高考数学考点专题:解析几何:抛物线
新高考数学抛物线知识点

新高考数学抛物线知识点抛物线作为数学中的重要概念之一,广泛应用于物理、工程等领域。
在新高考数学考试中,抛物线也是一个重要的知识点。
本文将以新高考数学为背景,探讨抛物线的相关概念、性质和应用。
1. 抛物线的定义与基本方程抛物线是在平面上以某一点为焦点,与一条与焦点不重合的直线相切的点的轨迹。
在直角坐标系中,抛物线的方程是$y=ax^2+bx+c$,其中$(a\neq 0)$。
2. 抛物线的几何性质(1)焦点与准线:抛物线上的每一点到焦点的距离与该点到准线的距离相等。
准线是抛物线对称轴上的一条水平直线。
(2)对称性:抛物线关于准线对称。
(3)定点:抛物线上的顶点是准线与抛物线的交点,也是抛物线的最值点。
(4)开口方向:抛物线开口的方向取决于二次项系数$a$的正负。
当$a>0$时,抛物线开口向上;当$a<0$时,抛物线开口向下。
3. 抛物线的相关公式(1)焦距公式:焦距$f=\dfrac{1}{4|a|}$。
焦点到准线的距离等于焦点到抛物线顶点的距离。
(2)焦点坐标:焦点的坐标为$(0, \dfrac{1}{4|a|})$。
(3)顶点坐标:抛物线的顶点坐标为$(-\dfrac{b}{2a},\dfrac{4ac-b^2}{4a})$。
(4)准线方程:准线的方程为$y=-\dfrac{1}{4a}$。
4. 抛物线的应用抛物线作为一种强大的数学工具,在实际生活中有着广泛的应用。
(1)物理学中的应用:抛物线可以用来描述自由落体和抛体运动的轨迹。
例如,投掷物体的运动轨迹可以近似为一个抛物线。
(2)工程学中的应用:抛物线在工程设计中有着重要的应用,如天桥的设计、悬索桥的设计等。
通过抛物线的性质和公式,工程师可以合理地设计结构,使得建筑物的受力分布更加均匀并且美观。
(3)经济学中的应用:抛物线可以用来描述成本和利润之间的关系。
例如,在经济学中,经济学家经常使用抛物线来分析成本与产量之间的关系,并确定生产的最佳产量。
抛物线课件-2025届高三数学一轮复习

A. 2
B. 3
[解析]
2
C. 4
2
D. 8
由题意,知抛物线的焦点坐标为( ,0),椭圆的焦点坐标为(±
2
所以 = 2 ,解得 p =8,故选D.
D )
2 ,0),
5. 已知抛物线 y 2=2 px ( p >0)的焦点为 F ,点 M (2,2 2 )为抛物线上一点,则
|MF|=(
A. 2
2
即 p =2,所以A选项正确.
= − 3( − 1),
对于B,不妨设 M ( x 1, y 1), N ( x 2, y 2), x 1< x 2,联立方程得 2
= 4,
1
消去 y 并整理得3 x 2-10 x +3=0,解得 x 1= , x 2=3.由抛物线的定义得,| MN|=
x 1+ x 2+ p =
B )
B. 3
C. 4
D. 5
[解析] 因为点 M (2,2 2 )为抛物线上一点,所以将点 M 的坐标代入抛物线的方程
y 2=2 px ( p >0),可得 p =2,所以抛物线的方程为 y 2=4 x ,可得其准线方程为 x =
-1.根据抛物线的定义,得| MF |=2-(-1)=3.故选B.
三、知识点例题讲解及方法技巧总结
1
S △ AOB = ×| AB |× ×
2
2
由(2)的推导过程可得,
sin
1
||
2
+
= 2 ,
1−cos
1+cos
si
1
2
α= × 2 × ×
2
si
2
+
2025年高考数学一轮复习课件第八章平面解析几何-8.7抛物线

返回至目录
【点拨】在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的
特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.
返回至目录
变式2(1) 设为坐标原点,直线 = 2与抛物线: 2 = 2 > 0 交于,两点.
若 ⊥ ,则的焦点坐标为(
A. 1,0
焦点
准线
叫做抛物线.点叫做抛物线的______,直线叫做抛物线的______.
返回至目录
2.抛物线的标准方程和简单几何性质
简单几何性质
标准方程
2 = 2
>0
2 = −2
>0
图形
开口
向右
_____
向左
焦点
,0
_______
2
− ,0
2
准线
=
−
2
=
______
2
范围
对称轴
4 = 4 3,解得 =
3
.故所求抛物线的方程为 2
3
=
2 3
.故选A.
3
返回至目录
(3)已知是抛物线 2 = 8的焦点,点 4,2 ,为抛物线上一点,点不在直线
上,则△ 的周长的最小值是(
A.4
B.6
)
C.6 + 2
√
2
D.6 + 2
解:抛物线 2 = 8的焦点 2,0 ,准线为 = −2.
故填3.
