷若a,b 是非零向量,且a b ⊥,a b ≠,则函数()()()f x xa b xb a =+⋅-是 (A)一次函数且是奇函数 (B)一次函数但不是奇函数(C)二次函数且是偶函数 (D)二次函数但不是偶函数(5)一个长方体去掉一个小长方体,所得几何体的 正视图与侧(左)视图分别如右图所示,则该集合体 的俯视图为:(6)给定函数①12y x =,②12log (1)y x =+,③|1|y x =-,④12x y +=,期中在区间(0,1)上单调递减的函数序号是(A)①② (B)②③ (C)③④ (D)①④(7)某班设计了一个八边形的班徽(如图),它由腰长为1, 顶角为α的四个等腰三角形,及其底边构成的正方形所组成, 该八边形的面积为(A)2sin 2cos 2αα-+; (B)sin 3αα+(C)3sin 1αα+ (D)2sin cos 1αα-+(8)如图,正方体1111ABCD-A B C D 的棱长为2, 动点E 、F 在棱11A B 上。

十年高考真题分类汇编(2010-2019) 数学 专题01 集合

十年高考真题分类汇编(2010-2019)  数学 专题01 集合

十年高考真题分类汇编(2010—2019)数学专题01 集合1.(2019•全国1•理T1)已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N=( )A.{x|-4<x<3}B.{x|-4<x<-2}C.{x|-2<x<2}D.{x|2<x<3}【答案】C【解析】由题意得N={x|-2<x<3},则M∩N={x|-2<x<2},故选C.2.(2019•全国1•文T2)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=( )A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}【答案】C【解析】由已知得∁U A={1,6,7},∴B∩∁U A={6,7}.故选C.3.(2019•全国2•理T1)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=( )A.(-∞,1)B.(-2,1)C.(-3,-1)D.(3,+∞)【答案】A【解析】由题意,得A={x|x<2,或x>3},B={x|x<1},所以A∩B={x|x<1},故选A.4.(2019•全国2•文T1)已知集合A={x|x>-1},B={x|x<2},则A∩B=( )A.(-1,+∞)B.(-∞,2)C.(-1,2)D.⌀【答案】C【解析】由题意,得A∩B=(-1,2),故选C.5.(2019•全国3•T1)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=( )A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}【答案】A【解析】A={-1,0,1,2},B={x|-1≤x≤1},则A∩B={-1,0,1}.故选A.6.(2019•北京•文T1)已知集合A={x|-1<x<2},B={x|x>1},则A∪B=( )A.(-1,1)B.(1,2)C.(-1,+∞)D.(1,+∞)【答案】C【解析】∵A={x|-1<x<2},B={x|x>1},∴A∪B=(-1,+∞),故选C.7.(2019•天津•T1)设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=( )A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4}【答案】D【解析】A∩C={1,2},(A∩C)∪B={1,2,3,4},故选D.8.(2019•浙江•T1)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁U A)∩B=( )A.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}【答案】A【解析】∁U A={-1,3},则(∁U A)∩B={-1}.9.(2018•全国1•理T2)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}【答案】B【解析】A={x|x<-1或x>2},所以∁R A={x|-1≤x≤2}.10.(2018•全国1•文T1)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=( )A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}【答案】A【解析】由交集定义知A∩B={0,2}.11.(2018•全国2•文T2,)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( )A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}【答案】C【解析】集合A、B的公共元素为3,5,故A∩B={3,5}.12.(2018•全国3•T1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}【答案】C【解析】由题意得A={x|x≥1},B={0,1,2},∴A∩B={1,2}.13.(2018•北京•T1)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=( )A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}【答案】A【解析】∵A={x|-2<x<2},B={-2,0,1,2},∴A∩B={0,1}.14.(2018•天津•理T1)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=( )A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}【答案】B【解析】∁R B={x|x<1},A∩(∁R B)={x|0<x<1}.故选B.15.(2018•天津•文T1)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( )A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}【答案】C【解析】A∪B={-1,0,1,2,3,4}.又C={x∈R|-1≤x<2},∴(A∪B)∩C={-1,0,1}.16.(2018•浙江•T1)已知全集U={1,2,3,4,5},A={1,3},则∁U A=( )A.⌀B.{1,3}C.{2,4,5}D.{1,2,3,4,5}【答案】C【解析】∵A={1,3},U={1,2,3,4,5},∴∁U A={2,4,5},故选C.17.(2018•全国2•理T2,)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9B.8C.5D.4【答案】A【解析】满足条件的元素有(-1,-1),(-1,0),(-1,1),(0,1),(0,0),(0,-1),(1,-1),(1,0),(1,1),共9个。

