高中文科数学选修部分试题

合集下载

人教A版选修一高二年级文科数学试卷.docx

人教A版选修一高二年级文科数学试卷.docx

高中数学学习材料马鸣风萧萧*整理制作高二年级文科数学试卷第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、复数3(1)z i i =+的实部与虚部分别为A .3,3B .3,3i --C .3,3--D .3,3i -2、用反证法证明命题:“三角形的内角至多有一个钝角”时,假设正确的是 A .假设至少有一个钝角 B .假设至少有两个钝角 C .假设没有一个钝角 D .假设没有钝角或至少有两个钝角3、关于三段论推理:“任何实数的平方大于0,因为a 是实数,所以20a >”,这个推理 A .大前提错误 B .小前提错 C .推理形式错 D .是正确的4、设某大学的女生体重()y kg 与身高()x cm 具有线性相关关系,根据一组样本数据(,)(1,2,,)i i x y i n =,用最小二乘法建立的回归方程为ˆ0.8585.71yx =-,则下列结论不正确的是A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(,)x yC .若该大学某女生身高增加1cm ,则其体重约增加0.85kgD .若该大学女女生升高为170cm ,则可断定其体重必为58.79kg5、在同一直角坐标系中,曲线C 经过伸缩变换53x xy y'=⎧⎨'=⎩ 变为曲线281x y ''+=,则C 的方程为A .2225361x y += B .2250721x y += C .2210241x y +=D .22281259x y += 6、复数z 满足(1)4z i +=,则复数z 在复平面上对应的点Z 与点(1,0)A 间的距离为 A .2 B .5 C .4 D .13 7、将曲线2sin()3y x π=+上所有点的横坐标伸长为原来的3倍,纵坐标不变,得到的曲线方程为A .2sin(3)3y x π=+B .2sin(3)y x π=+C .12sin()33y x π=+D .12sin()39y x π=+ 8、下列推理中属于归纳推理且结论正确的是A .由21n a n =-,求出2221231,2,3,S S S ===,推断:数列{}n a 的前n 项和2n S n =B .由()cos f x x x =满足()()f x f x -=-对x R ∀∈都成立,推断:()cos f x x x =为奇函数C .由圆222x y r +=的面积2S r π=,推断:椭圆22221x y a b+=的面积S ab π=D .由222223(11)2,(21)2,(31)2,+>+>+> ,推断:对一起2,(1)2nn N n +∈+>.9、已知圆C 的极坐标方程为2cos()4πρθ=+,则圆心C 的极坐标为A .(1,)4π-B .3(1,)4π C .(2,)4π- D .3(2,)4π10、某单位为了了解办公楼用电量(y 度)与气温()x C 之间的关系,随机统计了四个工作日的用电量与当店的平均气温,并制作了对照表如下,由表中数据得到线性回归方程ˆ2yx a =-+,当气温为4C -时,预测用电量约为 A .68度 B .52度 C .12度 D .28度11、若一个椭圆的长轴长,短轴长和焦距成等差数列,则该椭圆的离心率为 A .45 B .35 C .25 D .1512、有三张卡片,分别写有1和2,1和3,2和3,甲乙丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上没有的数字是 A .不确定 B .3 C .2 D .1第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13、复数20171i i+(其中i 为虚数单位)的模等于14、在极坐标系中,已知5(2,),(4,)66A B ππ,则,A B 两点之间的距离AB = 15、把圆2216x y +=变成椭圆22116y x +=的伸缩变换为 16、凸边形的性质:如果函数()f x 在区间D 上的是凸变形,则对于区间D 内的任意n 个自变量12,,,n x x x ,有1212()()()()n nf x f x f x x x x f nn++++++≤,当且仅当12n x x x ===时等号成立,已知函数sin y x =上是凸函数,则在ABC ∆中,sin sin sin A B C ++的最大值为三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤 17、(本小题满分10分) (1)计算:(1)(25)i i i-++(其中i 为虚数单位);(2)若复数22(21)(483),()Z m m m m i m R =+-+-+∈的共轭复数Z 对应的点在第一象限,求实数m 的取值集合.18、(本小题满分12分) 用分析法证明:2212223a a a a --<---(其中32a ≥)19、(本小题满分12分)已知以点(1,2)A -为圆心的圆与直线1:270l x y ++=相切,过点(4,0)B -的动直线l 与圆A 相交于,M N 两点. (1)求圆A 的方程;(2)当211MN =时,求直线l 的方程.20、(本小题满分12分)在平面直角坐标系xOy 中,直线1:5C x =-,圆222:(2)(1)1C x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1) 求12,C C 的极坐标方程; (2)若直线3C 的极坐标方程为()4R πθρ=∈,2C 与3C 的交点为,M N ,求2C MN ∆的面积.21、(本小题满分12分)2017全国两会,即中华人民共和国第十二届全国人民代表大会第五次会议和中国人民政治协商会议,第十二届全国委员会第五次会议,分别于2017年3月5日和3月3日在北京开幕,为了解哪个年龄段的更关注两会,某机构随机抽取了年龄在1575岁之间的的100人进行调查,并按年龄绘制的频率绘制分布直方图如右图所示,其分组区间为:[)[)[)[)[)15,25,25,35,35,45,45,55,55,65,[]65,75,把年龄落在区间[)15,35和[]35,75内的人分别称为“青少年人”和“中年人”,经统计“青 少年人”与“中老年人”的人数之比为9:11. (1)求频率直方图中,a b 的值;(2)若“青少年人”中有15人在关注两会,根据已知条件完成右侧的22⨯列联表,根据此统计结果能否有99%的把握认为“中老年人”此“青少年人”更加关注两会?附参考公式:2()()()()()n ad bc K a b c d a c b d -=++++n a b c d =+++22、(本小题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的短轴长为2,离心率32e =.(1)求椭圆的标准方程;(2)直线:l y x m =+与椭圆C 交于不同的两点,A B ,若AOB ∠为锐角,求实数m 的取值范围.。