返回至目录
考点一 抛物线的定义及标准方程
例1(1) 【多选题】经过点 4, −2 的抛物线的标准方程为(
A. 2 =
√
B. 2 = 8
C. 2 = −8
高三数学抛物线知识点总结

高三数学抛物线知识点总结在高中数学中,抛物线是一个重要的几何概念。
它被广泛用于解决与运动、轨迹、最值等问题相关的数学计算。
为了帮助大家更好地掌握和理解高三数学中的抛物线知识点,本文将对抛物线的定义、性质以及应用进行总结。
1. 抛物线的定义抛物线是指平面上到一个定点距离与到一条固定直线距离相等的点的轨迹。
这个定点称为焦点,固定直线称为准线。
抛物线的形状呈现出对称性,以焦点为中心对称。
抛物线有开口方向,开口向上时准线在抛物线的上方,开口向下时准线在抛物线的下方。
2. 抛物线的标准方程一般情况下,我们可以使用标准方程来表示抛物线。
对于开口向上的抛物线,其标准方程为 y = ax^2 + bx + c,其中 a > 0;对于开口向下的抛物线,其标准方程为 y = ax^2 + bx + c,其中 a < 0。
3. 抛物线的顶点和对称轴抛物线的顶点是抛物线的最值点,是抛物线开口方向的转折点。
对于标准方程 y = ax^2 + bx + c,如果 a > 0,顶点坐标为 (-b/2a, -Δ/4a),其中Δ = b^2 - 4ac;如果 a < 0,顶点坐标为 (-b/2a, Δ/4a)。
抛物线的对称轴是通过焦点和顶点的直线,是抛物线的中心轴线。
4. 抛物线的焦点和准线对于标准方程 y = ax^2 + bx + c,焦点的纵坐标为 (-Δ/4a),焦点的横坐标为 (-b/2a),其中Δ = b^2 - 4ac。
准线与抛物线的距离等于焦点到抛物线上任意一点的距离,准线的方程为 x = -b/2a。
5. 抛物线的形状和方向抛物线的形状与参数 a 的值相关。
当 a 的绝对值越大时,抛物线越“尖”,开口越窄;当 a 的绝对值越小时,抛物线越“平”,开口越宽。
当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
6. 抛物线的焦距焦距是指焦点到准线的距离,记为 f。
备战高考数学复习考点知识与题型讲解68---抛物线

备战高考数学复习考点知识与题型讲解第68讲 抛物线考向预测核心素养抛物线的方程、几何性质及抛物线的综合问题是高考热点,综合问题难度较大.直观想象、数学抽象、数学运算一、知识梳理 1.抛物线的概念(1)定义:平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹.(2)焦点:点F 叫做抛物线的焦点. (3)准线:直线l 叫做抛物线的准线. 2.抛物线的标准方程和简单几何性质 标准方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)图形范围 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 焦点 ⎝ ⎛⎭⎪⎫p 2,0 ⎝ ⎛⎭⎪⎫-p 2,0 ⎝ ⎛⎭⎪⎫0,p 2 ⎝ ⎛⎭⎪⎫0,-p 2准线 方程 x =-p 2x =p 2y =-p 2y =p 2对称轴 x 轴y 轴顶点 (0,0)离心率e =1常用结论1.与焦点弦有关的常用结论如图,倾斜角为θ的直线AB与抛物线y2=2px(p>0)交于A,B两点,F为抛物线的焦点,设A(x1,y1),B(x2,y2).则有(1)y1y2=-p2,x1x2=p2 4.(2)焦点弦长:|AB|=x1+x2+p=2psin2θ(θ为直线AB的倾斜角).通径(过焦点垂直于对称轴的弦)长:2p.(3)焦半径:|AF|=p1-cos α,|BF|=p1+cos α,1|AF|+1|BF|=2p.(4)以弦AB为直径的圆与准线相切;以AF或BF为直径的圆与y轴相切.2.若A,B为抛物线y2=2px(p>0)上两点,且OA⊥OB,则直线AB过定点(2p,0).二、教材衍化1.(人A选择性必修第一册P133练习T3(2)改编)抛物线y2=12x上与焦点的距离等于6的点的坐标是________.答案:(3,±6)2.(人A选择性必修第一册P136练习T4改编)已知过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,|AF|=2,则|BF|=________.解析:设点A的横坐标是x1,则依题意有焦点F(1,0),|AF|=x1+1=2,则x1=1.因为AF所在直线过点F,所以直线AF的方程是x=1,此时弦AB为抛物线的通径,故|BF|=|AF|=2.答案:2一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.() (2)若直线与抛物线只有一个交点,则直线与抛物线一定相切.() (3)若一抛物线过点P (-4,3),则其标准方程可写为y 2=2px (p >0).() (4)抛物线x 2=-2ay (a >0)的通径长为2a .() 答案:(1)×(2)×(3)×(4)√ 二、易错纠偏1.(多选)(忽视焦点的位置致误)顶点在原点,且过点P (-2,3)的抛物线的标准方程是()A .y 2=-92xB.y 2=92xC .x 2=43yD.x 2=-43y解析:选AC.设抛物线的标准方程是y 2=kx 或x 2=my ,代入点P (-2,3),解得k =-92,m =43,所以y 2=-92x 或x 2=43y . 2.(忽视抛物线的开口方向致误)若抛物线y =ax 2的准线方程是y =2,则a 的值是________.解析:把抛物线方程y =ax 2化为标准形式得x 2=1a y ,所以-14a =2,解得a =-18.答案:-183.(忽视方程多解致误)抛物线y 2=8x 上到其焦点F 距离为5的点的个数为________.解析:设P (x 1,y 1),则|PF |=x 1+2=5,得x 1=3,y 1=±2 6.故满足条件的点的个数为2.答案:2考点一 抛物线的定义和标准方程(自主练透)复习指导:1.了解抛物线的定义、标准方程、掌握各种形式下抛物线的图形. 