整数指数幂
1523整数指数幂教案

1523整数指数幂教案一、教学目标:1.知识目标:掌握整数指数幂的定义和性质,熟练运用整数指数幂的运算法则;2.技能目标:能够解决与整数指数幂相关的实际问题;3.情感目标:培养学生的逻辑思维和数学推理能力。
二、教学内容:1.整数指数幂的定义;2.整数指数幂的运算法则;3.整数指数幂实际问题的解决。
三、教学过程:Step 1:导入新知教师通过提出一个问题引起学生的思考:“如果我们想算108的值,要如何计算?”引导学生思考,探讨怎样才能简便地计算这个数。
Step 2:整数指数幂的定义与性质1. 整数指数幂的定义:如果a是一个实数,n是一个正整数,那么a 的n次幂表示a相乘n次,记作an。
2.整数指数幂的性质:a)a^0=1,其中a≠0;b)a^m*a^n=a^(m+n),其中a≠0;c) (a^m)^n = a^(mn),其中a≠0;d) (ab)^m = a^m * b^m,其中a、b≠0;e)(a/b)^m=a^m/b^m,其中a≠0,b≠0。
Step 3:整数指数幂的运算法则1.a^m*a^n=a^(m+n),其中a≠0;2. a^m * b^m = (ab)^m,其中a、b≠0;3. (a^m)^n = a^(mn),其中a≠0;4.a^m/a^n=a^(m-n),其中a≠0;5.(a/b)^m=a^m/b^m,其中a≠0,b≠0。
Step 4:整数指数幂的实际问题教师提出一些与整数指数幂相关的实际问题,如计算一些物体的体积、面积、重量等。
学生通过运用整数指数幂的运算法则解决这些问题,培养他们的应用能力。
Step 5:巩固与拓展学生进行练习,包括计算整数指数幂的值和解决实际问题。
可以设置一些思考题,如“-2^3等于多少?”“0的任何正整数次幂等于多少?”,以检验学生是否理解了整数指数幂的定义和性质。
四、教学反思整数指数幂是数学中的重要概念,对于培养学生的逻辑思维和数学推理能力具有重要意义。
在教学过程中,应该注重引导学生进行思考和探索,通过实际问题的解决来加深对整数指数幂的理解。
有理数指数幂知识点

有理数指数幂知识点一、有理数指数幂的概念。
1. 正整数指数幂。
- 定义:对于a∈ R,n∈ N^*,a^n=⏟a× a×·s× a_n个a。
例如2^3 = 2×2×2 = 8。
2. 零指数幂。
- 规定:a^0 = 1(a≠0)。
这是因为当a≠0时,a^m÷ a^m=a^m - m=a^0,而a^m÷a^m = 1。
3. 负整数指数幂。
- 定义:a^-n=(1)/(a^n)(a≠0,n∈ N^*)。
例如2^-3=(1)/(2^3)=(1)/(8)。
4. 分数指数幂。
- 正分数指数幂:a^(m)/(n)=sqrt[n]{a^m}(a≥slant0,m,n∈ N^*,n > 1)。
例如4^(3)/(2)=√(4^3)=√(64) = 8。
- 负分数指数幂:a^-(m)/(n)=(1)/(a^frac{m){n}}=(1)/(sqrt[n]{a^m)}(a > 0,m,n∈N^*,n > 1)。
例如8^-(2)/(3)=(1)/(8^frac{2){3}}=(1)/(sqrt[3]{8^2)}=(1)/(4)。
二、有理数指数幂的运算性质。
1. 同底数幂相乘。
- a^m· a^n=a^m + n(a>0,m,n∈ Q)。
例如2^(1)/(2)×2^(1)/(3)=2^(1)/(2)+(1)/(3)=2^(3 + 2)/(6)=2^(5)/(6)。
2. 同底数幂相除。
- a^m÷ a^n=a^m - n(a>0,m,n∈ Q)。
例如3^(3)/(2)÷3^(1)/(2)=3^(3)/(2)-(1)/(2)=3^1 = 3。
3. 幂的乘方。
- (a^m)^n=a^mn(a>0,m,n∈ Q)。
例如(2^(2)/(3))^3=2^(2)/(3)×3=2^2 = 4。
指数幂运算.3.3 整数指数幂的运算法则

②ห้องสมุดไป่ตู้
(ab)n=anbn(a≠0,b≠0,n是整数).