人教版高二数学(文科)选修1-2单元测试题(六)及答案

人教版高二数学(文科)选修1-2单元测试题(六)及答案

2010级高二数学(文科)选修1-2单元测试题(六)班级______________姓名______________一、选择题(42080''⨯=)1.[ ]已知命题P :“2,230x R x x ∀∈++≥”,则命题P 的否定为 A .2,230x R x x ∀∈++< B .2,230x R x x ∃∈++≥ C .2,230x R x x ∃∈++< D .2,230x R x x ∃∈++≤ 2.[ ]对任意实数c b a ,,,下列命题中,真命题是A .“bc ac >”是“b a >”的必要条件B .“bc ac =”是“b a =”的必要条件C .“bc ac >”是“b a >”的充分条件D .“bc ac =”是“b a =”的充分条件 3.[ ] “2a =-”是“直线02=+y ax 垂直于直线1=+y x ”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件4.[ ]椭圆14922=+y x 的焦点坐标是A .)5,0(±B .)0,5(±C .)13,0(±D .)0,13(±5.[ ] “α为锐角”是“sin 0α>”的A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件6.[ ]命题“所有能被2整除的数都是偶数”的否定..是 A .所有不能被2整除的数都是偶数 B .所有能被2整除的数都不是偶数 C .存在一个不能被2整除的数是偶数 D .存在一个能被2整除的数不是偶数 7.[ ]曲线()ln f x x x x =+在点1x =处的切线方程为A .1y x =-B .1y x =+C .21y x =-D .21y x =+8.[ ]已知函数),2[,32)(2+∞-∈+-=x mx x x f 当时是增函数,则m 的取值范围是 A .[-8,+∞) B .[8,+∞) C .(-∞,- 8] D .(-∞,8]9.[ ]下列四种说法中,错误..的个数是 ①命题“2,320x R x x ∀∈--≥均有”的否定是:“2,320x R x x ∃∈--≤使得”; ②“命题q p ∨为真”是“命题q p ∧为真”的必要不充分条件; ③“若b a bm am <<则,22”的逆命题为真; ④{}0,1A =的子集有3个. A .0个 B .1个 C .2 个D .3个10.[ ]已知椭圆2215x y m +=的离心率e =,则m 的值为A .3BCD .253或311.[ ] “关于x 的不等式220x ax a -+>的解集为R ”是“01a ≤≤”的 A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件 12.[ ]椭圆123222=+y x 的半焦距等于A .10B .102C .22D .2 13.[ ]设双曲线的焦点在x 轴上,两条渐近线为x y 21±=,则该双曲线的离心率为 A .5 B .5 C .45 D .2514.[ ]焦点为()6,0,且与双曲线1222=-y x 有相同的渐近线的双曲线方程是 A .1241222=-y xB .1241222=-x yC .1122422=-x y D .1122422=-y x 15.[ ]抛物线2ax y =的准线方程是2y =,则a 的值为 A .81 B .-81 C .8 D .-816.[ ]已知双曲线2221x y a-=的一个焦点为(2,0),则它的离心率为A B C .32 D .217.[ ]规定记号“⊗”表示一种运算,即2a b ab a b ⊗=++ (,a b 为正实数), 若31=⊗k ,则k =A .1B .2-C .2- 或1D .218.[ ]若椭圆12222=+by a x (0>>b a )的离心率21=e ,右焦点为()0,c F ,方程022=++c bx ax 的两个实数根分别是1x 和2x ,则点),(2,1x x P 到原点的距离为A .2B .27C .2D .4719.[ ]观察图形规律,在其右下角的空格内画上合适的图形为A .■B .▢C .□D .○20.[ ]在右表格中,每格填上一个数字后,使每一 行成等差数列,每一列成等比数列,则a b c ++的值是 A .1 B .2 C .3 D .4二、填空题(4520''⨯=)21.抛物线x y =2的准线方程是 . 22.已知复数z 满足(34)5i z i -=,则||z = .23.已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4), ,则第80个数对是 .24.双曲线221916x y -=的焦点到渐近线的距离为 . 25.观察下列式子:474131211,3531211,23211222222<+++<++<+,… …,根据以上式子可以猜想:<++++22220111...31211____ _____.三、解答题(10550''⨯=)26.已知正数a ,b 满足a b s +=,且1s a x =+,1sb y =+.证明:1xy =.27.观察等式:sin 220°+sin 240°+sin 20°·sin 40°=34;sin 210°+sin 250°+sin 10°·sin 50°=34;sin 228°+sin 232°+sin 28°·sin 32°=34.请写出一个与以上三个等式规律相同的一般性等式.(不必证明)28.已知离心率为53的双曲线与椭圆2214015x y +=有公共焦点,求双曲线的方程.29.已知椭圆中心在原点,以坐标轴为对称轴且经过两点()()2,3,1,621--P P , 求椭圆的方程.30.若a 、b 、c 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6.请用反证法证明:a ,b ,c 中至少有一个大于0.2010级高二数学(文科)选修1-2单元测试题(六)参考答案一、选择题(42080''⨯=)1-----------5 CBCBA 6----------10 DCCDD 11--------15 ADDBB 16--------20 AAAAA二、填空题(4520''⨯=)21.14x =- 22.1 23.(2,12) 24.4 25.40212011三、解答题(10550''⨯=) 26.证明:∵1s a x =+ ∴s a x a -=------------------------------------------------2分 ∵1sb y =+ ∴s b y b -=--------------------------------4分∴xy =s a s b a b --⨯=a b a a b b a b +-+-⨯=1b aa b⨯=------10分 另证:∵a b s +=,且1s a x =+,1sb y =+ ∴11s s s x y +=++,又0s >∴11111x y +=++ 去分母得:11(1)(1)y x x y +++=++ ∴1xy =27.解:若060αβ+=,则223sin sin sin sin 4αβαβ++=----------10分28.解: 在椭圆2214015x y +=中,240a =,215b =-----------------2分 ∴2401525c =-=,焦点为12(5,0),(5,0)F F ------------------------4分 ∴设双曲线的方程为22221(0,0)x y a b a b-=>>------------------------5分又∵35==a c e ,且5c =------------------------------------------7分3,4a b ∴== ------------------------------------------------9分故双曲线的方程为221916x y -=--------------------------------------10分29.解:(1)若椭圆焦点在x 轴上,设椭圆方程为12222=+by a x (0)a b >>---1分椭圆过点()()2,3,1,621--P P ,∴⎪⎩⎪⎨⎧=+=+1231162222b ab a ------------------------------3分 解得:⎩⎨⎧==3922b a ---------------------------------------------------------------------------------5分∴椭圆方程为13922=+y x -----------------------------------------------------------------6分 (2)若椭圆焦点在y 轴上,设椭圆方程为22221(0)x y a b b a+=>>----------7分椭圆过点()()2,3,1,621--P P ,2222611321b a ba ⎧+=⎪⎪⎨⎪+=⎪⎩--------------------8分 解得: 2239a b ⎧=⎪⎨=⎪⎩ 这与0a b >>矛盾,故无解----------------------------9分综上所述:椭圆方程为13922=+y x -------------------------------------------10分30.证明: 假设a 、b 、c 都不大于0----------------------------------------------1分即a ≤0,b ≤0,c ≤0---------------------------------------------------------------2分 所以a +b +c ≤0---------------------------------------------------------------------3分 而a +b +c=⎝⎛⎭⎫x 2-2y +π2+⎝⎛⎭⎫y 2-2z +π3+⎝⎛⎭⎫z 2-2x +π6-----------------------------------4分 =(x 2-2x )+(y 2-2y )+(z 2-2z )+π=(x -1)2+(y -1)2+(z -1)2+π-3----------------------------------------------7分 所以a +b +c >0----------------------------------------------------------------------8分 这与a +b +c ≤0矛盾--------------------------------------------------------------9分 故a 、b 、c 中至少有一个大于0-------------------------------------------------10分。