2.理解参数p 的几何意义.1.(2021·新高考卷Ⅱ)若抛物线y 2=2px (p >0)的焦点到直线y =x +1的距离为2,则p =() A .1 B.2 C.2 2D.4解析:选B.抛物线的焦点坐标为⎝ ⎛⎭⎪⎫p 2,0,其到直线x -y +1=0的距离d =⎪⎪⎪⎪⎪⎪p 2-0+11+1=2,解得p =2(p =-6舍去).故选B.2.动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为________.解析:设动圆的圆心坐标为(x ,y ),则圆心到点(1,0)的距离与到直线x =-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y 2=4x .答案:y 2=4x3.在平面直角坐标系xOy 中,有一定点A (2,1).若线段OA 的垂直平分线过抛物线y 2=2px (p >0)的焦点,则该抛物线的准线方程是________.解析:线段OA 的垂直平分线方程是y =-2x +52,且交x 轴于点⎝ ⎛⎭⎪⎫54,0,该点为抛物线y 2=2px (p >0)的焦点,故该抛物线的准线方程为x =-54.答案:x =-54抛物线的定义及标准方程应用关键点(1)由抛物线定义,抛物线上的点到焦点的距离和到准线的距离可相互转化.(2)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.考点二 抛物线的几何性质(多维探究)复习指导:理解应用抛物线的简单几何性质. 角度1 焦半径和焦点弦(1)(2022·河北衡水三模)设F 为抛物线y 2=4x 的焦点,A ,B ,C 为该抛物线上三点,若A ,B ,C 三点坐标分别为(1,2),(x 1,y 1),(x 2,y 2),且||+||+||=10,则x 1+x 2=()A .6 B.5 C.4D.3(2)(链接常用结论1(2))设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为()A.334B.938C.6332D.94【解析】 (1)根据抛物线的定义,知||,||,||分别等于点A ,B ,C 到准线x =-1的距离,所以由||+||+||=10,可得2+x 1+1+x 2+1=10,即x 1+x 2=6.故选A.(2)由已知得焦点坐标为F ⎝ ⎛⎭⎪⎫34,0,因此直线AB 的方程为y =33⎝ ⎛⎭⎪⎫x -34,即4x -43y -3=0.方法一:联立直线方程与抛物线方程化简得 4y 2-123y -9=0, 则y A +y B =33,y A y B =-94,故|y A -y B |=(y A +y B )2-4y A y B =6.因此S△OAB=12|OF||y A-y B|=12×34×6=94.方法二:联立直线方程与抛物线方程得x2-212x+916=0,故x A+x B=212.根据抛物线的定义有|AB|=x A+x B+p=212+32=12,同时原点到直线AB的距离为d=|-3|42+(-43)2=38,因此S△OAB=12|AB|·d=94.【答案】(1)A(2)D角度2 与抛物线有关的最值设P是抛物线y2=4x上的一个动点,F为抛物线的焦点,若B(3,2),则|PB|+|PF|的最小值为________.【解析】如图,过点B作BQ垂直准线于点Q,交抛物线于点P1,则|P1Q|=|P1F|.则有|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=4.即|PB|+|PF|的最小值为4.【答案】 41.若本例条件不变,则P到准线l的距离与P到直线3x+4y+7=0的距离之和的最小值是________.解析:由抛物线定义可知点P到准线l的距离等于点P到焦点F的距离,由抛物线y2=4x及直线方程3x+4y+7=0可得直线与抛物线相离,所以点P到准线l的距离与点P到直线3x+4y+7=0的距离之和的最小值为焦点F(1,0)到直线3x+4y+7=0的距离,即|3+7|32+42=2.答案:22.若将本例中的B点坐标改为(3,4),试求|PB|+|PF|的最小值.解:由题意可知点(3,4)在抛物线的外部,F(1,0).因为|PB|+|PF|的最小值即为B,F两点间的距离,所以|PB|+|PF|≥|BF|=(3-1)2+(4-0)2=25,即|PB|+|PF|的最小值为2 5.抛物线的性质及应用要点(1)由抛物线的方程可以确定抛物线的开口方向、焦点位置、焦点到准线的距离,从而进一步确定抛物线的焦点坐标及准线方程.(2)与抛物线有关的最值问题的两个转化策略转化策略一:将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,“三角形两边之和大于第三边”,使问题得以解决.转化策略二:将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.|跟踪训练|1.已知点Q(22,0)及抛物线y=x24上的动点P(x,y),则y+|PQ|的最小值是()A.2 B.3 C.4 D.2 2 解析:选A.因为抛物线的方程为x 2=4y , 所以焦点为F (0,1),准线方程为y =-1, 所以抛物线上的动点P (x ,y )到准线的距离为y -(-1)=y +1,由抛物线的定义可得|PF |=y +1,又因为Q (22,0),所以y +|PQ |=y +1+|PQ |-1=|PF |+|PQ |-1≥|FQ |-1=(22-0)2+(0-1)2-1=3-1=2, 当且仅当F ,P ,Q 三点共线时取等号.2.(2022·沈阳质量检测)已知正三角形AOB (O 为坐标原点)的顶点A ,B 在抛物线y 2=3x 上,则△AOB 的边长是________.解析:如图,设△AOB 的边长为a ,则A ⎝ ⎛⎭⎪⎫32a ,12a ,因为点A 在抛物线y 2=3x 上,所以14a 2=3×32a ,所以a =6 3.答案:6 3考点三 直线与抛物线(综合研析)复习指导:了解圆锥曲线的简单应用,了解抛物线的实际背景.