2010年普通高等学校招生全国统一考试(北京卷)数学试题 (文科)(详解版)

2010年普通高等学校招生全国统一考试(北京卷)数学试题 (文科)(详解版)

2010年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷分第Ⅰ卷和第Ⅱ卷两部分。

第Ⅰ卷1至2页、第Ⅱ卷3至5页,共150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效,考试结束后,将本试卷和答题卡。

第Ⅰ卷(选择题 共140分)一、 本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

⑴ 集合2{03},{9}P x Z x M x Z x =∈≤<=∈≤,则P M =( )(A) {1,2} (B) {0,1,2} (C){1,2,3} (D){0,1,2,3}解析:{}0,1,2P =,[]3,3M =-,因此P M ={}0,1,2⑵在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是( )(A )4+8i (B)8+2i (C )2+4i (D)4+i解:点A (6,5)与B (-2,3)的中点C 的坐标为(2,4),所以答C.⑶从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b>a 的概率是( )(A )45 (B)35 (C )25(D)15 解:总的等可能事件有15种,其中满足b>a 的有三种(1,2),(1,3),(2,3) 所以所求事件的概率为51153=,故答D⑷若a ,b 是非零向量,a ⊥b ,a b ≠,则函数()()()f x xa b xb a =+⋅-是( )(A )一次函数且是奇函数 (B )一次函数但不是奇函数(C )二次函数且是偶函数 (D )二次函数但不是偶函数解析:222()()()()()f x xa b xb a a b x b a x a b =+-=⋅+--⋅,如a ⊥b ,则有0a b ⋅=,如果同时有a b ≠,则函数()()()f x xa b xb a =+⋅-是一次函数,且为奇函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
1
﹣0.8
0.1
﹣0.3
﹣1
(2)设数表 A 形如
1
1
﹣1﹣2d
d
d
﹣1
其中﹣1≤d≤0.求 k(A)的最大值;
(Ⅲ)对所有满足性质 P 的 2 行 3 列的数表 A,求 k(A)的最大值.
【解答】解:(1)因为 r1(A)=1.2,r2(A)=﹣1.2,c1(A)=1.1,c2(A)=0.7,c3(A)=﹣1.8, 所以 k(A)=0.7
A.x | 3 x 2
B.x | 5 x 2
C.x | 3 x 3
【答案】A 【解析】
解: B x | x 3 x | 3 x 3 ,
D.x | 5 x 3
则 A B x | 3 x 2,
故选:A.
2.已知集合 A {x | x2 5x 6 0}, B {x Z |1 x 5} ,则 A B ( )
∴A∩B={x|2<x<3}.
故选:C.
6.【2015 年北京文科 01】若集合 A={x|﹣5<x<2},B={x|﹣3<x<3},则 A∩B=(