③
实际上,对于a≠0,m,n是整数,有
a m = a m · a -n = a m+(-n) = a m-n . bn
因此,同底数幂相除的运算法则被包含在公式①中.
am ·an=am+n(a≠0,m,n都是整数)
而对于a≠0, b≠0, n是整数,有
a b
n
=(a· b )
-1 n
= a · ( b ) =a
n
-1 n
n
·
b
-n
n a = n. b
因此,分式的乘方的运算法则被包含 在公式③中.
(ab)n=anbn(a≠0,b≠0,n是整数) ③
典例解析
例1
设a≠0,b≠0,计算下列各式 (1)a7 ·a-3; (2)(a-3)-2;
-1 4 5 x y ; (1) 4x2 y
3 5 y 答案: 3 . 4x
(2) y 4 3x
-2
-3
.
答案: 27 x12 y 6.
课堂小结
通过这节课的学习活动, 你有什么收获?
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
我们全都要从前辈和同辈学习到一些 东西。就连最大的天才,如果想单凭他 所特有的内在自我去对付一切,他也决 不会有多大成就。 —— 歌德
2 x (2) y .
-3
3 y -2 2 x 解 (1) 3 x -1 y
= 2 x 3-(-1)y -2-1 3
= 2 x 4 y -3 3
人教版八年级上册15.2.3整数指数幂(教案)

同时,我也发现部分学生在解决实际问题时,仍然存在不知道如何运用整数指数幂的问题。针对这一情况,我计划在接下来的课程中,增加一些综合性的练习题,让学生在解决实际问题的过程中,逐步掌握运用整数指数幂的方法。
举例:讲解同底数幂相乘法则时,以2^3 × 2^4为例,强调指数相加的概念,确保学生理解并掌握ቤተ መጻሕፍቲ ባይዱ一运算规则。
2.教学难点
-理解并运用幂的乘方、积的乘方性质,尤其是指数的变化规律。具体难点包括:
-幂的乘方:(a^m)^n = a^(m×n);
-积的乘方:(ab)^n = a^n × b^n。
-将实际问题抽象为指数幂问题,利用指数幂的性质和运算规则解决问题。
-鼓励学生互相交流、讨论,共同解决难点问题,提高学生的合作能力;
-对学生在学习过程中遇到的共性问题进行归纳总结,进行针对性的讲解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《整数指数幂》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算非常大或非常小的数字的情况?”(如:科学记数法表示的较大或较小数值)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索整数指数幂的奥秘。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,用纸牌模拟幂的乘方过程,让学生直观地理解指数的概念。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
整数指数幂的运算性质

正数的奇次方根为正数
负数的奇次方根为负数 正数的偶次方根有两个
2. 根式的性质
3.实数指数幂运算性质
实数指数幂的运算性质:
设m R, n R
a a a
m n
m n
n
mn
(a ) a
mn
(ab) a b
n
n
a=0,b=0时,m或n不是正实数时,无 意义.
口答:
1的平方根 27的立方根 -27的立方根
1
3
-3
81的4次方根
3
口答:
5
32 = -2
3
a a
6
2
4
4
16 = 2
(2) = 2
4
( a) a
n n
当n为奇数时,a a 当n为偶数时,
n n
n
a , a 0 n a a, a 0
例1、判断下列语句是否正确: ⑴-2是16的四次方根; ⑵正数的n次方根有两个;
整数指数幂的运算性质:
设m Z, n Z
a a a
m n
m n
n
m n
(a ) a
mn
(ab) a b
n
n
a=0时,m或n不是正实数时,无意 义.