高三期末文科数学试题及答案

高三期末文科数学试题及答案

高三期末文科数学试题及答案数学试卷(文史类) 202X.1(考试时间120分钟满分150分)本试卷分为挑选题(共40分)和非挑选题(共110分)两部分第一部分(挑选题共40分)一、挑选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合A{1,0,1},B{x1x1},则AIB=A.{0,1}B.{1,0} C.{0} D.{1,0,1}2. 下列函数中,既是奇函数又存在零点的是A.f(x) 3. 实行如图所示的程序框图,则输出的i值为A.3 B.4 C.5 D.6第3题图4.在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果以下面的频率散布直方图所示.若该处高速公路规定正常行驶速度为90km/h~120km/h,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有 B.f(x) 1 C.f(x)ex D.f(x)sinx x1A.30辆B.300辆C.170辆 D.1700辆频率 km/h)第 4题图5. 已知m,n表示两条不同的直线,,表示两个不同的平面,且m,n,则下列说法正确的是A.若//,则m//n B.若m,则C.若m//,则// D.若,则m n6.设斜率为2的直线l过抛物线y ax(a0)的焦点F,且与y轴交于点A,若OAF(O为坐标原点)的面积为4,则抛物线方程为A.y24x B. y24x C. y28x D.y28x7. 已知A,B为圆C:(x m)(y n)9(m,n R)上两个不同的点(C为圆心),且满足|CA CB|,则AB 222A. 23 B. C. 2 D. 48. 设函数f(x)的定义域为D,如果存在正实数m,使得对任意x D,当x m D时,都有f(x m)f(x),则称f(x)为D上的“m型增函数”.已知函数f(x)是定义在R上的奇函数,且当x0时,f(x)x a a(a R),若f(x)为R上的“20型增函数”,则实数a的取值范畴是A. a0 B.a20 C. a10 D. a5第二部分(非挑选题共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.运算:i(1i) (i为虚数单位).y210. 双曲线x1的渐近线方程为3111. 在ABC中,若BC1,AC2,cosC,则AB sinA. 422xy0112.已知正数x,y满足束缚条件,则z()2x y的最小值为. 2x3y5013.某四棱锥的三视图如图所示,则该四棱锥的体积是.俯视图侧视图第13题图14. 在ABC中,AB AC,D为线段AC的中点,若BD的长为定值l,则ABC 面积的值为(用l表示).三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明进程.15. (本小题满分13分)已知数列{an}是等差数列,数列{bn}是各项均为正数的等比数列,且a1b13,a2b214,a3a4a5b3.(Ⅰ)求数列{an}和{bn}的通项公式;(Ⅱ)设cn an bn,n N*,求数列{cn}的前n项和.16. (本小题满分13分)已知函数f(x)cos2xxcosx a的图象过点(,1).(Ⅰ)求实数a的值及函数f(x)的最小正周期;(Ⅱ)求函数f(x)在[0,]上的最小值. 617. (本小题满分13分)某中学从高一年级、高二年级、高三年级各选1名男同学和1名女同学,组成社区服务小组.现从这个社区服务小组的6名同学中随机选取2名同学,到社区老年中心参加“尊老爱老”活动(每位同学被选到的可能性相同).(Ⅰ)求选出的2人都是女同学的概率;(Ⅱ)设“选出的2人来自不同年级且是1名男同学和1名女同学”为事件N,求事件N产生的概率.18. (本小题满分14分)如图,在四棱锥P ABCD中,底面ABCD是正方形.点E是棱PC的中点,平面ABE与棱PD交于点F.(Ⅰ)求证:AB∥EF;(Ⅱ)若PA AD,且平面PAD平面ABCD,试证明AF平面PCD;(Ⅲ)在(Ⅱ)的条件下,线段PB上是否存在点 AM,使得EM平面PCD?(直接给出结论,不需要说明理由)19. (本小题满分13分)k2x,k R. x(Ⅰ)当k1时,求曲线y f(x)在点(1,f(1))处的切线方程;(Ⅱ)当k e时,试判定函数f(x)是否存在零点,并说明理由;(Ⅲ)求函数f(x)的单调区间. 已知函数f(x)(2k1)lnx20. (本小题满分14分)已知圆O:x y1的切线l与椭圆C:x3y4相交于A,B两点.(Ⅰ)求椭圆C的离心率;(Ⅱ)求证:OA OB;(Ⅲ)求OAB面积的值.2222北京市朝阳区2015-202X学年度第一学期期末高三年级统一考试数学答案(文史类) 202X.1一、挑选题:(满分40分)4二、填空题:(满分30分)(注:两空的填空,第一空3分,第二空2分)三、解答题:(满分80分)15. (本小题满分13分)解:(Ⅰ)设等差数列an的公差为d,等比数列bn的公比为q,且q0.依题意有,a1d b1q14, 23(a3d)bq.11由a1b13,又q0,解得q3, d 2.所以an a1(n1)d32(n1)2n1,即an2n1,n N.bn b1qn133n13n,n N. ………………………………………7分(Ⅱ)由于cn an bn2n13n,所以前n项和Sn(a1a2an)(b1b2bn)(352n1)(31323n)n(32n1)3(13n) 2133 n(n2)(3n1). 2所以前n项和Sn n(n2)16. (本小题满分13分)解:(Ⅰ)由f(x)cos2xxcosx a3n(31),n N*.………………………………13分 21cos2x a25sin(2x)61 a. 2611所以f()sin(2)a 1.解得a.66622函数f(x)的最小正周期为. …………………………………………………………7分由于函数f(x)的图象过点(,1),(Ⅱ)由于0x,所以2x. 2则sin(2x).1所以当2x,即x时,函数f(x)在[0,]上的最小值为. ……………13分2217.(本小题满分13分)解:从高一年级、高二年级、高三年级选出的男同学分别记为A,B,C,女同学分别记为X,Y,Z.从6名同学中随机选出2人参加活动的所有基本事件为:{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z}, {C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15个.……………4分(Ⅰ)设“选出的2人都是女同学”为事件M,则事件M包含的基本事件有{X,Y},{X,Z},{Y,Z},共3个,所以,事件M产生的概率 P(M)(Ⅱ)事件N包含的基本事件有{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6个,所以,事件N产生的概率P(N)31.……………………………………8分15562.……………………………………13分 15518. (本小题满分14分)(Ⅰ)证明:由于底面ABCD是正方形,所以AB∥CD.又由于AB平面PCD,CD平面PCD,所以AB∥平面PCD.又由于A,B,E,F四点共面,且平面ABEF平面PCD EF,所以AB∥EF.……………………5分(Ⅱ)在正方形ABCD中,CD AD.6第6 / 10页又由于平面PAD平面ABCD,且平面PAD平面ABCD AD,所以CD平面PAD.又AF平面PAD 所以CD AF.由(Ⅰ)可知AB∥EF,又由于AB∥CD,所以CD∥EF.由点E是棱PC中点,所以点F是棱PD中点.在△PAD中,由于PA AD,所以AF PD.又由于PD CD D,所以AF平面PCD........................................11分(Ⅲ)不存在. (14)分19. (本小题满分13分)解:函数f(x)的定义域:x(0,).2k1k2x2(2k1)x k(x k)(2x1)f(x)22 . 22xxxx12x. x(x1)(2x1)f(x). 2x(Ⅰ)当k1时,f(x)lnx有f(1)ln1123,即切点(1,3),k f(1)(11)(21) 2. 21所以曲线y f(x)在点(1,f(1))处切线方程是y32(x1),即y2x 1.………………………………………………………………………4分(Ⅱ)若k e,f(x)(2e1)lnx f(x)e2x.x(x e)(2x1).x2令f(x)0,得x1e(舍),x2 1. 7第7 / 10页11e1则f(x)min f()(2e1)ln22(1ln2)e ln210.22122所以函数f(x)不存在零点. ………………………………………………………8分(x k)(2x1).x2当k0,即k0时,(Ⅲ) f(x)当0k11,即k0时,当k,即k时, 22 当k11,即k时,228第8 / 10页综上,当k0时,f(x)的单调增区间是(,);减区间是(0,).1212111k0时,f(x)的单调增区间是(0,k),(,);减区间是(k,). 2221当k时,f(x)的单调增区间是(0,);211当k时,f(x)的单调增区间是(0,),(k,);221减区间是(,k). ……………………………13分2当20. (本小题满分14分)2解:(Ⅰ)由题意可知a4,b248222,所以c a b. 33所以e c.所以椭圆C的离心率为…………………………3分a33(Ⅱ)若切线l的斜率不存在,则l:x1.x23y21中令x1得y1.在44不妨设A(1,1),B(1,1),则OA OB110.所以OA OB.同理,当l:x1时,也有OA OB.若切线l的斜率存在,设l:y kx m1,即k21m2.由y kx m222,得(3k1)x6kmx3m40.明显0. 22x3y46km3m24设A(x1,y1),B(x2,y2),则x1x22,x1x2.3k13k21所以y1y2(kx1m)(kx2m)kx1x2km(x1x2)m.2222所以OA OB x1x2y1y2(k1)x1x2km(x1x2)m9第9 / 10页3m246km(k1)2km2m23k13k12(k21)(3m24)6k2m2(3k21)m223k14m24k244(k21)4k240. 223k13k1所以OA OB.综上所述,总有OA OB成立.………………………………………………9分(Ⅲ)由于直线AB与圆O相切,则圆O半径即为OAB的高. 当l的斜率不存在时,由(Ⅱ)可知AB2.则S OAB 1. 当l的斜率存在时,由(Ⅱ)可知,AB23k14(1k2)(9k21)4(9k410k21)4k2所以AB4(14)(3k21)29k46k219k6k212k21641644416419k6k213329k26k(当且仅当k时,等号成立).所以ABmax, (S OAB)max.时,OAB面积的值为.…………14分 33综上所述,当且仅当k。

高中选修三数学试题及答案

高中选修三数学试题及答案

高中选修三数学试题及答案一、选择题(每题3分,共30分)1. 若函数\( f(x) = 2x^2 - 3x + 1 \),求\( f(-1) \)的值。

A. 0B. 2C. 4D. 62. 已知圆的半径为5,圆心在原点,求圆的方程。

A. \( x^2 + y^2 = 25 \)B. \( (x-5)^2 + (y-5)^2 = 25 \)C. \( x^2 + y^2 - 5x - 5y = 0 \)D. 以上都不对3. 直线\( y = 3x + 2 \)与直线\( y = -x + 6 \)的交点坐标是:A. (1, 5)B. (2, 8)C. (4, 10)D. (3, 11)4. 已知\( \sin \theta = \frac{3}{5} \),且\( \theta \)为锐角,求\( \cos \theta \)的值。

A. \( \frac{4}{5} \)B. \( -\frac{4}{5} \)C.\( \frac{3}{4} \) D. \( -\frac{3}{4} \)5. 函数\( g(x) = \ln(x) \)的定义域是:A. \( x > 0 \)B. \( x < 0 \)C. \( x \geq 0 \)D. \( x\leq 0 \)6. 已知等差数列\( a_n \)的首项为2,公差为3,求第5项的值。

A. 17B. 14C. 11D. 87. 已知矩阵\( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \),求矩阵\( A \)的行列式。

A. 0B. 1C. 7D. 88. 已知圆锥曲线\( x^2 - 4xy + 4y^2 = 0 \),求其类型。

A. 椭圆B. 双曲线C. 抛物线D. 圆9. 若\( a \),\( b \),\( c \)是三角形的三边,且满足\( a^2 + b^2 = c^2 \),求三角形的类型。

高中数学选修试题及答案

高中数学选修试题及答案

高中数学选修试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是:A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)答案:C2. 函数f(x) = 2x + 1的反函数是:A. f^(-1)(x) = (x - 1) / 2B. f^(-1)(x) = (x + 1) / 2C. f^(-1)(x) = x / 2 + 1D. f^(-1)(x) = x / 2 - 1答案:A3. 已知集合A = {1, 2, 3},B = {2, 3, 4},则A∩B的元素个数是:A. 0B. 1C. 2D. 3答案:C4. 若直线y = 2x + 1与直线y = -x + 4相交,则交点的横坐标是:A. 1B. 2C. 3D. 4答案:B5. 函数f(x) = x^2 - 4x + 3的最小值是:A. -1B. 0C. 1D. 3答案:A6. 已知等差数列{an}的前三项依次为1,4,7,则该数列的第五项是:A. 10B. 11C. 12D. 13答案:C7. 圆的方程为(x - 2)^2 + (y + 3)^2 = 25,则圆心坐标为:A. (2, -3)B. (-2, 3)C. (2, 3)D. (-2, -3)答案:A8. 抛物线y^2 = 4x的焦点坐标是:A. (1, 0)B. (0, 1)C. (1, 1)D. (0, 0)答案:A9. 函数f(x) = x / (x^2 + 1)的值域是:A. (-1, 1)B. (0, 1)C. (-∞, 0)D. (0, +∞)答案:B10. 已知向量a = (3, -4),b = (-2, 6),则向量a与向量b的夹角θ满足:A. cosθ = 1/5B. cosθ = 1/3C. cosθ = -1/5D. c osθ = -1/3答案:A二、填空题(每题4分,共20分)1. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x) = __________。