(2021·高考全国卷乙)已知抛物线C :y 2=2px (p >0)的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足=9,求直线OQ 斜率的最大值. 【解】 (1)由抛物线的定义可知,焦点F 到准线的距离为p ,故p =2,所以C 的方程为y 2=4x .(2)由(1)知F (1,0),设P (x 1,y 1),Q (x 2,y 2), 则=(x 2-x 1,y 2-y 1),=(1-x 2,-y 2), 因为=9,所以⎩⎨⎧x 2-x 1=9(1-x 2),y 2-y 1=-9y 2,可得⎩⎨⎧x 1=10x 2-9,y 1=10y 2,又点P 在抛物线C 上,所以y 21=4x 1,即(10y 2)2=4(10x 2-9),化简得y 22=25x 2-925,则点Q 的轨迹方程为y 2=25x -925.设直线OQ 的方程为y =kx ,易知当直线OQ 与曲线y 2=25x -925相切时,斜率可以取最大,联立y =kx 与y 2=25x -925并化简,得k 2x 2-25x +925=0,令Δ=(-25)2-4k 2·925=0,解得k =±13,所以直线OQ 斜率的最大值为13.解决直线与抛物线位置关系问题的方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=|x 1|+|x 2|+p ,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.[注意]涉及弦的中点、斜率时,一般用“点差法”求解.|跟踪训练|1.直线y=x+b交抛物线y=12x2于A,B两点,O为抛物线顶点,OA⊥OB,则b的值为()A.-1 B.0C.1D.2解析:选D.设A(x1,y1),B(x2,y2),将y=x+b代入y=12x2,化简可得x2-2x-2b=0,故x1+x2=2,x1x2=-2b,所以y1y2=x1x2+b(x1+x2)+b2=b2.又OA⊥OB,所以x1x2+y1y2=0,即-2b+b2=0,则b=2或b=0,经检验b=0时,不符合题意,故b=2.2.(多选)(2022·广东省广雅中学月考)已知O为坐标原点,M(2,2),P,Q是抛物线C:y2=2px上两点,F为其焦点,若F到准线的距离为2,则下列说法正确的有() A.△PMF周长的最小值为2 5B.若=λ,则||PQ最小值为4C.若直线PQ过点F,则直线OP,OQ的斜率之积恒为-2D.若△POF外接圆与抛物线C的准线相切,则该圆面积为9π4解析:选BD.因为F到准线的距离为2,所以p=2,所以抛物线C:y2=4x,F(1,0),|MF|=(2-1)2+(2-0)2=5,准线l:x=-1,对于A,过P作PN⊥l,垂足为N,则|PF|+|PM|=|PN|+|PM|≥|MN|=2+1=3,所以△PMF周长的最小值为3+5,故A不正确;对于B ,若=λ,则弦PQ 过F ,过P 作l 的垂线,垂足为P ′,过Q 作l 的垂线,垂足为Q ′,设PQ 的中点为G ,过G 作GG ′⊥l ,垂足为G ′,则|PQ |=|PF |+|QF |=|PP ′|+|QQ ′|=2|GG ′|≥2×2=4,即||PQ 最小值为4,故B 正确;对于C ,若直线PQ 过点F ,设直线PQ :x =my +1, 联立⎩⎨⎧x =my +1,y 2=4x ,消去x 得y 2-4my -4=0,设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4,所以k OP ·k OQ =y 1x 1·y 2x 2=4y 1·4y 2=16-4=-4,故C 不正确;对于D ,因为OF 为外接圆的弦,所以圆心的横坐标为12,因为△POF 外接圆与抛物线C 的准线相切,所以圆的半径为1+12=32,所以该圆面积为π(32)2=94π,故D 正确.3.设抛物线y 2=2px (p >0)的焦点为F ,准线为l .过抛物线上一点A 作l 的垂线,垂足为B .设C ⎝ ⎛⎭⎪⎫72p ,0,AF 与BC 相交于点E ,若|CF |=2|AF |,且△ACE 的面积为32,则p 的值为________.解析:不妨设点A 在第一象限.由题意得图,其中AB 垂直于抛物线的准线l .则|FC |=3p ,所以|AF|=|AB|=|CF| 2=32p,则A(p,2p).易证△EFC∽△EAB,所以|EF||EA|=|CF||AB|=|CF||AF|=2,所以|EA||AF|=13,所以S△ACE=13S△AFC=13×12×3p×2p=22p2=32,所以p= 6.答案: 6[A 基础达标]1.(2022·荆州市检测)过点A(3,0)且与y轴相切的圆的圆心的轨迹为()A.圆 B.椭圆C.直线D.抛物线解析:选D.如图,设P为满足条件的一点,不难得出结论:点P到点A的距离|PA|等于点P到y轴的距离|PB|,故点P在以点A为焦点,y轴为准线的抛物线上,故点P的轨迹为抛物线.2.已知点P(2,y)在抛物线y2=4x上,则点P到抛物线焦点F的距离为()A.2 B.3C. 3D. 2解析:选B.因为抛物线y2=4x的焦点为(1,0),准线为x=-1,结合定义点P到抛物线焦点的距离等于它到准线的距离,为3.3.(2022·哈尔滨六中期末)过抛物线x 2=4y 的焦点F 作直线l 交抛物线于P 1(x 1,y 1),P 2(x 2,y 2)两点,若y 1+y 2=6,则|P 1P 2|=()A .5 B.6 C.8D.10解析:选C.抛物线x 2=4y 的准线为y =-1,因为P 1(x 1,y 1),P 2(x 2,y 2)两点是过抛物线焦点的直线l 与抛物线的交点,所以P 1(x 1,y 1),P 2(x 2,y 2)两点到准线的距离分别是y 1+1,y 2+1,所以|P 1P 2|=y 1+y 2+2=8.4.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为()A .2 B.4 C.6 D.8解析:选B.