思考:
整数指数幂能否扩展成有理 数指数幂?
一. 根式 平方根: 若一个数的平方为a,则
这个数叫做a的平方根.
立方根: 若一个数的立方为a,则 这个数叫做a的立方根. n次方根: 若一个数的n次方为a,则 这个数叫做a的n次方根.
1 例2, a 经 过 计 算 可 得 : a A) a , C) a, B) a , D) a
15.2.5整数指数幂的运算

【思路点拨】根据整数指数幂的运算法则计
算,结果化为整式或分式.
解:(1)(2a3b-2)-3(a-2b3)2 =2-3·(a3)-3·(b-2)-3·(a-2)2·(b3)2
1 a b a 2 1 a b 8
9 6 3
4
b
6
1 3
12
b 8a
12
13
解: (2)4xy2z÷(-2x-2yz-1) =[4÷(-2)]·x1-(-2)·y2-1·z1-(-1)
15.2.3整数指数幂
学习目标
1.理解并掌握整数指数幂的运算性质及科学记数法,会运用
整数指数幂的运算性质进行有关计算,.
2.懂得运用类比数学思想方法学习数学.
3.五个正整数指数幂的运算性质统一为三个整数指数幂的
运算性质.能熟练运用整数指数幂的运算性质进行计算.
学习重点
1.整数指数幂的运算性质并运用其进行计算. 2.科学记数法.
又∵1mm2=10-6m2 ∴每一个这样的元件约占: 9×10-7×10-6=9×10-13(m2).
智能抢答
-0.00028 用 科 学 记 数 法 表 示
为:-0.28×10-3正确吗?
答:不正确. ∵-0.000 28 用科学记数法
表示为:-2.8×10-4.
思维点拨 思维点拨
写出科学记数法的原数 已知N=a×10n(1≤|a|<10,n为整数) 1.当n>0时,原数N等于把a的小数点向右移动 n位得到的数,位数不够时用0补上. 2.当n<0时,原数N等于把a的小数点向左移动 n位所得的数,位数不够时用0补上.
a -b 例4.计算 (1) -1 -1 . a -b
(2)(m+n)-5·(2m-n)3÷(m+n)-2.
1.3 整数指数幂

(2)3 1 1 (2)3 8
5、用小数表示下列各数: ①10- 4; ② 1.6×10-3; ③2.1×10-5; ④-3.2×10- 6、计算:
(1)a2×a-3;(2)(a×b)-3;(3)(a-3)2。
7、计算下列各式,并把结果化为只含有正整数指 数幂的形式:
(1)(a-3)2(ab2)-3; (2)(2mn2)-2(m-2n-
=(
1 a
)n(a≠0,n为正整数)
特别地,a-1 =
1 a
(a≠0)
例如:33÷35=3-2=312
=
1
9
a4÷a6=a-2
1
=a2
例1 计算:
2-3
10-2 (-2)-4
-2-4
( 21 ) -3
(
2 3
)-2
58÷58
(
1 3
)
0×10-1
(a-1)2÷(a-1)2(a≠1)
例2 把下列各式写成分式:
2
0
=
1
,
3
100=1, x0=1(x≠0)
动脑筋 设a≠0,n是正整数,试问:a-n等于什么?