2020年(文科数学)(新课标Ⅰ)试卷真题+参考答案+详细解析

2020年(文科数学)(新课标Ⅰ)试卷真题+参考答案+详细解析

2020年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合2{|340}A x x x =--<,{4,1,3,5}B =-,则(A B = )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}2.(5分)若312z i i =++,则||(z = ) A .0B .1C .2D .23.(5分)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A 51-B 51-C 51+D 51+4.(5分)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为() A .15B .25C .12D .455.(5分)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C)︒的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据()(1,i i x y i =,2,⋯,20)得到下面的散点图:由此散点图,在10C ︒至40C ︒之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A .y a bx =+B .2y a bx =+C .x y a be =+D .y a blnx =+6.(5分)已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( ) A .1B .2C .3D .47.(5分)设函数()cos()6f x x πω=+在[,]ππ-的图象大致如图,则()f x 的最小正周期为( )A .109πB .76π C .43π D .32π 8.(5分)设3log 42a =,则4(a -= ) A .116B .19C .18D .169.(5分)执行如图的程序框图,则输出的(n = )A .17B .19C .21D .2310.(5分)设{}n a 是等比数列,且1231a a a ++=,2342a a a ++=,则678(a a a ++= ) A .12B .24C .30D .3211.(5分)设1F ,2F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且||2OP =,则△12PF F 的面积为( ) A .72B .3C .52D .212.(5分)已知A ,B ,C 为球O 的球面上的三个点,1O 为ABC ∆的外接圆.若1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π二、填空题:本题共4小题,每小题5分,共20分。

梁山一中高二文科数学月考试题参考答案(选修1-1第1、2章)

梁山一中高二文科数学月考试题参考答案一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号 1 2 3 4 5 6 7 8 9 10 答案BDACDBCCBA二.填空题(本大题共5小题,每小题5分,共25分.将答案填在题中的横线上) 11. ②③ 12.116y =-13. 4 14. 3 15. 24 三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16. (本小题满分12分)解:对任意实数x 都有012>++ax ax 恒成立 ⎩⎨⎧<∆>=⇔00a a 或40<≤⇔a ;关于x 的方程02=+-a x x 有实数根41041≤⇔≥-⇔a a . p q ∨为真命题, p q ∧为假命题,即p 真q 假,或p 假q 真,如果p 真q 假,则有44141,40<<∴><≤a a a 且;如果p 假q 真,则有0,4140<⇒⎪⎩⎪⎨⎧≤≥<a a a a 或. 所以实数a 的取值范围()1,0,44⎛⎫-∞ ⎪⎝⎭. 17.(本小题满分12分)解:(1)设椭圆的标准方程为)0(12222>>=+b a by a x ,由已知,122=a ,32==a c e , 20,4,6222=-===∴c abc a ,焦点在x 轴上,所以椭圆的标准方程为1203622=+y x . (2)由已知,双曲线的标准方程为116922=-y x ,其左顶点为)0,3(-. 设抛物线的标准方程为)0(22>-=p px y , 其焦点坐标为)0,2(p-,则32=p, 即6=p , 所以抛物线的标准方程为x y 122-=.18.(本小题满分12分)解:由已知条件得椭圆的焦点在x轴上,其中3,c a ==从而1b =,所以其标准方程是22 1.9x y += 设()()1122,y ,,A x B x y ,线段AB 的中点为()00,M x y ,联立方程组221,92,x y y x ⎧+=⎪⎨⎪=+⎩消去y ,得21036270x x ++=,236410270∆=-⨯⨯>,12121827,510x x x x ∴+=-=,120925x x x +∴==-,00125y x =+=,∴线段AB 中点坐标为91,55⎛⎫- ⎪⎝⎭.12AB x =-==19.(本小题满分12分)解:设M (y x ,),P (11,y x ),Q (22,y x ), 易求得x y 42=的焦点F 的坐标为()1,0.∵M 是FQ 的中点,∴ 22122x x y y +⎧=⎪⎪⎨⎪=⎪⎩⇒⎩⎨⎧=-=y y x x 21222; 又Q 是OP 的中点,∴1212,22x x y y ⎧=⎪⎪⎨⎪=⎪⎩⇒1212242,24.x x x y y y ==-⎧⎨==⎩ ∵P 在抛物线x y 42=上,∴)24(4)4(2-=x y ,化简得212-=x y ,所以M 点的轨迹方程为212-=x y .20.(本小题满分13分)解:(1)由已知双曲线C 的焦点为()12,0F -和()22,0F , 由双曲线定义122MF MF a -=2,a =224, 2.a c b ∴=∴= 221.22x y ∴-=所求双曲线为(2)设()()1122,y ,,A x B x y ,因为,A B 在双曲线上,221122222,2.x y x y ⎧-=∴⎨-=⎩两式相减得()()()()121212120.x x x x y y y y -+--+= 1212121221,42y y x x x x y y -+∴===-+即12.AB k =()121,2AB y x ∴-=-弦的方程为即230.x y -+= 经检验230x y -+=为所求直线方程.21. (本小题满分14分)解:(1)设点P 到抛物线的准线2px =-的距离为d ,由抛物线的定义知,,d PF = ()()min min 4,2p PA PF PA d ∴+=+=+48,2p∴+=解得8,p = ∴抛物线的方程为216.y x =(2)由(1)得()4,0F ,若直线l 的斜率不存在,则16,MN =与32MN ≥矛盾,故直线l 的斜率存在. 设直线l 的方程为()4y k x =-,()()1122,,,,M x y N x y 显然0.k ≠ 把直线方程代入抛物线方程,得()2222816160,k x k x k -++=则2212122281616,16.k k x x x x k k++=== 由焦点弦公式2122816832,k MN x x p k +=+++≥,得即21.k ≤ 又[)(]0,1,00,1k k ≠∴∈-,即直线l 的倾斜角的取值范围为30,,.44πππ⎛⎤⎡⎫ ⎪⎥⎢⎝⎦⎣⎭。