如图,不妨设抛物线C :y 2=2px (p >0),A (x 1,22),则x 1=(22)22p =4p,由题意知|OA |=|OD |,所以⎝ ⎛⎭⎪⎫4p 2+8=⎝ ⎛⎭⎪⎫p 22+5,解得p =4.5.(2020·高考全国卷Ⅲ)设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为()A.⎝ ⎛⎭⎪⎫14,0 B.⎝ ⎛⎭⎪⎫12,0 C .(1,0)D.(2,0)解析:选B.将直线方程与抛物线方程联立,可得y =±2p ,不妨设D (2,2p ),E (2,-2p ),由OD ⊥OE ,可得·=4-4p =0,解得p =1,所以抛物线C 的方程为y 2=2x ,其焦点坐标为⎝ ⎛⎭⎪⎫12,0.6.已知直线l 是抛物线y 2=2px (p >0)的准线,半径为3的圆过抛物线顶点O 和焦点F 与l 相切,则抛物线的方程为________.解析:因为半径为3的圆与抛物线的准线l 相切, 所以圆心到准线的距离等于3,又因为圆心在OF 的垂直平分线上,|OF |=p2,所以p 2+p4=3,所以p =4,故抛物线的方程为y 2=8x .答案:y 2=8x7.(2021·新高考卷Ⅰ)已知O 为坐标原点,抛物线C :y 2=2px (p >0)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ ⊥OP .若|FQ |=6,则C 的准线方程为________.解析:通解(解直角三角形法):由题易得|OF |=p2,|PF |=p ,∠OPF =∠PQF ,所以tan ∠OPF =tan ∠PQF ,所以|OF ||PF |=|PF ||FQ |,即p2p =p 6,解得p =3,所以C 的准线方程为x =-32. 光速解(应用射影定理法):由题易得|OF |=p2,|PF |=p ,|PF |2=|OF |·|FQ |,即p 2=p 2×6,解得p =3或p =0(舍去),所以C 的准线方程为x =-32. 答案:x =-328.(2022·山东模拟)直线l 过抛物线C :y 2=2px (p >0)的焦点F (1,0),且与C 交于A ,B 两点,则p =________,1|AF |+1|BF |=________.解析:由题意知p2=1,从而p =2,所以抛物线方程为y 2=4x .当直线AB 的斜率不存在时,将x =1代入抛物线方程, 解得|AF |=|BF |=2,从而1|AF |+1|BF |=1.当直线AB 的斜率存在时,设AB 的方程为y =k (x -1), 联立⎩⎨⎧y =k (x -1),y 2=4x ,整理,得k 2x 2-(2k 2+4)x +k 2=0, 设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 1+x 2=2k 2+4k 2,x 1x 2=1,从而1|AF |+1|BF |=1x 1+1+1x 2+1=x 1+x 2+2x 1+x 2+x 1x 2+1=x 1+x 2+2x 1+x 2+2=1.综上,1|AF |+1|BF |=1.答案:219.顶点在原点,焦点在x 轴上的抛物线截直线y =2x -4所得的弦长|AB |=35,求此抛物线方程.解:设所求的抛物线方程为y 2=ax (a ≠0),A (x 1,y 1),B (x 2,y 2),把直线y =2x -4代入y 2=ax ,得4x 2-(a +16)x +16=0,由Δ=(a +16)2-256>0,得a >0或a <-32. 又x 1+x 2=a +164,x 1x 2=4,所以|AB |=(1+22)[(x 1+x 2)2-4x 1x 2]=5⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1642-16=35, 所以5⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1642-16=45,所以a =4或a =-36.故所求的抛物线方程为y 2=4x 或y 2=-36x . 10.如图,已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.解:(1)由抛物线的定义得|AF |=2+p2.由|AF |=3,得2+p2=3,解得p =2.所以抛物线E 的方程为y 2=4x .(2)证明:因为点A (2,m )在抛物线E :y 2=4x 上,所以m =±22,由抛物线的对称性,不妨设A (2,22).由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1). 由⎩⎨⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0,解得x =2或x =12,从而B ⎝ ⎛⎭⎪⎫12,-2.又G (-1,0),所以k GA =22-02-(-1)=223,k GB =-2-012-(-1)=-223,所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等, 故以F 为圆心且与直线GA 相切的圆,必与直线GB 相切.[B 综合应用]11.(2022·陕西省咸阳市质检)已知点M (-3,2)是坐标平面内一定点,若抛物线y 2=2x 的焦点为F ,点Q 是该抛物线上的一动点,则|MQ |-|QF |的最小值是()A.72B.3C.52D.2解析:选C.如图,抛物线的准线方程为x =-12,过点Q 作QQ ′垂直准线于点Q ′,|MQ |-|QF |=|MQ |-|QQ ′|,显然当MQ ∥x 轴时,|MQ |-|QF |取得最小值,此时|MQ |-|QF |=|2+3|-⎪⎪⎪⎪⎪⎪2+12=52.12.(多选)(2022·盐城市阜宁中学高二检测)已知抛物线C :y 2=4x 的焦点为F ,点P 在抛物线的准线上,线段PF 与抛物线交于点M ,则下列判断正确的是()A .△OMF 不可能是等边三角形B .△OMF 可能是等腰直角三角形 C.