A.{x|﹣3<x<2}
B.{x|﹣5<x<2} C.{x|﹣3<x<3} D.{x|﹣5<x<3}
【解答】解:集合 A={x|﹣5<x<2},B={x|﹣3<x<3},
A {3, 2, 1, 0,1, 2,3}
∴ A B 1,0,1,2,3 .
故选 B.
4.已知全集U R ,集合 A x | 2x 4 , B {x | (x 1)(x 3) 0} ,则 U A B ( )
历年考题细目表
题型
年份
单选题 单选题 单选题 单选题 单选题 单选题 单选题 单选题 单选题 单选题 单选题 解答题 解答题
2019 2018 2018 2017 2016 2015 2014 2013 2012 2011 2010 2012 2010
历年高考真题汇编
考点
交并补运算 交并补运算 交并补运算 交并补运算 交并补运算 交并补运算 交并补运算 交并补运算 交并补运算 交并补运算 交并补运算 集合综合问题 集合综合问题
(2)r1(A)=1﹣2d,r2(A)=﹣1+2d,c1(A)=c2(A)=1+d,c3(A)=﹣2﹣2d 因为﹣1≤d≤0,
所以|r1(A)|=|r2(A)|≥1+d≥0,|c3(A)|≥1+d≥0 所以 k(A)=1+d≤1
当 d=0 时,k(A)取得最大值 1
(III)任给满足性质 P 的数表 A(如下所示)
因为 ai,bi∈{0,1},所以|ai﹣bi|∈{0,1}(i=1,2,n)
从而 A﹣B=(|a1﹣b1|,|a2﹣b2|,…,|an﹣bn|)∈Sn
由题意知 ai,bi,ci∈{0,1}(i=1,2,n)
当 ci=0 时,||ai﹣ci|﹣|bi﹣ci||=|ai﹣bi|
当 ci=1 时,||ai﹣ci|﹣|bi﹣ci||=|(1﹣ai)﹣(1﹣bi)|=|ai﹣bi|
x+y>4,x+y≤2},显然(2,1)不满足,﹣x+y>4,x+y≤2,所以 A 不正确;
当 a=4,集合 A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,4x+y>4,x﹣4y≤2},
显然(2,1)在可行域内,满足不等式,所以 B 不正确;
当 a=1,集合 A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,x+y>4,x﹣y≤2},
故选:C.
8.【2013 年北京文科 01】已知集合 A={﹣1,0,1},B={x|﹣1≤x<1},则 A∩B=(

A.{0}
B.{﹣1,0}
C.{0,1}
D.{﹣1,0,1}
【解答】解:∵A={﹣1,0,1},B={x|﹣1≤x<1},
∴A∩B={﹣1,0}.
故选:B.
9.【2012 年北京文科 01】已知集合 A={x∈R|3x+2>0},B={x∈R|(x+1)(x﹣3)>0},则 A∩B=(
本专题考查的知识点为:集合关系及其运算,历年考题主要以选择填空或解答题题型出现,重点考查的知 识点为:交并补运算,集合综合问题,预测明年本考点题目会比较稳定,备考方向以知识点交并补运算为 重点较佳.
最新高考模拟试题
1.若集合 A x | 5 x 2, B x || x | 3 ,则 A B ( )
a+b﹣f≤3
所以 k(A)≤1
由(2)可知,存在满足性质 P 的数表 A 使 k(A)=1,故 k(A)的最大值为 1.
13.【2010 年北京文科 20】已知集合 Sn={X|X=(x1,x2,…,xn),xi∈{0,1},i=1,2,…,n}(n≥2)
对于 A=(a1,a2,…an,),B=(b1,b2,…bn,)∈Sn,定义 A 与 B 的差为 A﹣B=(|a1﹣b1|,|a2﹣b2|,…,
a
b
c
d
e
f
满足性质 P:a,b,c,d,e,f∈[﹣1,1],且 a+b+c+d+e+f=0. 记 ri(A)为 A 的第 i 行各数之和(i=1,2),∁j(A)为 A 的第 j 列各数之和(j=1,2,3);记 k(A)为 |r1(A)|,|r2(A)|,|c1(A)|,|c2(A)|,|c3(A)|中的最小值. (1)对如下数表 A,求 k(A)的值
则 A∩B={x|﹣3<x<2}.
故选:A.
7.【2014 年北京文科 01】若集合 A={0,1,2,4},B={1,2,3},则 A∩B=(