精编高二数学(文科)选修练习含答案

坐标系与参数方程选修(12)1.已知直线l:为参数,曲线:为参数.设l与相交于A,B两点,求;若把曲线上各点的横坐标伸长为原来的倍,纵坐标伸长为原来的3倍,得到曲线,设点P是曲线上的一个动点,求它到直线l的距离的最大值.·解:由题意,消去参数t,得直线l的普通方程为,根据消去参数,曲线的普通方程为,联立得解得,,.由题意得曲线的参数方程为是参数,设点,点P到直线l的距离,当时,.曲线上的一个动点它到直线l的距离的最大值为.·利用消去参数可得曲线的普通方程,与直线l联立方程组求解A,B坐标,两点之间的距离公式可得的长度.由题意得曲线的参数方程为是参数,设点,点到直线的距离公式,利用三角函数的有界限,可得距离的最大值.本题考查了直角坐标方程与极坐标、参数方程之间的转换,考查了参数方程的几何意义属于中档题.2.已知极点与直角坐标系的原点重合,极轴与x轴的正半轴重合,圆C的极坐标是,直线l的参数方程是为参数.若,M为直线l与x轴的交点,N是圆C上一动点,求的最大值;若直线l被圆C截得的弦长为,求a的值.·解:直线l的参数方程是,时,化为普通方程:令,解得,可得圆C的极坐标是,即,可得直角坐标方程:,即.,的最大值为.圆C的方程为:,直线l的方程为:,圆心C到直线l的距离.,解得.·直线l的参数方程是,时,化为普通方程:可得圆C的极坐标是,即,利用互化公式可得直角坐标方程,求出,可得的最大值为.圆C的方程为:,直线l的方程为:,利用点到直线的距离公式与弦长公式即可得出.本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、点到直线的距离公式、弦长公式,考查了推理能力与计算能力,属于中档题.3.在平面直角坐标系中,曲线:为参数经过伸缩变换后的曲线为,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.Ⅰ求的极坐标方程;Ⅱ设曲线的极坐标方程为,且曲线与曲线相交于P,Q两点,求的值.·解:Ⅰ的参数方程为为参数,普通方程为,的极坐标方程为;Ⅱ是以为圆心,2为半径的圆,曲线的极坐标方程为,直角坐标方程为,圆心到直线的距离,.·Ⅰ求出的参数方程,即可求的极坐标方程;Ⅱ是以为圆心,1为半径的圆,曲线的极坐标方程为,直角坐标方程为,求出圆心到直线的距离,即可求的值.本题考查三种方程的互化,考查直线与圆的位置关系,考查弦长的计算,属于中档题.4.在直角坐标系xOy中,曲线C的参数方程为为参数以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系.写出曲线C的极坐标方程;设点M的极坐标为,过点M的直线l与曲线C相交于A,B两点,若,求AB的弦长.·解:曲线C的参数方程为为参数.曲线C的直角坐标方程为,曲线C的极坐标方程为,即曲线C的极坐标方程为.设直线l的参数方程是为参数,曲线C的直角坐标方程是,,联立,得,,且,,则,或,,的弦长.·本题考查曲线的极坐标方程的求法,考查线段长的求法,是中档题,解题时要认真审题,注意极坐标方程与直角坐标方程的互化公式的合理运用.由曲线C的参数方程先求出曲线C的直角坐标方程,由此能求出曲线C的极坐标方程.先求出直线l的参数方程,与曲线C的直角坐标方程联立,得,由此能求出AB的弦长.5.已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为,直线l的参数方程为为参数.求曲线的直角坐标方程及直线l的普通方程;若曲线的参数方程为为参数,曲线上点P的极角为,Q为曲线上的动点,求PQ的中点M到直线l距离的最大值.·解:曲线的极坐标方程为,即,可得直角坐标方程::.直线l的参数方程为为参数,消去参数t可得普通方程:.,直角坐标为,,到l的距离,从而最大值为.·曲线的极坐标方程为,即,可得直角坐标方程直线l的参数方程为为参数,消去参数t可得普通方程.,直角坐标为,,利用点到直线的距离公式及其三角函数的单调性可得最大值.本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、点到直线的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.6.已知曲线的参数方程为为参数在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线:.Ⅰ求曲线的普通方程和的直角坐标方程;Ⅱ若与相交于A、B两点,设点,求的值.·解:曲线的参数方程为为参数,,,曲线的普通方程为分曲线:,,,,的直角坐标方程为分Ⅱ由题意可设,与A、B两点对应的参数分别为,,将的参数方程代入的直角坐标方程,化简整理得,,,分,,,分.·曲线的参数方程消去参数能求出曲线的普通方程;由曲线极坐标方程,能求出的直角坐标方程.Ⅱ由题意可设,与A、B两点对应的参数分别为,,将的参数方程代入的直角坐标方程,得:,由此能求出本题考查参数方程、极坐标方程与直角坐标方程的互化方法,直线与椭圆的位置关系,是中档题.7.在直角坐标系xOy中,直线l的参数方程为为参数,在极坐标系与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴中,圆C的方程为.求直角坐标下圆C的标准方程;Ⅱ若点,设圆C与直线l交于点A,B,求的值.·解:圆C的方程为,即,利用互化公式可得直角坐标方程:,配方为.直线l的参数方程为为参数,代入圆的方程可得:,解得,..·圆C的方程为,即,利用互化公式可得直角坐标方程,配方可得标准方程.直线l的参数方程为为参数,代入圆的方程可得:,解得,利用,即可得出.本题考查了直线的参数方程及其应用、圆的极坐标方程化为直角坐标方程,考查了推理能力与计算能力,属于中档题.8.已知直线l过点,且倾斜角为,圆方程为.求直线l的参数方程;设直线l与圆交与M、N两点,求的值.·【解答】解:直线l过点,且倾斜角为,故直线l的参数方程为,即为参数.圆方程,即,化为直角坐标方程为.把代入化简可得.设此一元二次方程式的两个根分别为和,则由根与系数的关系可得.由题意可得.·【分析】本题主要考查直线的参数方程,参数的几何意义,把极坐标方程化为直角坐标方程的方法,直线和圆的位置关系,属于基础题.由题意可得,直线l的参数方程为,化简可得结果.把圆的极坐标方程化为直角坐标方程可得,由根与系数的关系可得,再由求得结果.9.在平面直角坐标系xOy中,已知直线l的参数方程为为参数,椭圆C的参数方程为为参数,设直线l与椭圆C相交于A,B两点,求线段AB的长.·解:由,由得,代入并整理得,.由,得,两式平方相加得.联立,解得或..·分别化直线与椭圆的参数方程为普通方程,然后联立方程组,求出直线与椭圆的交点坐标,代入两点间的距离公式求得答案.本题考查直线与椭圆的参数方程,考查了参数方程化普通方程,考查直线与椭圆位置关系的应用,是基础题.10.已知直线l:为参数,曲线:为参数.设l与相交于A,B两点,求;若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点P是曲线上的一个动点,求它到直线l的距离的最大值.·解:的普通方程,的普通方程,联立方程组,解得l与的交点为,,则的参数方程为为参数,故点P的坐标是,从而点P到直线l的距离是,由此当时,d取得最大值,且最大值为.·设l与相交于A,B两点,利用普通方程,求出A,B的坐标,即可求;点P的坐标是,点P到直线l的距离是,即可求它到直线l的距离的最大值.本题考查参数方程与普通方程的转化,考查参数方程的运用,考查学生分析解决问题的能力,属于中档题.11.已知直线l的参数方程为为参数,曲线C的极坐标方程为.求曲线C的直角坐标方程.求直线l被曲线C截得的弦长.·【小题1】由得,即有,所以曲线C的直角坐标方程为.【小题2】把代入中,得,即,所以,设直线l与曲线C的交点为,所以直线l被曲线C截得的弦长为·【小题1】略【小题2】略12.以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知曲线的参数方程为,为参数,且,曲线的极坐标方程为.求的极坐标方程与的直角坐标方程;若P是上任意一点,过点P的直线l交于点M,N,求的取值范围.·解:消去参数可得,因为,所以,,所以曲线是在x轴上方的部分,所以曲线的极坐标方程为分曲线的直角坐标方程为分设,则,直线l的倾斜角为,则直线l的参数方程为:为参数分代入的直角坐标方程得,由直线参数方程中t的几何意义可知,因为,所以分·求出的普通方程,即可求的极坐标方程,利用极坐标方程与直角坐标方程的互化方法得出的直角坐标方程;直线l的参数方程为:为参数,代入的直角坐标方程得,由直线参数方程中t的几何意义可知,即可求的取值范围.本题考查三种方程的互化,考查参数方程的运用,考查学生分析解决问题的能力,属于中档题.。

2023年高考全国乙卷文科数学试题(含答案详解)