|PF ||PM |=1+2|PF |D.|PF ||MF |-|PF |=1 解析:选AC.若△OMF 是等边三角形,则边长为1,且点M 的横坐标为12,纵坐标为±2,此时|OM |=14+2=32≠1,所以△OMF 不可能是等边三角形,故A 正确;若△OMF 是等腰直角三角形,则只可能是∠OMF =90°,|OM |=|FM |=32,所以|OM |2+|FM |2≠|OF |2,故B 不正确;过点M 作准线的垂线交准线于点N ,则|MF |=|MN |,|PF ||PM |=|PM |+|MF ||PM |=1+|MF ||PM |=1+|MN ||PM |=1+2|PF |,故C 正确,D 不正确. 13.(多选)已知抛物线C :y 2=4x 的焦点为F ,准线为l ,P 为C 上一点,PQ 垂直于l 且交l 于点Q ,M ,N 分别为PQ ,PF 的中点,MN 与x 轴相交于点R ,若∠NRF =60°,则()A .∠FQP =60° B.|QM |=1 C .|FP |=4 D.|FR |=2解析:选ACD.如图,连接FQ ,FM ,因为M ,N 分别为PQ ,PF 的中点,所以MN ∥FQ ,又PQ ∥x 轴,∠NRF =60°,所以∠FQP =60°,由抛物线的定义知,|PQ |=|PF |,所以△FQP 为等边三角形,则FM ⊥PQ ,|QM |=2,等边三角形FQP 的边长为4,|FP |=|PQ |=4,|FN |=12|PF |=2,则△FRN 为等边三角形,所以|FR |=2.故选ACD.14.(2022·江苏省如皋市高三调研)已知抛物线C :y 2=4x 的焦点为F ,过F 的直线交抛物线C 于A ,B 两点,以AF 为直径的圆过点()0,2,则直线AB 的斜率为________.解析:由抛物线C :y 2=4x 可得焦点为F ()1,0,设A ()x 1,y 1, 由抛物线的定义可得||AF =x 1+p2=x 1+1,AF 的中点为⎝⎛⎭⎪⎫x 1+12,y 12, 所以AF 为直径的圆的方程为⎝ ⎛⎭⎪⎫x -x 1+122+⎝ ⎛⎭⎪⎫y -y 122=⎝ ⎛⎭⎪⎫x 1+122, 因为以AF 为直径的圆过点()0,2,所以⎝ ⎛⎭⎪⎫0-x 1+122+⎝ ⎛⎭⎪⎫2-y 122=⎝ ⎛⎭⎪⎫x 1+122,可得y 1=4,所以x 1=4, 所以点A ()4,4,所以直线AB 的斜率为4-04-1=43.答案:43[C 素养提升]15.(2022·湖南名校大联考)已知P 为抛物线C :y =x 2上一动点,直线l :y =2x -4与x 轴、y 轴交于M ,N 两点,点A (2,-4),且=λ+μ,则λ+μ的最小值为________.解析:由题意得M (2,0),N (0,-4),设P (x ,y ),由=λ+μ得(x -2,y +4)=λ(0,4)+μ(-2,0).所以x -2=-2μ,y +4=4λ.因此λ+μ=y +44-x -22=x 24-x2+2=⎝ ⎛⎭⎪⎫x 2-122+74≥74,故λ+μ的最小值为74. 答案:7416.(2021·高考全国卷甲)抛物线C 的顶点为坐标原点O ,焦点在x 轴上,直线l :x =1交C 于P ,Q 两点,且OP ⊥OQ .已知点M (2,0),且⊙M 与l 相切.(1)求C ,⊙M 的方程;(2)设A 1,A 2,A 3是C 上的三个点,直线A 1A 2,A 1A 3均与⊙M 相切.判断直线A 2A 3与⊙M 的位置关系,并说明理由.解:(1)由题意,直线x =1与C 交于P ,Q 两点,且OP ⊥OQ ,设C 的焦点为F ,P 在第一象限,则根据抛物线的对称性,∠POF =∠QOF =45°, 所以P (1,1),Q (1,-1).设C 的方程为y 2=2px (p >0),则1=2p ,p =12,所以C 的方程为y 2=x .由题意,圆心M (2,0)到l 的距离即⊙M 的半径,且距离为1,所以⊙M 的方程为(x -2)2+y 2=1.(2)设A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3),当A 1,A 2,A 3中有一个为坐标原点,另外两个点的横坐标均为3时,A 1A 2,A 1A 3均与⊙M 相切,此时直线A 2A 3与⊙M 相切.当x 1≠x 2≠x 3时,直线A 1A 2:x -(y 1+y 2)y +y 1y 2=0, 则|2+y 1y 2|(y 1+y 2)2+1=1,即(y 21-1)y 22+2y 1y 2+3-y 21=0, 同理可得(y 21-1)y 23+2y 1y 3+3-y 21=0,所以y 2,y 3是方程(y 21-1)y 2+2y 1y +3-y 21=0的两个根,则y 2+y 3=-2y 1y 21-1,y 2y 3=3-y 21y 21-1.直线A2A3的方程为x-(y2+y3)y+y2y3=0,设M到直线A2A3的距离为d(d>0),则d2=(2+y2y3)2==1,1+(y2+y3)2即d=1,所以直线A2A3与⊙M相切.综上可得,直线A2A3与⊙M相切.21 / 21。
高三抛物线的知识点归纳

高三抛物线的知识点归纳一、抛物线的定义及方程抛物线是二次函数的图像,它的一般方程可以表示为 y = ax^2 + bx+ c。
在这个方程中,a、b、c 是常数,其中 a 决定抛物线的开口方向和大小,b 影响抛物线沿着 x 轴的位置,而 c 则决定了抛物线与y 轴的交点。
二、抛物线的性质1. 开口方向:当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
2. 对称性:抛物线是轴对称图形,对称轴为直线 x = -b/(2a)。
3. 顶点:抛物线的最高点或最低点称为顶点,其坐标可以通过公式(-b/(2a), -Δ/(4a)) 计算得出,其中Δ = b^2 - 4ac 称为判别式。
4. 焦点和准线:对于开口向上或向下的抛物线,可以定义一个焦点和一条准线。
焦点位于距离顶点 a/(4a) 的位置,准线则是与抛物线对称轴平行且距离顶点 a/(2a) 的直线。