分析
如果想把公式
am an =
am-n
推广到m<n的情
形,那么就会有
a-n=
a0-n=
a0 an
=
1 an
这启发我们规定
n
a-n =
1 an
(a≠0,n为正整数)
由于
1 an
1 = a
因此
a-n
2.已知3m=2, 9n=10, 求33m-2n 的值
解: 33m-2n =33m÷32n=(3m)3÷(32)n=(3m)3÷9n =23÷10=8÷10=0.8
初中数学整数指数幂的运算要点

初中数学整数指数幂的运算要点.docx 初中数学整数指数幂的运算要点本文主要介绍了初中数学中整数指数幂的运算要点。
整数指数幂是数学运算中常见的概念,理解和掌握其运算规律对于初中生研究数学非常重要。
1. 什么是整数指数幂整数指数幂是指将一个数字以整数作为指数进行幂运算的结果。
例如,2^3,表示将数字2连乘3次,即2 × 2 × 2,结果为8。
在这个例子中,2是底数,3是指数,8是幂。
2. 同底数幂的运算规律当进行同底数的幂运算时,需要注意以下规律:- 同底数幂相乘:m^n × m^k = m^(n+k)。
例如,2^3 × 2^4 =2^(3+4) = 2^7。
- 同底数幂相除:m^n ÷ m^k = m^(n-k)。
例如,2^5 ÷ 2^2 =2^(5-2) = 2^3。
- 幂的分配律:m^n × p^n = (m × p)^n。
例如,2^3 × 3^3 = (2 ×3)^3 = 6^3。
3. 幂的乘法法则当进行多个幂相乘的运算时,可以使用幂的乘法法则,规则如下:- 幂的乘法:(m^n)^k = m^(n × k)。
例如,(2^3)^2 = 2^(3 × 2) = 2^6。
4. 幂的除法法则当进行幂的除法运算时,可以使用幂的除法法则,规则如下:- 幂的除法:(m^n) ÷ (m^k) = m^(n-k)。
例如,(2^5) ÷ (2^2) = 2^(5-2) = 2^3。
5. 幂的负指数当幂的指数为负数时,需要特别注意:- m^(-n) = 1/(m^n)。
例如,2^(-3) = 1/(2^3) = 1/8。
6. 幂的0次方任何数的0次方都等于1,即m^0 = 1。
以上是初中数学整数指数幂的运算要点介绍。
掌握这些运算规律能够帮助学生更好地理解和解决相关数学问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a2÷a6=
a2 a6
=
a2 a2 ga4
=
1 a4
a4 1 a4
知识要点
负指数的意义
一般地,当n是正整数时,
an
1 an
(a
0)
这就是说:a-n(a≠0)是an的倒数.
n是正整数时, a-n属于分式.并且
例如:
a 2
an
1 a2
a
a
n
a
(a≠0)
5 1 a5
引入负整数指数幂后,指数的取值范围就扩大到 全体整数.
0.000 000 000 52=__5_.2_×__1_0_-_10__, 0.000 000 48=__4_.8_×__1_0_-_7 __,
0.000 000……001=_1_0__(_m__1_)__,
m个0
【例3】纳米(符号为nm)是长度单位,原称 毫微米,就是10-9米(10亿分之一米),即10-6毫米 (100万分之一毫米).如同厘米、分米和米一样, 是长度的度量单位.相当于4倍原子大小,比单个细 菌的长度还要小.单个细菌用肉眼是根本看不到的, 用显微镜测直径大约是五微米.
a 23b24
b24 a 23
【例2】下列等式是否正确?为什么?
(1)a5
a4
a5
a
4
;(2)
a b
6
a6b6 .
解: (1)Q a5 a4 a54 a54 a5 a4
a5 a4 a5 a4
(2)Q
a b
6
a6 b6
a6
1 b6
a 6 b 6
a b
6
a 6 b 6
下列等式是否成立?并说明理由.
3.积的乘方: ab n anbn(n是正整数);
4.同底数的幂的除法: am an amn( a≠0,m,
n是正整数m>n);
5.商的乘方:
a b
n
an bn
(n是正整数);
6.0指数幂,即当a≠0时, a0 1.
一般地, a中m指数m可以是负整数吗?如果可 以,那么负整数指数幂 表am示什么?
教学重难点
重点
掌握整数指数幂的运算性质,用科学记数 法表示绝对值较小的数.
难点
负整数指数幂公式中字母的取值范围,用 科学记数法表示绝对值较小的数时,a×10n 形式 中n的取值与小数中零的关系.