2023年普通高等学校招生全国统一考试(全国乙卷)文科数学一、选择题1. 232i 2i ++=( )A. 1B. 2C.D. 52. 设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则M ∪C U N ( ) A. {}0,2,4,6,8B. {}0,1,4,6,8C. {}1,2,4,6,8D. U3. 如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A. 24B. 26C. 28D. 304. 在ABC 中,内角,,A B C 的对边分别是,,a b c ,若cos cos a B b A c −=,且5C π=,则B ∠=( )A.10π B.5π C.310π D.25π 5. 已知e ()e 1xax x f x =−是偶函数,则=a ( )A. 2−B. 1−C. 1D. 26. 正方形ABCD 的边长是2,E 是AB 的中点,则EC ED ⋅=( )A.B. 3C. D. 57. 设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点A ,则直线OA 的倾斜角不大于π4的概率为( ) A.18B.16C.14D.128. 函数()32f x x ax =++存在3个零点,则a 的取值范围是( )A. (),2−∞−B. (),3−∞−C. ()4,1−−D. ()3,0−9. 某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )A.56B.23C.12D.1310. 已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫ ⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫−= ⎪⎝⎭( )A. B. 12−C.12D.11. 已知实数,x y 满足224240x y x y +−−−=,则x y −的最大值是( )A. 1+B. 4C. 1+D. 712. 设A ,B 为双曲线2219y x −=上两点,下列四个点中,可为线段AB 中点的是( )A. ()1,1B. ()1,2-C. ()1,3D. ()1,4−−二、填空题13.已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______. 14. 若π10,,tan 22⎛⎫∈= ⎪⎝⎭θθ,则sin cos θθ−=________. 15. 若x ,y 满足约束条件312937x y x y x y −≤−⎧⎪+≤⎨⎪+≥⎩,则2z x y =−的最大值为______.16. 已知点,,,S A B C 均在半径为2的球面上,ABC 是边长为3的等边三角形,SA ⊥平面ABC ,则SA =________. 三、解答题17. 某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:记1,2,,10i i i z x y i =−=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s . (1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥为有显著提高)18.记n S 为等差数列{}n a 的前n 项和,已知21011,40a S ==. (1)求{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T .19.如图,在三棱锥−P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==,,BP AP BC 的中点分别为,,D E O ,点F 在AC 上,BF AO ⊥.(1)求证:EF //平面ADO ;(2)若120POF ∠=︒,求三棱锥−P ABC 的体积. 20.已知函数()()1ln 1f x a x x ⎛⎫=++⎪⎝⎭. (1)当1a =−时,求曲线()y f x =在点()()1,f x 处的切线方程. (2)若函数()f x 在()0,∞+单调递增,求a 的取值范围.21.已知椭圆2222:1(0)C bb x a a y +>>=,点()2,0A −在C 上.(1)求C 的方程;(2)过点()2,3−的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.【选修4-4】(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42ππρθθ⎛⎫=≤≤⎪⎝⎭,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】(10分)23.已知()22f x x x =+− (1)求不等式()6x f x ≤−的解集;(2)在直角坐标系xOy 中,求不等式组()60f x yx y ⎧≤⎨+−≤⎩所确定的平面区域的面积.2023年普通高等学校招生全国统一考试(全国乙卷)答案详解文科数学(2023·全国乙卷·文·1·★)232i 2i ++=( )(A )1 (B )2 (C (D 答案:C解析:2322i 2i 212i i 212(1)i 12i ++=−+⨯⨯=−+⨯−⨯=−=.(2023·全国乙卷·文·2·★)设全集{0,1,2,4,6,8}U =,集合{0,4,6}M =,{0,1,6}N =,M ∪C U N 则( ) (A ){0,2,4,6,8} (B ){0,1,4,6,8} (C ){1,2,4,6,8} (D )U 答案:A解析:由题意,C U N ={2,4,8},所以M ∪C U N ={0,2,4,6,8}.(2023·全国乙卷·文·3·★) 如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A.24B.26C.28D.30答案:D解析:如图所示,在长方体1111ABCD A B C D −中,2AB BC ==,13AA =,点,,,H I J K 为所在棱上靠近点1111,,,B C D A 的三等分点,,,,O L M N 为所在棱的中点,则三视图所对应的几何体为长方体1111ABCD A B C D −去掉长方体11ONIC LMHB −之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形, 其表面积为:()()()22242321130⨯⨯+⨯⨯−⨯⨯=.(2023·全国乙卷·文·4·★★)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,若cos cos a B b A c −=,且5C π=则,在B =( ) (A )10π(B )5π (C )310π (D )25π 答案:C解法1:所给边角等式每一项都有齐次的边,要求的是角,故用正弦定理边化角分析, 因为cos cos a B b A c −=,所以sin cos sin cos sin A B B A C −=,故sin()sin A B C −= ①, 已知C ,先将C 代入,再利用A B C π++=将①中的A 换成B 消元, 因为5C π=,所以45A B C ππ+=−=,故45A B π=−,代入①得4sin(2)sin 55B ππ−= ②, 因为45A B π+=,所以405B π<<,故4442555B πππ−<−<,结合②可得4255B ππ−=,所以310B π=.解法2:按解法1得到sin cos sin cos sin A B B A C −=后,观察发现若将右侧sin C 拆开,也能出现左边的两项,故拆开来看,sin sin[()]sin()sin cos cos sin C A B A B A B A B π=−+=+=+,代入sin cos sin cos sin A B B A C −=得:sin cos sin cos sin cos sin cos A B B A A B B A −=+,化简得:sin cos 0B A =,因为0B π<<,所以sin 0B >,故cos 0A =,结合0A π<<可得2A π=,所以43510B A ππ=−=.(2023·全国乙卷·文·5·★★) 已知e ()e 1xax x f x =−是偶函数,则=a ( )A. 2−B. 1−C. 1D. 2答案:D解析:因为()e e 1x ax x f x =−为偶函数,则()()()()1e e e e 0e 1e 1e 1a x x x x ax ax ax x x x f x f x −−−⎡⎤−−⎣⎦−−=−==−−−, 又因为x 不恒为0,可得()1e e 0a x x −−=,即()1e e a x x −=,则()1x a x =−,即11a =−,解得2a =.(2023·全国乙卷·文·6·★)正方形ABCD 的边长是2,E 是AB 的中点,则EC ED ⋅=( ) (A(B )3 (C) (D )5 答案:B解析:如图,EC ,ED 共起点,且中线、底边长均已知,可用极化恒等式求数量积, 由极化恒等式,223EC ED EF CF ⋅=−=.A BCDE F(2023·全国乙卷·文·7·★★)设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点A ,则直线OA 的倾斜角不大于π4的概率为( ) A.18B. 16C.14D.12答案:C 解析:因为区域(){}22,|14x y xy ≤+≤表示以()0,0O 圆心,外圆半径2R =,内圆半径1r =的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角π4MON ∠=, 结合对称性可得所求概率π2142π4P ⨯==.(2023·全国乙卷·文·8·★★★)函数3()2f x x ax =++存在3个零点,则a 的取值范围是( ) (A )(,2)−∞− (B )(,3)−∞− (C )(4,1)−− (D )(3,0)− 答案:B解法1:观察发现由320x ax ++=容易分离出a ,故用全分离,先分析0x =是否为零点, 因为(0)20f =≠,所以0不是()f x 的零点;当0x ≠时,3322()0202f x x ax ax x a x x=⇔++=⇔=−−⇔=−−, 所以直线y a =与函数22(0)y x x x =−−≠的图象有3个交点,要画此函数的图象,需求导分析,令22()(0)g x x x x =−−≠,则3222222(1)2(1)(1)()2x x x x g x x x x x −−++'=−+==, 因为22131()024x x x ++=++>,所以()00g x x '>⇔<或01x <<,()01g x x '<⇔>,故()g x 在(,0)−∞上,在(0,1)上,在(1,)+∞上,又lim ()x g x →−∞=−∞,当x 分别从y 轴左、右两侧趋近于0时,()g x 分别趋于+∞,−∞,(1)3g =−,lim ()x g x →+∞=−∞,所以()g x 的大致图象如图1,由图可知要使y a =与()y g x =有3个交点,应有3a <−.解法2:如图2,三次函数有3个零点等价于两个极值异号,故也可直接求导分析极值,由题意,2()3f x x a '=+,要使()f x 有2个极值点,则()f x '有两个零点,所以120a ∆=−>,故0a <, 令()0f x '=可得x =322f =+=,3(((22f a =++=,故34(2)(2)4027a f f =+=+<,解得:3a <−.a=1图2图(2023·全国乙卷·文·9·★)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( ) A.56B.23C.12D.13答案:A解析:甲有6种选择,乙也有6种选择,故总数共有6636⨯=种, 若甲、乙抽到的主题不同,则共有26A 30=种, 则其概率为305366=,(2023·全国乙卷·文·10·★★★)已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫−= ⎪⎝⎭() A. B. 12−C.12D.2答案:D解析:因为()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增, 所以2πππ2362T =−=,且0ω>,则πT =,2π2w T ==, 当π6x =时,()f x 取得最小值,则ππ22π62k ϕ⋅+=−,Z k ∈,则5π2π6k ϕ=−,Z k ∈,不妨取0k =,则()5πsin 26f x x ⎛⎫=− ⎪⎝⎭,则5π5πsin 1232f ⎛⎫⎛⎫−=−= ⎪ ⎪⎝⎭⎝⎭,(2023·全国乙卷·文·11·★★★)已知实数x ,y 满足224240x y x y +−−−=,则x y −的最大值是( )(A )1 (B )4 (C )1+ (D )7 答案:C解法1:所给等式可配方化为平方和结构,故考虑三角换元,22224240(2)(1)9x y x y x y +−−−=⇒−+−=,令23cos 13sin x y θθ=+⎧⎨=+⎩,则23cos 13sin 1)4x y πθθθ−=+−−=−−,θ∈R ,所以当sin()14πθ−=−时,x y −取得最大值1+解法2:所给方程表示圆,故要求x y −的最大值,也可设其为t ,看成直线,用直线与圆的位置关系处理,22224240(2)(1)9x y x y x y +−−−=⇒−+−= ①,设t x y =−,则0x y t −−=,因为x ,y 还满足①,所以直线0x y t −−=与该圆有交点,从而圆心(2,1)到直线的距离3d =≤,解得:11t −≤≤+max ()1x y −=+(2023·全国乙卷·文·12·★★★★)设A ,B 为双曲线2219y x −=上两点,下列四个点中,可为线段AB 中点的是( ) A. ()1,1 B. ()1,2-C. ()1,3D. ()1,4−−答案:D解析:设()()1122,,,A x y B x y ,则AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭,可得1212121212122,2ABy y y y y y k k x x x x x x +−+===+−+,因为,A B 在双曲线上,则221122221919y x y x ⎧−=⎪⎪⎨⎪−=⎪⎩,两式相减得()2222121209y y x x −−−=, 所以221222129AB y y k k x x −⋅==−. 