三、抛物线的应用1. 物理现象:在物理学中,抛物线常用于描述物体在重力作用下的抛射运动轨迹。
2. 工程建筑:在建筑设计中,抛物线形状常用于拱桥、穹顶等结构,以实现良好的力学性能。
3. 艺术设计:在艺术领域,抛物线因其优美的曲线被广泛应用于雕塑和装饰品的设计。
四、解题技巧1. 确定方程:根据题目条件确定抛物线的一般方程 y = ax^2 + bx + c。
2. 计算顶点:通过公式 (-b/(2a), -Δ/(4a)) 快速求出抛物线的顶点坐标。
3. 判断交点:通过代入 x 值或 y 值,可以求出抛物线与 x 轴或 y轴的交点。
4. 应用对称性:利用抛物线的对称性简化计算,特别是在求解与抛物线相关的最值问题时。
五、例题分析例1:已知抛物线 y = 2x^2 - 4x + 3,求其顶点坐标和对称轴方程。
解:首先计算判别式Δ = b^2 - 4ac = (-4)^2 - 4*2*3 = 16 - 24= -8。
由于Δ < 0,该抛物线与 x 轴无交点。
抛物线知识点总结_高三数学知识点总结

抛物线知识点总结_高三数学知识点总结抛物线是一种二次函数,其标准形式为y=ax^2+bx+c,其中a、b、c为实数且a≠0。
在抛物线上,取值较小的一侧为开口向上的抛物线,取值较大的一侧为开口向下的抛物线。
抛物线的性质:1. 平移性质:对于标准形式y=ax^2+bx+c的抛物线,若h、k为实数,则抛物线y=a(x-h)^2+k表示平移了h个单位向右,k个单位向上(k>0)或向下(k<0)后的抛物线。
2. 判别式:若抛物线y=ax^2+bx+c的判别式Δ=b^2-4ac>0,则抛物线与x轴有两个交点,即开口向上的抛物线在x轴上方,开口向下的抛物线在x轴下方。
若Δ=0,则抛物线与x轴只有一个交点,抛物线与x轴相切。
若Δ<0,则抛物线与x轴没有交点,即开口向上的抛物线在x轴下方,开口向下的抛物线在x轴上方。
3. 对称性质:在抛物线y=ax^2+bx+c上,对于任意实数x,都有关于抛物线的对称点(x,-ax^2-bx-c)。
4. 最值性质:对于开口向上的抛物线,其最低点为顶点,对应的坐标为(-b/2a,f(-b/2a)),其中f(x)=ax^2+bx+c。
最低点处的纵坐标为抛物线的最小值。
对于开口向下的抛物线,其最高点为顶点,对应的坐标为(-b/2a,f(-b/2a)),其中f(x)=ax^2+bx+c。
最高点处的纵坐标为抛物线的最大值。
5. 零点性质:抛物线与x轴的交点称为零点,若抛物线y=ax^2+bx+c有零点,则有两个零点,记为x1和x2(x1≠x2),且x1+x2=-b/a,x1*x2=c/a。
6. 奇偶性质:对于抛物线y=ax^2+bx+c,若a为奇数,则抛物线是奇函数,即f(-x)=-f(x);若a为偶数,则抛物线是偶函数,即f(-x)=f(x)。
7. 渐进线性质:对于开口向上的抛物线y=ax^2+bx+c,当x趋于无穷大时,抛物线趋近于y=x的直线;当x趋于负无穷大时,抛物线趋近于y=x的直线。
高考数学总复习(一轮)(人教A)教学课件第八章 平面解析几何第7节 抛物线

还是由交点纵坐标确定,同时还要注意坐标与距离关系.
(2)求解与抛物线有关的问题,要充分利用平面几何的性质.
角度二
抛物线性质的综合应用
[例4] (2024·陕西商洛模拟)已知F为抛物线y2=16x的焦点,P为该
||
抛物线上的动点,点A(-1,0),则
代入点P(-1,2),
解得 k=-4 或 m=,
2
2
所以 y =-4x 或 x =y.
2
y =-4x 或 x = y
.
提升·关键能力
类分考点,落实四翼
考点一
抛物线的定义及应用
[例1] (1)(2022·全国乙卷)设F为抛物线C:y2=4x的焦点,点A在C上,
点B(3,0),若|AF|=|BF|,则|AB|等于(
直径的圆与y轴相切.
1.思考辨析(在括号内打“√”或“×”).
(1)方程y=ax2(a≠0)表示的曲线是焦点在x轴上的抛物线,且其焦点
坐标是 (,0) ,准线方程是 x=- .( × )
(2)抛物线既是中心对称图形,又是轴对称图形.( × )
(3)二次函数y=ax2+bx+c(a≠0)图象就是抛物线.( √ )
设出对应的标准方程,由于标准方程只有一个参数p,只需一个条件
就可以确定抛物线的标准方程.
[针对训练]
(1)设圆C与圆x2+(y-3)2=1外切,与直线y=0相切,则圆心C的轨迹为
(
)
A.抛物线
B.双曲线
C.椭圆
D.圆
√
解析:(1)由题意知,圆C的圆心到点(0,3)的距离比到直线y=0的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线
【考点梳理】
1.抛物线的概念
平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.
2.抛物线的标准方程与几何性质
【教材改编】
1.(选修2-1 P 67练习T 2(4)改编)抛物线280x y +=的焦点坐标为( ) A .()0,2-
B .()0,2
C .10,32⎛
⎫- ⎪⎝
⎭
D .10,32⎛⎫
⎪⎝⎭
[答案] C
[解析] 由280x y +=,得21
8
x y =-.
128p =,116
p =,
∴焦点为10,32⎛
⎫- ⎪⎝
⎭,故选C.
2.(选修2-1 P 73A 组T 2(1)改编)以1x =为准线的抛物线的标准方程为( ) A .22y x = B .22y x =- C .24y x = D .24y x =-
[答案] D
[解析] 由准线1x =知,抛物线方程为:22y px =-(0p >)且12
p
=,2p =,
∴方程为24y x =-,故选D.
3.(选修2-1P 73A 组T 3改编)M 是抛物线22y px =(0p >)位于第一象限的点,
F 是抛物线的焦点,若5
F 2
p M =
,则直线F M 的斜率为( ) A .43 B .53
C .54
D .52
[答案] A
[解析] 设()00,x y M ,由5
F 2
p M =
,得 05
22
p x p +
=,∴02x p =.