探究
am÷an=am-n (a≠0 m、n为正整数且m>n)
a6÷a2=a4
a2÷a6=?
a2÷a6=a2-6=a-4
观察
a2 a4
a2 a4
a2
a24 ,即
a2 a4 a24 ;
a2 a4 a 24 ;
a0 a4 1 1 a4 a04 ,即 a4
a0 a4 a04 .
归纳
am an amn
这条性质适用于m,n是任意整数的 情形仍然适用.
am (m是正整数)
am= 1 (m=0)
1 am
(m是负整数)
小练习
填空.
1
(1)33=__9___, 30=__1_, 3-4=__8_1__;
(2)(-3)3=_-__2_7,(-3)0=__1_,
1
(-3) -4=__8_1__;
(3)b3=_b__3__, b0=__1__,
1 b-4=__b_4 _(b≠0).
• 15.2.3 整数指数幂
复习:
新课导入
整数指数幂是如何定义的?有何规定?
a n = a×a×a× ……×a ( n 为正整数 )
n 个a a0 = 1 ( a ≠ 0 )
正整数指数幂的运算性质:
1.同底数的幂的乘法: am an amn (m,n是
正整数);
2.幂的乘方: am n amn (m,n是正整数);
a
4
1 gb4
a4 b4
,即
( a )4 b
a4 b4
;
( a )4 a4 g( 1 )4 a4 g 1 a4 ,即
b
b
b4 b4
( a )4 b
a 4 b4
;
( a )0 b
a0 g( 1 )0 b
a0 gb10
11 1,即
( a )0 1. b
归纳
( a )n an
b
bn
这条性质适用于m,n是任意整数的情形 仍然适用.
观察
(ab)4 a4b4;
(ab)4
1 (ab)4
1 a4
1 b4
a b 4 4 ,即
(ab)4 a b 4 4;
(ab)0 a0b0 11 1,即
(ab)0 1.
归纳
( ab )n anbn
这条性质适用于m,n是任意整数 的情形仍然适用.
观察
( a )4 b
a4 g( 1 )4 b
观察
a2 a4 a2 a2 ga4 a24 ,即 1 a4
a2 a4 a24 ;
a 2
a4
1 a2
1 a4
1 a2
ga
4
a24 ,即
a2 a4 a24 ;
a0
a4
1
1 a4
a4
a04 ,即
a0 a4 a04 .
归纳
am an amn
这条性质适用于m,n是任意整数 的情形仍然适用.
类似于上面的观察,进一步用负整数指
数幂或0指数幂,验证 (am )n amn
在整数指数范围内是适用.
【例1】计算:
(1) x3 y4 3 ;(2)x3 y4 x4 y4 5
解:
(1) x3 y4 3 x9 y12 y12 x9
(2)x3 y4
x4 y4
5
x3 y4
x 20 y20
教学目标
【知识与能力】
1.知道负整数指数幂 整数);
an
a1n(a≠0,n是正
2.掌握整数指数幂的运算性质;
3.会用科学计数法表示绝对值较小的数.
【过程与方法】
通过幂指数扩展到全体整数,培养抽象的数 学思维能力,运用公式进行计算,培养综合解题 的能力和计算能力.
【情感态度与价值观】
通过学习课堂知识懂得任何事物之间是 相互联系的,理论来源于实践,服务于实 践.能利用事物之间的类比性解决问题.
0.000001=
1 106
=
106
0.0000432=
4.32 105 =
4.32
105
5.6
0.0000056=106
= 5.6106
a 10n
a 是整数位只有 一位的正数,n是 正整数.
对于一个小于1的正小数,如果小数点后至 第一个非0数字前有9个0,用科学计数法表示这 个数时,10的指数是多少?如果有m个0呢?
xm xn xm gxn; ( x )n xn yn .
y
在七年级我们学过,一些较大的数 字可以用科学记数法来表示:
光速:300 000 000=3×108米/秒; 太阳半径:696 000=6.96×105千米; 目前我国人口:6 100 000 000=6.1×109.
小于1的数也可以用科学计数法表示.