对于选项A : 可得1,9AB k k ==,则:98AB y x =−,联立方程229819y x y x =−⎧⎪⎨−=⎪⎩,消去y 得272272730x x −⨯+=,此时()2272472732880∆=−⨯−⨯⨯=−<, 所以直线AB 与双曲线没有交点,故A 错误; 对于选项B :可得92,2AB k k =−=−,则95:22AB y x =−−, 联立方程22952219y x y x ⎧=−−⎪⎪⎨⎪−=⎪⎩,消去y 得245245610x x +⨯+=, 此时()224544561445160∆=⨯−⨯⨯=−⨯⨯<, 所以直线AB 与双曲线没有交点,故B 错误; 对于选项C :可得3,3AB k k ==,则:3AB y x =由双曲线方程可得1,3a b ==,则:3AB y x =为双曲线的渐近线, 所以直线AB 与双曲线没有交点,故C 错误; 对于选项D :94,4AB k k ==,则97:44AB y x =−,联立方程22974419y x y x ⎧=−⎪⎪⎨⎪−=⎪⎩,消去y 得2631261930x x +−=, 此时21264631930∆=+⨯⨯>,故直线AB 与双曲线有交两个交点,故D 正确;(2023·全国乙卷·文·13·★)已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______. 答案:94解析:由题意可得:221p =⨯,则25p =,抛物线的方程为25y x =,准线方程为54x =−,点A 到C 的准线的距离为59144⎛⎫−−= ⎪⎝⎭.(2023·全国乙卷·文·14·★)若(0,)2πθ∈,1tan 3θ=,则sin cos θθ−=_____.答案: 解析:已知tan θ,可先求出sin θ和cos θ, 由题意,sin 1tan cos 3θθθ==,所以cos 3sin θθ=,代入22cos sin 1θθ+=可得210sin 1θ=, 又(0,)2πθ∈,所以sin θ=,cos θ=,故sin cos θθ−=(2023·全国乙卷·文·15·★★)若x ,y 满足约束条件312937x y x y x y −≤−⎧⎪+≤⎨⎪+≥⎩,则2z x y =−的最大值为______.答案:8解析:作出可行域如下图所示:z =2x −y ,移项得y =2x −z , 联立有3129x y x y −=−⎧⎨+=⎩,解得52x y =⎧⎨=⎩,设()5,2A ,显然平移直线2y x =使其经过点A ,此时截距−z 最小,则z 最大,代入得z =8,(2023·全国乙卷·文·16·★★★)已知点S ,A ,B ,C 均在半径为2的球面上,ABC ∆是边长为3的等边三角形,SA ⊥平面ABC ,则SA =_____. 答案:2解析:有线面垂直,且ABC ∆是等边三角形,属外接球的圆柱模型,核心方程是222()2hr R +=,如图,圆柱的高h SA =,底面半径r 即为ABC ∆的外接圆半径,所以233r ==, 由题意,球的半径2R =,因为222()2hr R +=,所以23()42h +=,解得:2h =,故2SA =.(2023·全国乙卷·文·17·★★★)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:记()1,2,,10i i i z x y i =−=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s . (1)求z ,s 2;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高) 答案:(1)11z =,261s =;(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高. 解析:(1)545533551522575544541568596548552.310x +++++++++==,536527543530560533522550576536541.310y +++++++++==,552.3541.311z x y =−=−=,i i i z x y =− 的值分别为: 9,6,8,8,15,11,19,18,20,12−,故2222222222(911)(611)(811)(811)(1511)0(1911)(1811)(2011)(1211)6110s −+−+−+−−+−++−+−+−+−==(2)由(1)知:11z =,==z ≥ 所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.(2023·全国乙卷·文·18·★★★)记n S 为等差数列{}n a 的前n 项和,已知211a =,1040S =. (1)求{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T .解:(1)(已知条件都容易代公式,故直接用公式翻译,求出1a 和d ) 设{}n a 的公差为d ,则2111a a d =+= ①, 101104540S a d =+= ②,联立①②解得:113a =,2d =−,所以1(1)13(1)(2)152n a a n d n n =+−=+−⨯−=−.(2)(通项含绝对值,要求和,先去绝对值,观察发现{}n a 前7项为正,从第8项起为负,故据此讨论) 当7n ≤时,0n a >,所以12n n T a a a =++⋅⋅⋅+ 2112()(13152)1422n n n a a n n a a a n n ++−=++⋅⋅⋅+===−; 当8n ≥时,12n n T a a a =++⋅⋅⋅+ 12789n a a a a a a =++⋅⋅⋅+−−−⋅⋅⋅− 127122()()n a a a a a a =++⋅⋅⋅+−++⋅⋅⋅+ 27(131)(13152)2149822n n n n ⨯++−=⨯−=−+; 综上所述,2214,71498,8n n n n T n n n ⎧−≤⎪=⎨−+≥⎪⎩.(2023·全国乙卷·文·19·★★★)如图,在三棱锥−P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==,,BP AP BC 的中点分别为,,D E O ,点F 在AC 上,BF AO ⊥.(1)求证:EF //平面ADO ;(2)若120POF ∠=︒,求三棱锥−P ABC 的体积.答案:(1)证明见解析 (2解析:(1)连接,DE OF ,设AF tAC =,则(1)BF BA AF t BA tBC =+=−+,12AO BA BC =−+,BF AO ⊥, 则2211[(1)]()(1)4(1)4022BF AO t BA tBC BA BC t BA tBC t t ⋅=−+⋅−+=−+=−+=, 解得12t =,则F 为AC 的中点,由,,,D E O F 分别为,,,PB PA BC AC 的中点,于是11//,,//,22DE AB DE AB OF AB OF AB ==,即,//DE OF DE OF =,则四边形ODEF 为平行四边形,//,EF DO EF DO =,又EF ⊄平面,ADO DO ⊂平面ADO ,所以//EF 平面ADO .(2)过P 作PM 垂直FO 的延长线交于点M , 因为,PB PC O =是BC 中点,所以PO BC ⊥,在Rt PBO △中,12PB BO BC ===2PO ===, 因为,//AB BC OF AB ⊥,所以OF BC ⊥,又PO OF O ⋂=,,PO OF ⊂平面POF , 所以BC⊥平面POF ,又PM ⊂平面POF ,所以BC PM ⊥,又BC FM O =,,BC FM ⊂平面ABC ,所以PM ⊥平面ABC ,即三棱锥−P ABC 的高为PM ,因为120POF ∠=︒,所以60POM ∠=︒,所以sin 6022PM PO =︒=⨯=,又11222ABC S AB BC =⋅=⨯⨯=△所以11333P ABC ABC V S PM −=⋅=⨯=△.(2023·全国乙卷·文·20·★)已知函数1()()ln(1)f x a x x=++.(1)当1a =−时,求曲线()y f x =在点(1,(1))f 处的切线方程; (2)若函数()f x 在(0,)+∞上单调递增,求a 的取值范围. 答案:(1)()ln 2ln 20x y +−=; (2)1|2a a ⎧⎫≥⎨⎬⎩⎭. 解析:(1)当1a =−时,()()()11ln 11f x x x x ⎛⎫=−+>−⎪⎝⎭, 则()()2111ln 111x f x x x x ⎛⎫'=−⨯++−⨯ ⎪+⎝⎭, 据此可得()()10,1ln 2f f '==−,所以函数在()()1,1f 处的切线方程为()0ln 21y x −=−−,即()ln 2ln 20x y +−=. (2)由函数的解析式可得()()()2111=ln 111f x x a x x x x ⎛⎫⎛⎫'−+++⨯>− ⎪ ⎪+⎝⎭⎝⎭, 满足题意时()0f x '≥在区间()0,∞+上恒成立. 令()2111ln 101x a x x x ⎛⎫⎛⎫−+++≥ ⎪ ⎪+⎝⎭⎝⎭,则()()()21ln 10x x x ax −++++≥, 令()()()2=1ln 1g x ax x x x +−++,原问题等价于()0g x ≥在区间()0,∞+上恒成立, 则()()2ln 1g x ax x '=−+,当0a ≤时,由于()20,ln 10ax x ≤+>,故()0g x '<,()g x 在区间()0,∞+上单调递减,此时()()00g x g <=,不合题意;令()()()2ln 1h x g x ax x '==−+,则()121h x a x −'=+, 当12a ≥,21a ≥时,由于111x <+,所以()()0,h x h x '>在区间()0,∞+上单调递增, 即()g x '在区间()0,∞+上单调递增,所以()()>00g x g ''=,()g x 在区间()0,∞+上单调递增,()()00g x g >=,满足题意. 当102a <<时,由()1201h x a x =−=+'可得1=12x a−, 当10,12x a ⎛⎫∈− ⎪⎝⎭时,()()0,h x h x '<在区间10,12a ⎛⎫− ⎪⎝⎭上单调递减,即()g x '单调递减,注意到()00g '=,故当10,12x a ⎛⎫∈− ⎪⎝⎭时,()()00g x g ''<=,()g x 单调递减, 由于()00g =,故当10,12x a ⎛⎫∈− ⎪⎝⎭时,()()00g x g <=,不合题意. 综上可知:实数a 得取值范围是1|2a a ⎧⎫≥⎨⎬⎩⎭.(2023·全国乙卷·文·21·★★★)已知椭圆2222:1(0)C b b x a a y +>>=,点()2,0A −在C 上.(1)求C 的方程; (2)过点()2,3−的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.答案:(1)22194y x += (2)证明见详解解析:(1)由题意可得22223b a b c c e a ⎧⎪=⎪⎪=+⎨⎪⎪==⎪⎩,解得32a b c ⎧=⎪=⎨⎪=⎩,所以椭圆方程为22194y x +=.(2)由题意可知:直线PQ 的斜率存在,设()()()1122:23,,,,PQ y k x P x y Q x y =++,联立方程()2223194y k x y x ⎧=++⎪⎨+=⎪⎩,消去y 得:()()()222498231630k x k k x k k +++++=,则()()()2222Δ64236449317280kk k k k k =+−++=−>,解得0k <,可得()()2121222163823,4949k k k k x x x x k k +++=−=++, 因为()2,0A −,则直线()11:22y AP y x x =++, 令0x =,解得1122y y x =+,即1120,2y M x ⎛⎫⎪+⎝⎭,同理可得2220,2y N x ⎛⎫ ⎪+⎝⎭,则()()1212121222232322222y y k x k x x x x x +++++⎡⎤⎡⎤++⎣⎦⎣⎦=+++()()()()()()12211223223222kx k x kx k x x x +++++++⎡⎤⎡⎤⎣⎦⎣⎦=++()()()()1212121224342324kx x k x x k x x x x +++++=+++()()()()()()222222323843234231084949336163162344949k k k k k k k k k k k k k k k +++−++++===++−+++,所以线段PQ 的中点是定点()0,3.【选修4-4】(10分)(2023·全国乙卷·文·22·★★★)在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42ππρθθ⎛⎫=≤≤ ⎪⎝⎭,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围. 答案:(1)()[][]2211,0,1,1,2x y x y +−=∈∈ (2)()(),022,−∞+∞解析:(1)因为2sin ρθ=,即22sin ρρθ=,可得222x y y +=, 整理得()2211x y +−=,表示以()0,1为圆心,半径为1的圆,又因为2cos 2sin cos sin 2,sin 2sin 1cos 2x y ======−ρθθθθρθθθ, 且ππ42θ≤≤,则π2π2≤≤θ,则[][]sin 20,1,1cos 21,2x y =∈=−∈θθ, 故()[][]221:11,0,1,1,2C x y x y +−=∈∈.(2)因为22cos :2sin x C y αα=⎧⎨=⎩(α为参数,ππ2α<<),整理得224x y +=,表示圆心为()0,0O ,半径为2,且位于第二象限的圆弧, 如图所示,若直线y x m =+过()1,1,则11m =+,解得0m =;若直线y x m =+,即0x y m −+=与2C相切,则20m =>⎩,解得m =,若直线y x m =+与12,C C均没有公共点,则m >或0m <, 即实数m 的取值范围()(),022,−∞+∞.【选修4-5】(10分)(2023·全国乙卷·文·23·★★)已知()22f x x x =+− (1)求不等式()6x f x ≤−的解集;(2)在直角坐标系xOy 中,求不等式组()60f x yx y ⎧≤⎨+−≤⎩所确定的平面区域的面积.答案:(1)[2,2]−; (2)8.解析:(1)依题意,32,2()2,0232,0x x f x x x x x −>⎧⎪=+≤≤⎨⎪−+<⎩,不等式()6f x x ≤−化为:2326x x x >⎧⎨−≤−⎩或0226x x x ≤≤⎧⎨+≤−⎩或0326x x x <⎧⎨−+≤−⎩,解2326x x x >⎧⎨−≤−⎩,得无解;解0226x x x ≤≤⎧⎨+≤−⎩,得02x ≤≤,解0326x x x <⎧⎨−+≤−⎩,得20x −≤<,因此22x −≤≤,所以原不等式的解集为:[2,2]−(2)作出不等式组()60f x yx y ≤⎧⎨+−≤⎩表示的平面区域,如图中阴影ABC ,由326y xx y=−+⎧⎨+=⎩,解得(2,8)A−,由26y xx y=+⎧⎨+=⎩, 解得(2,4)C,又(0,2),(0,6)B D,所以ABC的面积11|||62||2(2)|822ABC C AS BD x x=⨯−=−⨯−−=.。