∴220024y px p ==,取正根得02y p =.
即M 的坐标为()2,2p p ,又F 的坐标为,02p ⎛⎫ ⎪⎝⎭
,
∴F 204
322
p k p p M -=
=-
,故选A. 4.(选修2-1 P 74A 组T 8改编)如图所示是抛物线形拱桥,当水面在l 时,拱顶离水面2 m ,水面宽4 m .水位下降1 m 后,水面宽为( )
A .2 3 m
B .2 6 m
C .4 2 m
D .4 3 m
[答案] B
[解析] 建立如图所示的平面直角坐标系,设抛物线方程为x 2=-2py (p >0),则A (2,-2),将其坐标代入x 2=-2py ,得p =
1.
∴x 2=-2y .
当水面下降1 m ,得D (x 0,-3)(x 0>0),将其坐标代入x 2=-2y ,得x 20=6,∴x 0= 6.∴水面宽|CD |=2 6 m .故选B.
5.(选修2-1 P 69例4改编)过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积为( )
A.22
B. 2
[答案] C
[解析] 由题意设A (x 1,y 1),B (x 2,y 2),(y 1>0,y 2<0),如图所示,|AF |=x 1+1=3,
∴x 1=2,y 1=2 2.
设AB 的方程为x -1=ty ,由⎩⎪⎨⎪⎧
y 2=4x ,
x -1=ty
消去x 得y 2-4ty -4=0.
∴y 1y 2=-4, ∴y 2=-2,x 2=1
2,
∴S △AOB =12×1×|y 1-y 2|=32
2,故选C.
6.(选修2-1 P 73A 组T 1改编)双曲线x 2-y 2=4与抛物线C :y 2=2px (p >0)的准线相交于A ,B 两点,若|AB |=43,则抛物线C 的方程为( )
A .y 2=2x
B .y 2=4x
C .y 2=8x
D .y 2=16x
[答案] D
[解析] 抛物线的准线方程为x =-p
2,代入x 2-y 2=4,得y =± p 2
4-4,所
以 p 24
-4=23,解得p =8,则抛物线C 的方程为y 2
=16x ,
故选D.
7.(选修2-1 P 66例1(2)改编)焦点在直线220x y ++=上的抛物线的标准方程
为 .
[答案] 24y x =-或28x y =-
[解析] 抛物线的标准方程的焦点都在坐标轴上,直线220x y ++= 与坐标轴的交点分别为()1,0-与()0,2-, 故所求的抛物线的焦点为()1,0-或()0,2-,
当焦点为()1,0-时,易得抛物线标准方程为24y x =-. 当焦点为()0,2-时,易得抛物线标准方程为28x y =-.
8.(选修2-1 P 74B 组T 2改编)一个顶点在原点,另外两点在抛物线22y x =上的正三角形的面积为 .
[答案] [解析] 如图,根据对称性:A 、B 关于x 轴对称,故30x ∠AO =.
直线OA 的方程3
y x =
,代入22y x =,得260x x -=,解得0x =或6x =.
即得A 的坐标为(.
∴AB =.
故正三角形OAB 的面积为1
62
⨯=9.(选修2-1 P 71例6改编)过点(-2,1)斜率为k 的直线l 与抛物线y 2=4x 只有一个公共点,则由k 的值组成的集合为________.
[答案] {0,-1,1
2}
[解析] 设l 的方程为y -1=k (x +2), 由方程组⎩⎪⎨⎪⎧
y =kx +(2k +1)
y 2=4x ,得
ky 2-4y +4(2k +1)=0,
①当k =0时,y =1,此时x =14,l 与抛物线仅有一个公共点(1
4,1). ②当k ≠0时,由Δ=-16(2k 2+k -1)=0,得k =-1或k =1
2,∴k 的值组成的集合为{0,-1,1
2}.
10.(选修2-1 P 74B 组T 1改编)从抛物线y 2=2px (p >0)上各点向y 轴作垂线,则各垂线段的中点轨迹方程为________.
[答案] y 2=4px (p >0)
[解析] 如图,设P (x 1,y 1)是抛物线y 2=2px 上任一点. PQ ⊥y 轴,垂足为Q ,PQ 的中点M (x ,y ). 则x 1=2x ,y 1=y ,
又y 21=2px 1,∴y 2=2p ·2x =4px .
所以各线段的中点轨迹方程为y 2=4px (p >0).
11.(选修2-1 P 80A 组T 6改编)如图,四边形ABCD 是抛物线y 2=2px (p >0)的内接梯形.且AD ,BC 与x 轴交于F ,E .AD ⊥x 轴,BC ⊥x 轴,若AD =4,BC =8. |BE |是|OE |与|AD |的等比中项.
(1)求抛物线方程;
(2)过抛物线准线上一点P 作梯形ABCD 外接圆的切线,T 为外接圆圆心,切点为M 、N ,求四边形PMTN 面积的最小值.
[解析] (1)由题意可设A ,B 的坐标分别为A (m,2),B (n ,4). ∴4=2pm ,① 16=2pn ,② 又|BE |2=|OE |·|AD |.
由抛物线的对称性知|BE |=4. ∴16=n ×4,③
联立①②③解得,p =2,m =1,n =4, ∴抛物线方程为y 2=4x .
(2)由对称性知,梯形ABCD 为等腰梯形, ∴梯形ABCD 外接圆的圆心T 在x 轴上. 设其圆心坐标为T (a,0),由(1)知A (1,2),B (4,4). 由|TA |=|TB |得,(a -1)2+4=(a -4)2+16. ∴a =92.|TA |2=(92-1)2+4=654,
∴梯形ABCD 外接圆的方程为(x -92)2+y 2=65
4, 即x 2+y 2-9x +4=0,。