A.{0,1,2,3,4} B.{0,4}
C.{1,2}
D.{3}
【解答】解:∵A={0,1,2,4},B={1,2,3},
∴A∩B={0,1,2,4}∩{1,2,3}={1,2}.
3.已知集合 A {3, 2, 1, 0,1, 2,3}, B x R | x2 4x 5 0 ,则 A B ( )
A.{3, 2, 1, 0}
B.1,0,1, 2,3
C. 3, 2
D.3, 2, 1,0,1, 2,3
【答案】B 【解析】
因为 B x R | x2 4x 5 0 {x | 1 x 5},
试题位置
2019 年北京文科 01 2018 年北京文科 01 2018 年北京文科 08 2017 年北京文科 01 2016 年北京文科 01 2015 年北京文科 01 2014 年北京文科 01 2013 年北京文科 01 2012 年北京文科 01 2011 年北京文科 01 2010 年北京文科 01 2012 年北京文科 20 2010 年北京文科 20
则 A∩B={0,1},
故选:A.
3.【2018 年北京文科 08】设集合 A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则(

A.对任意实数 a,(2,1)∈A
B.对任意实数 a,(2,1)∉A C.当且仅当 a<0 时,(2,1)∉A
D.当且仅当 a 时,(2,1)∉A
【解答】解:当 a=﹣1 时,集合 A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,﹣
|an﹣bn|);
A 与 B 之间的距离为

(Ⅰ)当 n=5 时,设 A=(0,1,0,0,1),B=(1,1,1,0,0),求 d(A,B);
(Ⅱ)证明:∀ A,B,C∈Sn,有 A﹣B∈Sn,且 d(A﹣C,B﹣C)=d(A,B);
(Ⅲ)证明:∀ A,B,C∈Sn,d(A,B),d(A,C),d(B,C)三个数中至少有一个是偶数.
显然(2,1)∉A,所以当且仅当 a<0 错误,所以 C 不正确;
故选:D.
4.【2017 年北京文科 01】已知全集 U=R,集合 A={x|x<﹣2 或 x>2},则∁UA=(

A.(﹣2,2)
B.(﹣∞,﹣2)∪(2,+∞)
C.[﹣2,2]
D.(﹣∞,﹣2]∪[2,+∞)
【解答】解:∵集合 A={x|x<﹣2 或 x>2}=(﹣∞,﹣2)∪(2,+∞),全集 U=R,
a
b
c
d
e
f
任意改变 A 三维行次序或列次序,或把 A 中的每个数换成它的相反数,所得数表 A*仍满足性质 P,并且 k(A)
=k(A*)
因此,不防设 r1(A)≥0,c1(A)≥0,c2(A)≥0,
由 k(A)的定义知,k(A)≤r1(A),k(A)≤c1(A),k(A)≤c2(A),
从而 3k(A)≤r1(A)+c1(A)+c2(A)=(a+b+c)+(a+d)+(b+e)=(a+b+c+d+e+f)+(a+b﹣f)=

A.(﹣∞,﹣1)
B.(﹣1, )
C.( ,3)
D.(3,+∞)
【解答】解:因为 B={x∈R|(x+1பைடு நூலகம்(x﹣3)>0}={x|x<﹣1 或 x>3},
又集合 A={x∈R|3x+2>0}={x|x
},
所以 A∩B={x|x
}∩{x|x<﹣1 或 x>3}={x|x>3},
故选:D.
10.【2011 年北京文科 01】已知全集 U=R,集合 P={x|x2≤1},那么∁UP=(
∴A∪B={x|﹣1<x<2}∪{x|x>1}=(﹣1,+∞).
故选:C.
相关文档
最新文档