北师大版高二文科数学选修11测试题及答案

选修1 -1本试卷分第I卷(选择题)和第n卷(非选择题)两部分。

第I卷1至2页。

第n卷3至6页。

考试结束后.只将第n卷和答题卡一并交回。

参考公式:(x ) = : x "(:为实数);(sin x) = cosx ;(cosx) - sin x ;第I卷(选择题共60分)注意事项:1 •答第I卷前,考生务必将姓名、准考号、考试科目用铅笔涂写在答题卡上。

2 •每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。

一、选择题:本大题共10小题,每小题6分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.命题"若A = B,则cosA二cosB ”的否命题是5 14.“”是“ cos^ -sin2”的12 2A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件5.若方程k -1 k—3=1表示双曲线,则实数k的取值范围是A. k 1 C. k 3B. 1 k 3D. k 1 或k 3A.若A = B,贝U cosA = cosBC.若cosA = cosB,贝U A = B2. “直线l与平面:•平行”是“直线()条件A.充要BC.必要非充分DB.若cosA 二cosB,则A = B D.若A = B,则cosA= cosB l 与平面:•内无数条直线都平行”的.充分非必要.既非充分又非必要3.已知命题p: 2 3 , q: 2 3,对由“p”形式的命题,给出以下判断:p、q构成的“ p或q”、“ p且q”、①“ p或q ”为真命题;③“ p且q ”为真命题;⑤“ —p”为真命题;其中正确的判断是A.①④⑥B.①③⑥②“ p或q”为假命题;④“ p且q”为假命题;⑥“—p”为假命题.C.②④⑥D.②③⑤6.抛物线y =2x 2的焦点坐标是1 1A.(0,)B.(0,丄)C. (丄,0) D.(」,0)8 4847.设 f (x ) = sin xcosx ,那么f (x ) —A . - cosxsinx B. cos2x C. sinx cosxD . cosx - sinx 8.以下有四种说法,其中正确说法的个数为:(1) “ b 2二ac ”是“ b 为a 、c 的等比中项”的充分不必要条件; (2) “ a ”b ”是“ aS>b 2”的充要条件;(3) “ A = B ”是“ tan A = tanB ”的充分不必要条件;(4) “a b 是偶数”是“ a 、b 都是偶数”的必要不充分条件A. 0个B. 1个C. 2个D. 3个9.抛物线y—-1 2x ,(a 0)的准线方程是aaaA. y = —B.y = -4aC.y 二一一D.y =4410.抛物线y 2=12X 上与焦点的距离等于7的点的横坐标是( )A. 6B. 5C. 4D.3二、填空题:本大题共 6小题,每小题5分,共30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012~2013学年第二学期高二周考试题(三)
数学(文科)
一.选择题:(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中.只有一项是符合题目要求的.) 1.若复数11z i =+,21z i =-,则
1
2
z z =( ) A .i - B
.1- C .i D .1 2.抛物线28y x =的准线方程是(

A .2-=
y B .2=y C .2
x = D .x =3.若椭圆2215x y m
+=的离心率5e =,则m 的值为A.13或253
4.如右图的程序框图输出的n 的值是( ) A .3 B .4 C .5 D .6
5.函数x e x f x ln )(=在点))1(,1(f 处的切线方程是(
)A.)1(2-=x e y B.1-=ex y C.)1(-=x e y D.x y -=6.在极坐标系中,点(4,)3π到直线cos()13
π
ρθ-=距离的最小值为( )
D. 3 7.有下列四个命题:
○1命题“同位角相等,两直线平行”的逆否命题为:“两直线不平行,同位角不相等”.

2“21sin =α”是“︒=30α”的必要不充分条件. ○
3若p q ∧为假命题,则p 、q 均为假命题. ○4对于命题p :0x R ∃∈,200220x x ++≤, 则⌝p :x R ∀∈, 2220x x ++>. 其中正确是( ) A.○
1○2 B.○2○3 C.○1○4 D.○3○4 8.在直角坐标系xoy 中, 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,
则直线2()1x t t y t
=-+⎧⎨=-⎩为参数和圆2
2cos 30ρρθ+-=截的弦长等于( )
A
B .4 C
..8 9.根据下面的结构图,总经理的直接下属是( )
A .总工程师和专家办公室
B .总工程师、专家办公室和开发部
C .开发部
D .总工程师、专家办公室和所有七个部 10.用火柴棒按下图的方法搭三角形
:
按图示的规律搭下去)A . 30 B . 19 C .21 D .23 二.填空题: (本大题共5小题,其中14~15题是选做题,考生只能选做一题, 两题全答的,只计算前一题得分.每小题5分,满分20分.)
11. 已知F 1、F 2是椭圆162x +9
2y =1的两焦点,经点F 2的的直线交椭圆于点A 、B ,
若|AB|=5,则|AF 1|+|BF 1|等于
12.在极坐标系中,过点)4 , 22(π
作圆θρsin 4=的切线,则切线的极坐标方程
是 .
13.已知:
111)1(1+-=+n n n n ,)
2)(1(21
)1(21)2)(1(1++-+=++n n n n n n n .
由以上两式,可以类比得到:
=+++)
3)(2)(1(1
n n n n _____________________.
14.对于函数)0(,)(3≠=a ax x f 有以下说法:
①0=x 是)(x f 的极值点.②当0<a 时,)(x f 在),(+∞-∞上是减函数.
③)(x f 的图像与))1(,1(f 处的切线必相交于另一点.
④若0>a 且0≠x 则)1
()(x
f x f +有最小值是a 2.
其中说法正确的序号是_______________.
三.解答题:本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤。

15.已知直线l 的极坐标方程为cos sin 5ρθθ-=,圆C 的参数方程为
()52cos [0,2)42sin x y α
ααπα
=+⎧∈⎨
=+⎩为参数,. (1)求直线l 和圆C 的直角坐标方程;
(2)判断直线l 与圆C 的位置关系,并说明理由.
16.求函数()21
32ln 2
f x x x x =-+的单调区间和极值.
17.在研究色盲与性别的关系调查中,调查了男性480人,其中有38人患色盲,调查的520个女性中6人患色盲,
(1)根据以上的数据建立一个2×2的列联表; (2)若认为“性别与患色盲有关系”,则出错的概率会是多少 参考公式:
随机量变)
)()()(()(2
2
d b c a d c b a bc ad n K ++++-= (其中d c b a n +++=)
18.某种产品的广告费用支出x (万元)与销售y (万元)之间有如下的对应数据:
若由资料可知对x 呈线性相关关系,试求: (1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程
ˆˆy bx
a =+;
(3)据此估计广告费用支出为10万元时销售收入y 的值.
参考公式:
∑∑=-
=-
-∧
---=
n
i i n
i i i
x x y y x x
b 1
2
1
)()
)((=
12
21
n
i i
i n
i
i x y nx y
x
nx
==--∑∑, ˆa
y b x ∧
=-.
19.设2
1)(ax
e x
f x
+=,其中a 为正实数. (1)当3
4
=
a 时,求()f x 的极值点; (2)若()f x 为R 上的单调函数,求a 的取值范围.
20.已知双曲线22
22:1(0,0)x y C a b a b
-=>>的两个焦点为)0,2(1-F 、)0,2(2F ,
点)7,3(P 在双曲线C 上. (1)求双曲线C 的方程;
(2)记O 为坐标原点,过点Q (0,2)的直线l 与双曲线C 相交于不同的两点E 、
F ,若△OEF 的面积为求直线l 的方程.
2012-----2013学年第二学期高二周考(三)答题卡
数学(文科)
11. ; 12. ; 13. ; 14. 。

三、解答题 本大题共6小题,共80分.解答应写出文字说明、演算步骤或推
学校 班级 姓名 座位号
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\


线


要 答
题 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\。

相关文档
最新文档